Isolating the atmospheric response to Arctic sea ice loss in the coupled climate system

Russell Blackport and Paul Kushner University of Toronto

PCWG meeting, February 10th 2016

Background

• Sea ice loss directly impacts the atmosphere through increased heatfluxes from the ocean into the atmosphere

Background

• Sea ice loss may lead to a response outside the Arctic through teleconnections

Honda et al. 2009

Background

Arctic sea ice loss and its associated warming are not occurring in isolation

• Can we determine what the role of sea ice melt is compared to other factors like warming at lower latitudes?

Experiments

- CESM Large Ensemble (LE)
 - 30 member initial condition ensemble
 - 1920-2100 (historical + RCP8.5 emissions scenario)
- CESM sea ice albedo forcing simulation
 - Year 2000 control simulation (700+ years)
 - Albedo forcing simulation to melt sea ice (500+ years)
- CCSM4 sea ice albedo and RCP8.5 forced experiments

Sea ice vs low latitude SST scatter plots

 There are different amounts low latitude SST warming relative to the amount of sea ice loss

Decomposing the response

• We can define any field (e.g. Z500) to be a function of the amount sea ice (*I*) and the lower latitude temperature (*T*) :

Z500 = Z500(I,T)

• We can decompose a change in Z500 into a part that scales with sea ice and a part that scales with lower latitude temperature for both the albedo forcing experiment (A subscript) and RCP8.5 experiment (R subscript):

$$\delta Z 500_{A} = \frac{\partial Z 500}{\partial I} \Big|_{T} \delta I_{A} + \frac{\partial Z 500}{\partial T} \Big|_{I} \delta T_{A}$$
$$\delta Z 500_{R} = \frac{\partial Z 500}{\partial I} \Big|_{T} \delta I_{R} + \frac{\partial Z 500}{\partial T} \Big|_{I} \delta T_{R}$$

• Solve for $\frac{\partial Z500}{\partial I}\Big|_{T}$ and $\frac{\partial Z500}{\partial T}\Big|_{I}$:

$$\left(\frac{\partial Z500}{\partial I} \right|_{T} \\
\frac{\partial Z500}{\partial T} \right|_{I} = \frac{1}{\delta I_{A} \delta T_{R} - \delta I_{R} \delta T_{A}} \begin{pmatrix} \delta T_{R} & -\delta T_{A} \\ -\delta I_{R} & \delta I_{A} \end{pmatrix} \begin{pmatrix} \delta Z500_{A} \\ \delta Z500_{R} \end{pmatrix}$$

Zonal mean T

Coupled model experiments

Zonal mean T

Zonal mean U

Precipitation

Subseasonal 2m land T variability

Summary

- We have hypothesised a method to separately estimate the atmospheric response that scales with sea ice loss and lower latitude SSTs using RCP8.5 and sea ice albedo forced experiments
- The warming in the Arctic lower troposphere can be attributed to sea ice loss
- The wintertime circulation responses that occur due to sea ice loss are not seen in RCP8.5 experiment due to cancellation with the response due to lower latitude temperature increases
- Sea ice loss contributes significantly to the decrease in wintertime temperature variability see in in RCP8.5 experiment

CCSM4 U 2052:2071-2032:2051

CCSM4 U 2042:2061-2022:2041

CCSM4 U 2045:2074-2005:2034

CCSM4 SLP 2052:2071-2032:2051

CCSM4 SLP 2042:2061-2022:2041

CCSM4 SLP 2045:2074-2005:2034

CCSM4 2m T 2042:2061-2022:2041

CCSM4 2m T 2045:2074-2005:2034

