

Update on CLM5 progress

David Lawrence and the Land Model Working Group

What's New for CLM5

CORPORED DE LA

A LOT!

More than 50 scientists and software engineers from 15 different institutions involved in development of CLM5

What's New for CLM5

(And and a second second second

Hydrology:	dry surf. layer, var. soil depth w/ deeper (8.5m) max soil, revised GW and canopy interc								
Snow:	canopy snow updates, wind effects, firn model (12 layers), glacier MEC, fresh snow dens.								
Rivers:	$MOSART(hillslope \rightarrow tributary \rightarrow main channel)$								
Nitrogen:	flexible leaf C:N ratio, leaf N optimization, C cost for N (FUN)								
Carbon:	revisions to carbon allocation and decomposition								
Fire:	updates, trace gas and aerosol emissions								
Vegetation:	plant hydraulics, deep tropical tree rooting,								
	Ecosystem Demography (FATES), prognostic roots, ozone damage								
Crops:	global crop model with transient irrig. and fertilization (8 crop types), grain prod. pool								
Land cover/use:	dynamic landunits, revised PFT-distribution, wood harvest by mass, shifting cultivation								
lsotopes:	carbon and water isotope enabled								

CLM5 default configuration CLM5 optional feature Included in CESM1.5 (79) Included by July I

What's New for CLM5

(ADDRESS COLSERSES

Hydrology:	dry surf. layer, var. soil depth w/ deeper (8.5m) max soil, revised GW and canopy interc
Snow:	canopy snow updates, wind effects, firn model (12 layers), glacier MEC, fresh snow dens.
Rivers:	$MOSART(hillslope \rightarrow tributary \rightarrow main channel)$
Nitrogen:	flexible leaf C:N ratio, leaf N optimization, C cost for N (FUN)
Carbon:	revisions to carbon allocation and decomposition
Fire:	updates, trace gas and aerosol emissions
Vegetation:	plant hydraulics , deep tropical tree rooting,
	Ecosystem Demography (FATES), prognostic roots, ozone damage
Crops:	crop model with transient irrig. and fert. (8 crop types), grain prod. pool
Land cover/use:	dynamic landunits, revised PFT-distribution, wood harvest by mass, shifting cultivation
lsotopes:	carbon and water isotope enabled

CLM5 default configuration CLM5 optional feature Included in CESM1.5 (79) Included by July I

Timeline

Plant Hydraulic Stress

- Simple model to resolve water transport through the Soil Plant Atmosphere Continuum
- Water supply modeled via simple hydraulic framework
- Loss relative to unstressed transpiration modeled based on leaf-level water potential
- Water stress function used to calculate conductance, photosynthesis, and respiration

Plant Hydraulic Stress - Recent Simulations

- Small improvements in many areas
 - ~8% reduction in GPP RMSE in CLM5SP

Slide courtesy Daniel Kennedy

To do list: Scientific development Update surface dataset tool to ingest CMIP6 land use dataset

New History

Hyde 3.2 based Landsat F/NF Multiple crop types (5) Multiple pasture types (2) Updated Forest Cover/B Updated Wood harvest Updated Shifting Cultivation Extended time domain (850-2015)

New Mgt. Layers

<u>Agriculture</u>

Fraction of cropland irrigated Fraction of cropland flooded Fraction of cropland fertilized Fertilizer application rates Fraction of cropland tilled Fraction of cropland for biofuels *Crop rotations* <u>Wood Harvest</u>

Fraction used for industrial products Fraction used for commercial biofuels Fraction used for fuelwood

New Future Scenarios

Six futures, SSP-based

New Resolution

0.25°

New Transition Matrix

	Pri F	Pri NF	Sec F	Sec NF	C3 Ann	C4 Ann	C3 per	C4 per	C3 N-FIX	Pasture	Rangeland	Urban
Pri F												
Pri NF												
Sec F												
Sec NF												
C3 Ann												
C4 Ann												
C3 Per												
C4 Per												
C3 N-Fix												
Pasture												
Rangela nd												
Urban												

~ 50x information content of CMIP5!

