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The Big Picture

soil moisture prediction system

2. To iImprove our understanding long-memory process over
land, e.g. tree ring based re-construction of PDO.




The Pacific Decadal Oscillation

o Decadal persistence in SST
anomaly over the
extratropical North Pacific

o A combination of dynamical
and local process drive the
persistence (Newman et al.,
2016)

o Have implications for global
and regional climate, e.g.
recent hiatus and a warmer
southeastern US.
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Outstanding questions over LAND

O

2. If so, what are different climate process that drive
re-emergence over land?

3. What is the contribution of land processes in
reddening the tree-ring signal versus ocean
contribution?
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llinois Climate Network (ICN) soil moisture observations (1985 to 2004)
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Fig. 3: The figure shows lead-lag correlations of 3-month running mean root zone (O - 0.4 m
depth) soil moisture anomaly, as a function of base season (fall season not shown). A point in
Fig. 3, e.g. (-12, FMA) represents correlations between 12-month prior root zone soil moisture
anomaly and the current month root zone soil moisture anomaly in FMA season. Similarly, (12,
FMA) represents correlation between the current and 12 months later anomalies.

Newman et al., in prep.
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Fig. 4: Same as Fig. 3 using precipitation data nearest to ICN soil moisture stations

Newman et al., in prep.
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Fig. 5: Lead-lag cross-correlation of the root zone (O to 0.5m) soil moisture anomaly in the
given season with the individual layer’s soil moisture anomaly at given lags and leads (in
months) in in CLMA4.5 data corresponding to ICN network

Newman et al., in prep.



The re-emergence signal i1s weaker In the
observations
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Fig. 6: Same as Fig. 5 using ICN soil moisture observations

Newman et al., in prep.




The soll moisture re-emergence mechanism
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Fig. 7: Observed soil moisture climatology (1985 to 2004) from ICN observations are shown
in colored contours, line contours show 1 standard deviation of inter-annual variability. P-E
climatology are scaled with annual average precipitation (P*) from CLM4.5 offline
simulations are shown using bars. The hypothesized “re-emergence” mechanism are shown
using dotted arrows.




The soll moisture re-emergence and drought
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Fig. 8: Evolution of soil moisture anomaly during 1988 drought and the following year in
ICN soil moisture observations. Standardized precipitation anomaly is shown using bars.
Note the penetration of dry soil moisture anomaly in sub-surface layers, its disconnection
from the surface layer in the winter and re-appearance following spring.




VIC (1/16" degree) [Livneh et al.,

2015] — variable depth three layer soil
moisture scheme; calibrated against stream flow

observations.

VIC (1/2 degree) [Livneh, and
Hoerling, 2016] — fixed depth three

layers soil moisture scheme; not calibrated

CLMA4.5 (1 degree) [Oleson et al.,

2013] — fixed depth 10 layers soil moisture
scheme; not calibrated

NLDAS?2 (1/8™ degree) [Xia et

al., 2014] land surface models, e.g. NOAH
and MOSIAC are used in operational forecasts

CPC (1/2 degree) [Huang et al.,
1996; van den Dool et al., 2003]

One layer ‘leaky bucket’ conceptual hydrological
model
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Fig. 9: Location of

long-term soil moisture

observations and regional boundaries.

Newman et al., in prep.
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Fig. 10: Seasonal evolution of root zone anomalous soil moisture lag co-variability
(“re-occurrence”) averaged within the Great Plains region, in the (a, and b) VIC-
L2015, (c) CLM, (d) MOSAIC, (e) NOAH, and (f) ensemble mean. All figures
represent results from 1979-2010, except for panel (b), which is 1950-1978.

Newman et al., in prep.
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Fig. 11. Comparison of VIC-FD (fixed-depth) results for Great Plains for (a) observed forcing
, (b) observed temperature and climatological precipitation forcing, and (c) climatological
temperature and observed precipitation forcing, for the years 1950-2010. Panel (d) shows
the results for the same region and period in the CPC (“leaky bucket”) dataset.

Newman et al., in prep.
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Fig. 12: Same as fig. 3 using soil moisture data from The GLACE-Hydrology
experiment Kumar et al., in prep.



(1)There is pronounced seasonal and spatial (not shown)

variations soil moisture anomaly autocorrelations
v" Re-occurrence may lead to long-lead predictability in some seasons

(2)Comparison of surface and subsurface anomalies is

suggestive of a “re-mergence” mechanism
v Our analysis suggests that atmospheric forcing (e.g. precipitation)
variations does not explain the re-emergence.
v' Additional experiment (The GLACE-Hydrology Experiment) suggests an
important role of land-atmosphere interactions

(3)Substantial uncertainty in “NLDAS” and other model based
soll moisture data, vs. limited observations limits
confidence In these results.
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