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» Solar geoengineering has the potential to help manage impacts of climate
change but not enough is known about the unintended side effects.
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Potential of Solar Geoengineering

Caldeira & Wood (2008): 1.8% reduction in top of the atmosphere solar
radiation compensates roughly for doubled CO, induced temperature changes.

Model: CAM3;
doubled CO,
concentration
relative to present-
day; 1.8% reduction
in solar constant
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Impacts on Terrestrial Water Cycling

Dagon & Schrag (2016): Evapotranspiration over land decreases under model
simulations of solar geoengineering.
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Model: CAM4-CLM4; doubled CO, concentration relative to present-day; 2%
reduction in solar constant

Showing boreal summer (JJA) changes relative to present-day.



Impacts on Terrestrial Water Cycling

Dagon & Schrag (2016): Soil moisture largely increases as evapotranspiration
decreases.
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Model: CAM4-CLM4; doubled CO, concentration relative to present-day; 2%
reduction in solar constant

Showing boreal summer (JJA) changes relative to present-day.
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Soil Moisture-Climate Coupling
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July 2012 U.S. Heat Wave

Temperature

July 2012 was the warmest month on
record for contiguous U.S.

Figure: Diffenbaugh & Scherer (2013)

Magnitude of
2012 Event

Calculated Soil Moisture Anomaly (mm)
APR 30, 2012

What did the central U.S. soil moisture
anomaly look like in April 20127

10-25% reduction with respect to
1979-2000 climatology.
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How does solar geoengineering impact
U.S. mid-latitude heat waves?
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CESM 1.2

1° horizontal resolution, 26
vertical layers in the
atmosphere.

Satellite phenology: leaf area index
and plant functional types fixed.



Simulation design

Initialize the model with a 5-year, 3-month spin up ending March 31
Two simulations run for 5 months, April through August:

1. Control (CO, = 367 ppm)
2. SolarGeo (CO, = 734 ppm, solar constant decreased by 2.2%)

April 1 soil moisture reduced by 5% in the central U.S. (35-45°N,
105-90°W) for both simulations i '

> What is the resulting summertime temperature response?
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Preliminary Results

Daily Regional Average T, (°C)

Red = Control
Blue = SolarGeo
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Large heat wave present in control
simulation (35 consecutive days with
T 235°C)
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Regional average difference,
SolarGeo-ctrl =-1.91°C



Preliminary Results

Daily Regional Average Evapotranspiration (mm day )
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Increase in ET under SolarGeo,
especially during the heat wave
period in late July.

Regional average difference,
SolarGeo-ctrl = 0.32 mm/day (18.42%)
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Daily Regional Average Precipitation (mm day”) JJA Precipitation, SolarGeo-ctrl (mm day™)
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JJA Photosynthesis, SolarGeo-ctrl (umol m?s™)
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Shift in surface energy
partitioning from sensible to
latent heat explains cooling.
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Summary and Future Work

Solar geoengineering has the potential to mitigate climate change
but there are important side effects to consider (e.g. the terrestrial
hydrologic response).

Known connection between low soil moisture and heat waves; the
central U.S. is a hot spot for land-atmosphere coupling.

Solar geoengineering shown to reduce the duration and intensity of
a modeled regional heat wave event.

Future work: continue to explore mechanisms, additional metrics for
diagnosing heat wave events, consider extreme precipitation events.
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