Know Your Forcing

Extracting Land-Atmosphere Feedbacks Info

Ahmed Tawfik NCAR CGD, TSS

Know Your Forcing

Extracting Land-Atmosphere Feedbacks Info

Ahmed Tawfik NCAR CGD, TSS

Dirmeyer et al. 2011 GRL; Lombardozzi et al. 2016 GMDD

Terrestrial Coupling works well **but** only measures flux sensitivity to moisture availability

Terrestrial Coupling works well **but** only measures flux sensitivity to moisture availability

Terrestrial Coupling works well **but** only measures flux sensitivity to moisture availability

Go full CAM-CLM simulation

Terrestrial Coupling works well **but** only measures flux sensitivity to moisture availability

Go full CAM-CLM simulation

TBOT QBOT PBOT RAIN RADIATION ... etc

Prognostic and Diagnostic Variables

TBOT QBOT PBOT RAIN RADIATION ... etc

So how can we extract land-atmosphere feedback information?

Prognostic and Diagnostic Variables

Prognostic and Diagnostic Variables

Mixed Layer Equations

$$\frac{\partial\theta}{\partial t} = -\left(u\frac{\partial\theta}{\partial x} + v\frac{\partial\theta}{\partial y}\right) - w\frac{\partial\theta}{\partial z} + Q - \frac{\partial(w'\theta')}{\partial z}$$

$$\frac{\partial q}{\partial t} = -\left(u\frac{\partial q}{\partial x} + v\frac{\partial q}{\partial y}\right) - w\frac{\partial q}{\partial z} + Q - \frac{\partial(w'q')}{\partial z}$$

Mixed Layer Equations

$$\frac{\partial\theta}{\partial t} = -\left(u\frac{\partial\theta}{\partial x} + v\frac{\partial\theta}{\partial y}\right) - w\frac{\partial\theta}{\partial z} + Q - \frac{\partial(w'\theta')}{\partial z}$$

$$\frac{\partial q}{\partial t} = -\left(u\frac{\partial q}{\partial x} + v\frac{\partial q}{\partial y}\right) - w\frac{\partial q}{\partial z} + Q - \frac{\partial(wq')}{\partial z}$$

*** Assume 1-D and no diabatic processes

Mixed Layer Equations

$$\frac{\partial \theta}{\partial t} = \frac{\partial (w'\theta')}{\partial z}$$

$$\frac{\partial q}{\partial t} = \frac{\partial (\dot{w'q'})}{\partial z}$$

Mixed Layer Equations

What the Model **DOES NOT** do...yet

- Once saturation is reached at the top of the PBL, it stops
- However a few diagnostics are calculated:
 - Convective available Potential Energy (CAPE)
 - Precipitable Water
 - Depth of Cloud

Simulation to Test

Compare:

- CLM 5.0 using ERA-Interim Forcing
- CLM 4.5 using ERA-Interim Forcing

*** Evaluate the relative "drift" and triggering potential

Simulation to Test

Compare:

CLM 5.0 using ERA-Interim Forcing
 Segmentation Fault
 CLM 4.5 using ERA-Interim Forcing

*** Evaluate the relative "drift"

Simulation to Test

Compare:

CLM 5.0 using ERA-Interim Forcing
 Segmentation Fault
 CLM 4.5 using ERA-Interim Forcing

*** Evaluate the relative "drift"

Can use the forcing data itself do perform a wet-dry scenario experiments

Wetting-Drying Experiments

Observed Data from the:

- Atmosphere Radiation Measurement (ARM) Site in Oklahoma
- Time period: 1996-Present
- Temperature, Humidity, and Pressure vertical profiles usually 6-hourly
- o Net radiation every 30-min

Weckwerth et al. 2004

Given that we have net radiation from ARM-SGP

Given that we have net radiation from ARM-SGP

Given that we have net radiation from ARM-SGP

Can Explore a continuum of evaporative fraction realities

Are wet or dry surfaces more likely to trigger moist convection (negative or positive feedback)?

How do T and q evolve under various conditions?

Taking all July days from 1996-2011

Given the same atmospheric state Dry soils → more convection

Negative Feedback

Relative Humidity Cross-Section: ERA-I

Does the change I made matter from a L-A feedbacks perspective?

Does the change I made matter from a L-A feedbacks perspective?

Wetting-Drying Experiments: ERA-I

Relative Humidity Profile – ERAI

Questions that can be Addressed

What state do CLM energy fluxes nudge T and Q towards?

Questions that can be Addressed

What state do CLM energy fluxes nudge T and Q towards?

