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Report (published in late 2015) motivated to understand Arctic climate impacts

and mitigation opportunities associated with emissions of short-lived climate

forcers (including aerosols, ozone, methane) from different regions and sectors

Report focuses on temperature impacts. Key modeling results from the report
are described by Sand et al (2015, Nature Climate Change)

In no way do these studies undercut the importance of CO, as the main
anthropogenic driver of Arctic climate change
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Forcing agents considered

Black carbon (BC)

Organic carbon (OC)

Sulfate (via SO, emission precursor)

Ozone (via NO,, CO, VOC emission precursors)




Models applied in the assessment

CESM 1.1.1 (CAM5.2 with MAM7 aerosols)
— Aerosol direct+snow/ice RF

CanAM 4.2
— Aerosol direct+indirect+snow/ice RF

NorESM (Cam-Oslo aerosol module)
— Aerosol direct+indirect RF

Oslo-CTM2
— O, direct RF

SMHI-MATCH
— Aerosol direct + O, direct RF



Indirect effect
The direct effect

The ‘semi-direct’
effect
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Small perturbations, large variability

http://www.doctordisruption.com/



Estimating temperature response

e Emissions provided by European ECLIPSE project
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Table S3. Arctic climate sensitivity factors in units of K/(W/m?)

e Explicit calculations of radiative forcing conducted
with each model, using ECLIPSEv4a emissions

e Use of regional temperature sensitivity factors
(Shindell and Faluvegi, 2009; Flanner, 2013)
enables efficient evaluation of temperature
impacts associated with small radiative forcings

BC in snow and
ice

Forcing Agent
Forcing Location Atmospheric BC Ozone Scattering Aerosol
90°S - 28°S 0.06 0.06 0.06
28°S - 28°N 0.31 0.13 0.16
28°N - 60°N 0.15 0.05 0.17
60°N - 90°N VR? 0.07 0.31

0.18
0.93
0.45
1.06

*VR indicates use of vertically-resolved forcing.
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Importance of vertical BC distribution
HEER

.I Samstl-:t et al.r(2013)
* Flanner (2013)

Radiative efficiency of BC increases with altitude

Arctic equilibrium temperature response in CESM with
uniform BC layers aloft (left), in the lower troposphere
(center), and in snow and sea-ice (right) (Flanner, 2013).
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Different transport pathways to Arctic

6. Fast transport

in free troposphere -
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Arctic AT calculation

Arctic AT caused by each emitted component (c;) from each region (r) and sector (s):
Sum the contributions from all forcing mechanisms (c;) associated with that component,
operating in different latitudinal zones (j):

4
AT (ce,r,s)=> > RF(jcp,r,5) x RCS(j,cr)
— £

J=1

W

4 Simulations from Flanner (2013)
—Fit

o
(&

For BC within the Arctic atmosphere, we also consider
the altitudinal dependence (z) of BC forcing and
associated surface temperature response expected for
BC at that altitude (right):

n
T

1.5

Sensitivity to Local BC Forcing [K (W m™)™"]
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AT (cg,1,5) = Z RFE(z,cg,1,5) - RCS(z, ¢)



Emissions sectors

1) domestic
2) energy/industry/waste %
3) Transport

4) agricultural waste burnlng g i SR,
:;3‘
5) forest fires g '

6) flaring % : " : -




Emissions regions




One example: BC emissions from flaring oil/gas

3% of global BC emiss
33% > 60°N
66% > 66°N

-

BC, kt/y

5
I 0.1
: 0.08
J 0.04

0.02

0.01

: | 0.008
I 0.004
0.002

El 0.001
0

AMAP BC&O, report, 2015



One example: BC emissions from flaring in Russia
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One example: BC emissions from flaring in Russia
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MARCH

One example: BC emissions from flaring in Russia
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One example: BC emissions from flaring in Russia
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One example: BC emissions from flaring in Russia
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One example: BC emissions from flaring in Russia
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One example: BC emissions from flaring in Russia
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AUGUST

One example: BC emissions from flaring in Russia
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SEPTEMBER

One example: BC emissions from flaring in Russia
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One example: BC emissions from flaring in Russia
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One example: BC emissions from flaring in Russia
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One example: BC emissions from flaring in Russia
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Arctic surface temperature change
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Sand et al. (2015)