PHS - Recent Simulations

Using tower
simulation analysis
to understand and
optimize
parameterization
for drought
response

Slide courtesy Daniel Kennedy

2nd CLM Tutorial scheduled for **September 12-16, 2016**

- Lectures on underlying model physics, hydrology, biogeochemistry, ecology, etc
- Practical sessions about how to run, modify, and analyze CLM simulations
- Will present science and software of **CLM5 / CESM2**
- More than 85 applicants, 46 accepted plus 8-10 auditors
- Tutorial will (likely) be webcast
- All tutorial material including lectures and practical sessions will be available through a CLM tutorial website

International LAnd Model Benchmarking (ILAMB) project scores for RMSE, interannual variability, pattern correlation, variable-to-variable comparisons, + Ground Water 2nd International ILAMB meeting N MeanModel bcc-csm1-1-m in May BNU-ESM -1 To Variable CanESM2 New variables: runoff, runoff CESM1-BGC ratio, evap fraction, updated cesm1 2bgc GFDL-ESM2G + biomass HadGEM2-ES Z-score inmcm4 New diagnostics IPSL-CM5A-LR + 1 MIROC-ESM ILAMBv2 operational MPI-ESM-LR MRI-ESM1 Tutorial on Wednesday at 5:30 in NorESM1-ME + N Aspen / Blue Spruce room Ň MeanModel bcc-csm1-1-m **BNU-ESM** -1 Variable Z-score CanESM2 CESM1-BGC (CLM4) cesm1_2bgc (CLM4.5) GFDL-ESM2G $^+_{\rm o}$ HadGEM2-ES inmcm4 **IPSL-CM5A-LR** + MIROC-ESM MPI-ESM-LR MRI-ESM1 NorESM1-ME $^+_{\text{N}}$

Green: model performs better than average model Red: model performs worse than average model

- FATES
- Multilayer canopy
- Hillslope hydrology

Can we move beyond "Shantytown" syndrome?

... and the proliferation of models?

... and continue efforts to modularize and modernize the code and support tools?

A unified land model framework

for research and prediction in climate, weather, and water

Conceptual basis

- Modelers agree on many aspects of terrestrial system science
- Differences among models relate to
 - Flux parameterizations
 - Spatial discretization
 - Numerical solution

SUMMA framework

A unified land model

Modeling Framework

- Existing models (CLM, Noah-MP, WRF-Hydro, etc.) as special configurations
- Flexibility in
 - Process representation
 - Spatial architecture
 - Numerical solvers

Unify land models across climate, weather and water

- Multiple configurations
- Easy to modify/use
- Centralized support

Development targets for CLM5

Consensations

• Land cover and land use change

Global / transient crop capability with irrigation, fertilization, and cultivation of crops (land management) as default for historical and projection runs

More realistic land cover change impact on water and energy fluxes

• Carbon and nutrient cycles

Improved 20thC land carbon stocks and carbon stock trends

Address ecological stones thrown at CLM4 (plants don't get N for free , leaf N isn't static, photosynthetic capacity should respond to environment, stomatal conductance not linked to N-limitation)

• Hydrology

Hydrology representation closer to state-of-art hydrology understanding Increase utility for use in water resource and water-carbon interaction research

• Land-atmosphere chemistry coupling

Enhanced interactions, fire emissions, ozone damage to plants, CH₄ emissions

 Ecosystem Demography model – future biogeochemical core of CLM Functional CLM5(ED) for use in studies of biome boundaries, trait filtering, etc CESM2 coupled runs with CLM(ED) within CMIP6 timeframe; will not be CESM2 default configuration

Improvements to fresh snow density and

snow compaction

-1

- Improved snow densities
- Cooler soil temperatures
- Eliminates spurious Antarctica snow melt

Community Nitrogen Cycle Project Bug fixes and parameter adjustments

CLM5 (May version) – CLM5 (Feb version)

Community Nitrogen Cycle Project

- Integrate "loose-end" projects
 - Carbon / nitrogen conservation for dynamic landunits
 - Plant hydraulics
 - Dynamic roots
 - Water isotopes (BeTR)
 - Winter wheat
 - Crop tilling
 - Dynamic local river flood stage
 - Permafrost excess ice
 - Switch for PFTs on own column
 - Prescribed soil moisture code

- Code cleanup
 - Rapid code integration for science has lead to accumulation of lots of "Technical Debt"
- Performance
 - CLM5BGC-crop costs ~5-10x over CLM4CN
- Model output rationalization
 - Over 550 fields archived by default

Tropical grid [6.13°N, 288.75°E] 20 year annual mean

