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AMAP organization and charge

• Report (published in late 2015) motivated to understand Arctic climate impacts 
and mitigation opportunities associated with emissions of short-lived climate 
forcers (including aerosols, ozone, methane) from different regions and sectors

• Report focuses on temperature impacts. Key modeling results from the report 
are described by Sand et al (2015, Nature Climate Change)

• In no way do these studies undercut the importance of CO2 as the main 
anthropogenic driver of Arctic climate change



Forcing agents considered
• Black carbon (BC)
• Organic carbon (OC)
• Sulfate (via SO2 emission precursor)
• Ozone (via NOx, CO, VOC emission precursors)



Models applied in the assessment
• CESM 1.1.1 (CAM5.2 with MAM7 aerosols)

– Aerosol direct+snow/ice RF
• CanAM 4.2

– Aerosol direct+indirect+snow/ice RF
• NorESM (Cam-Oslo aerosol module)

– Aerosol direct+indirect RF
• Oslo-CTM2

– O3 direct RF
• SMHI-MATCH

– Aerosol direct + O3 direct RF
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Small perturbations, large variability

http://www.doctordisruption.com/



• Emissions provided by European ECLIPSE project
• Explicit calculations of radiative forcing conducted 

with each model, using ECLIPSEv4a emissions
• Use of regional temperature sensitivity factors

(Shindell and Faluvegi, 2009; Flanner, 2013) 
enables efficient evaluation of temperature 
impacts associated with small radiative forcings
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Importance of vertical BC distribution

Arctic equilibrium temperature response in CESM with 
uniform BC layers aloft (left), in the lower troposphere 
(center), and in snow and sea-ice (right) (Flanner, 2013).

Radiative efficiency of BC increases with altitude



Different transport pathways to Arctic

AMAP report (2015)



Arctic ∆T calculation
Arctic ∆T caused by each emitted component (cE) from each region (r) and sector (s): 
Sum the contributions from all forcing mechanisms (cF) associated with that component, 
operating in different latitudinal zones (j):

For BC within the Arctic atmosphere, we also consider 
the altitudinal dependence (z) of BC forcing and 
associated surface temperature response expected for 
BC at that altitude (right):



Black Carbon emissions

1) domestic
2) energy/industry/waste 
3) Transport
4) agricultural waste burning
5) forest fires
6) flaring

Emissions sectors
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One example: BC emissions from flaring oil/gas

AMAP BC&O3 report, 2015

3% of global BC emiss 
33% > 60°N 
66% > 66°N



JANUARY

One example: BC emissions from flaring in Russia



FEBUARY

One example: BC emissions from flaring in Russia



MARCH

One example: BC emissions from flaring in Russia



APRIL

One example: BC emissions from flaring in Russia



MAY

One example: BC emissions from flaring in Russia



JUNE

One example: BC emissions from flaring in Russia



JULY

One example: BC emissions from flaring in Russia



AUGUST

One example: BC emissions from flaring in Russia



SEPTEMBER

One example: BC emissions from flaring in Russia



OCTOBER

One example: BC emissions from flaring in Russia



NOVEMBER

One example: BC emissions from flaring in Russia



DECEMBER

One example: BC emissions from flaring in Russia



Arctic surface temperature change

1) domestic
2) energy/industry/waste 
3) Transport
4) agricultural waste burning
5) forest fires
6) flaring
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‘Bang for the gram’

Sand et al. (2015)



Total Arctic ∆Teq from all global emissions

• All SLCFs considered: −0.44 (−1.02 to −0.04) K
• BC in atmosphere and snow: +0.48 (0.33 to 0.66) K
• OC: −0.18 (−0.30 to +0.03) K
• SO4: −0.85 (−1.29 to −0.57) K
• O3: +0.05 (+0.04 to +0.05) K
• Arctic 1900–2015 ∆T: about 2.0 K 
• Arctic 1900–2005 ∆T due to all non-GHG forcing agents: 

about −1.0 K (Fyfe et al, 2013)



Future mitigation potential
• A global emissions scenario was designed that is beneficial for 

both air quality and short-term climate impacts (and thus most 
likely to be politically feasible)
– Scenario includes large reductions in BC-rich sources
– Mitigation actions begin in 2015, completed by 2030

• Climate impacts assessed out to 2050, using model-mean ∆Teq’s 
and impulse response functions (Boucher and Reddy, 2008):

• Transient climate response compared with that of a baseline 
(“current legislation”) emissions scenario, both with RCP6.0 CO2



1) domestic
2) agricultural waste burning
3) energy/industry/waste 
4) transport

Sand et al., (2015)

Mitigated Arctic warming by 2050

• Total reduction in Arctic warming: 0.2 K (including warming from coincident reductions in cooling agents)
• For comparison: Difference in 2050 Arctic temperature between RCP2.6 and RCP8.5 scenarios: 0.5 K



Transient sea ice changes

• Mitigation measures produce a small, but statistically significant 
reduction in 2050 Arctic sea ice loss in all 4 participating models

• Explicitly simulated temperature changes agree to within ∼20% 
of those calculated with the RCS technique



Model Evaluation
• Simulated Arctic aerosol distributions 

from ECLIPSE models evaluated 
extensively by Eckhardt et al (ACP, 
2015)

• Decent model-mean, annual-mean 
agreement, but many models 
(including CESM) simulate too little 
surface BC during winter/spring and 
too much during summer

• All models simulate too little BC at 
Tiksi



Using global transport models with advanced aerosol-radiation-cloud and aerosol-
radiation-snow schemes and climate sensitivity factors we find:
1. Domestic emissions from Asia warm the Arctic, mostly via remote forcing

Russian gas flaring also warms, mostly via local BC deposition on snow
2. The Energy+Industry+Waste sector cools the Arctic via high SO2 emissions
3. Russian and Nordic emissions are low, but could be cost-effective targets 

because the Arctic is most sensitive to emissions from these regions
4. All current BC emissions warm the Arctic by about 0.5 K

All SO2 emissions cool the Arctic by about −0.85 K
5. A feasible, but aggressive emission mitigation scenario could reduce 2050 

surface temperatures in the Arctic by 0.2 K (± 0.17)
6. Substantial uncertainties originate from RCS factors and cloud-indirect effects

Conclusions: SLCF impacts on the Arctic



Thanks!
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