Soil Moisture-Climate Coupling under Model Simulations of Solar Geoengineering

Katie Dagon Harvard University

CESM LMWG Meeting June 22, 2016

Outline

- 1. Introduction to Solar Geoengineering; Previous Work
- 2. Soil Moisture-Climate Coupling
- 3. Description of Model Simulations
- 4. Preliminary Results

Adapted from The Royal Society

K. Dagon

Adapted from The Royal Society

Solar geoengineering has the potential to help manage impacts of climate change but not enough is known about the unintended side effects.

Potential of Solar Geoengineering

Caldeira & Wood (2008): 1.8% reduction in top of the atmosphere solar radiation compensates roughly for doubled CO_2 induced temperature changes.

 $2xCO_2$

 $2xCO_2$ &

Model: CAM3; doubled CO₂ concentration relative to presentday; 1.8% reduction in solar constant

Showing annual mean changes relative to presentday.

Impacts on Terrestrial Water Cycling

Dagon & Schrag (2016): Evapotranspiration over land decreases under model simulations of solar geoengineering.

Model: CAM4-CLM4; doubled CO₂ concentration relative to present-day; 2% reduction in solar constant

Showing **boreal summer (JJA)** changes relative to **present-day**.

Impacts on Terrestrial Water Cycling

Dagon & Schrag (2016): Soil moisture largely increases as evapotranspiration decreases.

Model: CAM4-CLM4; doubled CO₂ concentration relative to present-day; 2% reduction in solar constant

Showing **boreal summer (JJA)** changes relative to **present-day**.

Soil Moisture-Climate Coupling

Seneviratne et al. 2010, after Koster et al. 2004, 2006

July 2012 U.S. Heat Wave

What did the central U.S. soil moisture anomaly look like in April 2012?

10-25% reduction with respect to 1979-2000 climatology.

July 2012 was the warmest month on record for contiguous U.S.

Figure: Diffenbaugh & Scherer (2013)

Source: NOAA CPC

How does solar geoengineering impact U.S. mid-latitude heat waves?

CESM 1.2

Simulation design

- Initialize the model with a 5-year, 3-month spin up ending March 31
- Two simulations run for 5 months, April through August:
 - 1. Control ($CO_2 = 367 \text{ ppm}$)
 - 2. SolarGeo ($CO_2 = 734$ ppm, solar constant decreased by 2.2%)
- April 1 soil moisture reduced by 5% in the central U.S. (35-45°N, 105-90°W) for both simulations

> What is the resulting summertime temperature response?

Preliminary Results

Daily Regional Average T_{max} (°C) JJA T_{max}, SolarGeo-ctrl (°C) 44 45N 40 36 40N 32 28 24 35N Red = Control 105W 100W Blue = SolarGeo 20 -3.2 -2.4 -1.6 -0.8 0 0.8 Jun Jul Aug Sep

Large heat wave present in control simulation (35 consecutive days with $T_{max} \ge 35^{\circ}C)$

Regional average difference, SolarGeo-ctrl = -1.91°C

95W

1.6

2.4

3.2

90W

Preliminary Results

Daily Regional Average Evapotranspiration (mm day⁻¹)

Increase in ET under SolarGeo, especially during the heat wave period in late July.

Regional average difference, SolarGeo-ctrl = 0.32 mm/day (18.42%)

90W

6/22/16

K. Dagon

6/22/16

K. Dagon

Shift in surface energy partitioning from sensible to latent heat explains cooling.

6/22/16

Summary and Future Work

- Solar geoengineering has the potential to mitigate climate change but there are important side effects to consider (e.g. the terrestrial hydrologic response).
- Known connection between low soil moisture and heat waves; the central U.S. is a hot spot for land-atmosphere coupling.
- Solar geoengineering shown to reduce the duration and intensity of a modeled regional heat wave event.
- Future work: continue to explore mechanisms, additional metrics for diagnosing heat wave events, consider extreme precipitation events.

Thanks!

Contact: kdagon@fas.harvard.edu

Acknowledgments: Dan Schrag, David Keith, Peter Huybers