‘Bang for the gram’
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Total Arctic AT, from all global emissions

e All SLCFs considered: -0.44 (-1.02 to —0.04) K
 BC in atmosphere and snow: +0.48 (0.33 to 0.66) K
e OC:-0.18 (-0.30to +0.03) K

¢« SO, -0.85(-1.29t0 -0.57) K

e O5: +0.05 (+0.04 to +0.05) K

o Arctic 1900-2015 AT: about 2.0 K

o Arctic 1900-2005 AT due to all non-GHG forcing agents:
about -1.0 K (Fyfe et al, 2013)




Future mitigation potential

* A global emissions scenario was designed that is beneficial for
both air quality and short-term climate impacts (and thus most
likely to be politically feasible)

— Scenario includes large reductions in BC-rich sources
— Mitigation actions begin in 2015, completed by 2030

« Climate impacts assessed out to 2050, using model-mean AT,,'s
and impulse response functions (Boucher and Reddy, 2008):

t
ATA(t):Z/ AE(cs,7,s,t.) X RCS, (cg, 7, 5) x IREy (£ —¢t,) dt,
t.=2015

r,5,CE 5
C; t
IRF(t) = E Lexp (——J’)

j=1 j
« Transient climate response compared with that of a baseline
(“current legislation”) emissions scenario, both with RCP6.0 CO,



Mitigated Arctic warming by 2050

Mitigation 2050
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e Total reduction in Arctic warming: 0.2 K (including warming from coincident reductions in cooling agents)

e For comparison: Difference in 2050 Arctic temperature between RCP2.6 and RCP8.5 scenarios: 0.5 K



Transient sea ice changes

0.32r
Table 11.1 Differences in the ensemble-mean climate states (MITIGATE - BASELINE) averaged over 2041-2050. Changes significant at p=0.05 are

’E 0.3F shown in bold.
Q /
"6 Model Direct forcing from Surface air Sea-ice area (km?) Net cloud radiative effect
© aerosols+CH,+0, (W/m?) temperature (°C) (W/m?)
|-
P 028 B . 4
- Global CESM (CAM5) -0.57* +0.05 +8.8x10 +0.60
o NorESM -0.20 +4.4x10°
©
o 0.26 CESM (CAM4) -0.24 +5.0x10°
(&)
—| HadGEM -0.29 +9.5x10°
©
Q 0.24r Arctic CESM (CAMS5) -0.40° -0.29 +1.6x10° +0.60
n Y- (60-90°N)
[é) NorESM -0.42 +2.3%10°
| T TVUINY L N\ NN
bast CESM (CAM4) -0.58 +2.8x10°
< 022F NV e R e EAsRRE

—— Baseline HadGEM -0.49 +2.9x10°

— Mitigate

0 I 1 1 1 I
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Year

e Mitigation measures produce a small, but statistically significant
reduction in 2050 Arctic sea ice loss in all 4 participating models

e Explicitly simulated temperature changes agree to within ~20%
of those calculated with the RCS technique
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Simulated Arctic aerosol distributions
from ECLIPSE models evaluated
extensively by Eckhardt et al (ACP,
2015)

Decent model-mean, annual-mean
agreement, but many models
(including CESM) simulate too little
surface BC during winter/spring and
too much during summer

All models simulate too little BC at
Tiksi



Conclusions: SLCF impacts on the Arctic

Using global transport models with advanced aerosol-radiation-cloud and aerosol-
radiation-snow schemes and climate sensitivity factors we find:

1.

Domestic emissions from Asia warm the Arctic, mostly via remote forcing
Russian gas flaring also warms, mostly via local BC deposition on snow

. The Energy+Industry+Waste sector cools the Arctic via high SO, emissions

Russian and Nordic emissions are low, but could be cost-effective targets
because the Arctic is most sensitive to emissions from these regions

All current BC emissions warm the Arctic by about 0.5 K

All SO, emissions cool the Arctic by about -0.85 K

. A feasible, but aggressive emission mitigation scenario could reduce 2050

surface temperatures in the Arctic by 0.2 K (+ 0.17)
Substantial uncertainties originate from RCS factors and cloud-indirect effects



Thanks!

4 AMAP: a Working Group of the Arctic Council; a cooperation
4 between the 8 Arctic countries, indigenous peoples and
i P . . . . -
43;,:”4:%% observing countries and infernational organizations.
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