SIMULATIONS OF PLIOCENE ARCTIC CLIMATE WITH PROGNOSTIC AEROSOL-CLOUD INTERACTIONS

Ran Feng, Bette Otto-Bliesner, and Esther Brady

In collaboration with Ashley Ballantyne and Tamara Fletcher from University of Montana

Low Arctic sea ice and warm high latitude climate

Pliocene: 2.6 – 5.3 Ma. High latitude temperatures: up to 18 °C warmer

Significant Arctic sea ice reduction \rightarrow seasonal sea ice free, annual sea ice approaching present-day summer minimum sea ice extent

Challenges for model simulations

• Too cold high latitudes and too much Arctic sea ice

Hypotheses to resolve the underestimate of Pliocene high latitude warming

- 1. Variability of CO₂ and orbital forcing (Prescott et al., 2014; Haywood et al., 2016; Feng et al., 2016, *in prep*)
- 2. Arctic gateway changes (Otto-Bliesner et al., 2016, in Prep) and regional geographic changes (Hill et al., 2015)
- 3. Other climate forcings and feedbacks
 - Sea ice albedo (HadCM3, Howell et al., 2016)
 - Changing atmosphere chemistry in the past
 - Direct radiative effect (Unger and Xu, 2014)
 - Indirect effect changes in cloud albedo and lifetime
 - PETM (55 Ma), changing cloud condensation nuclei (Kiehl and Shields, 2013)

Outline

- Aerosol indirect effect
- Model simulations:
 - Pliocene Arctic: an equilibrium state of clean atmosphere?
- Changes in energy budget, sea ice and clouds

Indirect effect

- Cloud albedo
- Cloud lifetime

IPCC AR5: total radiative forcing due to changes in aerosols since 1750 is 0.7 W/m^2 (compare to 1.68 W/m^2 CO₂ forcing)

A clean Pliocene atmosphere

CAM4: only direct radiative effect of aerosol

Experiment Design

 CO_2

405 ppm

405 ppm

Global & Arctic temperature responses

- 1. T_s CCSM4 is comparable to B-polluted.
- 2. ~0.8°C warming of T_s-global, and 2.6 °C warming of T_s-Arctic (70° 90 °N average).

Arctic sea ice volume

years

- 46% annual sea ice reduction in B-1850, 23% reduction in B-2000. 86% reduction in monthly minimum in B-1850, 53% in B-2000.
- Large improvement in simulating Pliocene low ice state

Energy balance (refer to CCSM4 preindustrial)

 $\Delta T = \Delta T(\Delta \alpha, \Delta \epsilon, \Delta H, \xi)$ (Lunt et al., 2013; Hill et al., 2014) $\Delta \alpha = \Delta \alpha_{cld} + \Delta \alpha_{srf} + \Delta \alpha_{atm}$ (APRP, Taylor, 2007) (α : planetary albedo) $\Delta T - \varepsilon = \Delta T - \varepsilon_{cldv} + \Delta T - \varepsilon_{clr}$ (ε : Emissivity)

ΔT Energy balance decomposition

- Warming: $\Delta \alpha_{srf}$ and $\Delta T - \varepsilon_{clr}$ $2.25 \otimes Cooling: total heat$
 - transport
 - Mild warming effect from $\Delta \alpha_{cld}$ (clean conditions) and cooling from $\Delta T - \varepsilon_{cldv}$.

Sea ice melting behavior

Clean air: earlier and stronger melting, slower accumulation

Cloud contributions

Synthesis

Polluted regime: More CCN \rightarrow more summer low clouds surrounding the Arctic \rightarrow slower summer ice retreat \rightarrow high

surface albedo and less water vapor

clean air regime: Less CCN \rightarrow

less summer low clouds and more high clouds surrounding the Arctic \rightarrow rapid retreat \rightarrow low surface albedo, more water vapor

What happens next?

More realistic representation of Pliocene aerosol emissions Fire & biogenic emission (really preliminary)

Thanks. Questions?

Daily rate of change of ice volume

Pliocene Earth System Sensitivity vs Climate sensitivity

Moderate CS: comparable to proxy estimates

Underestimates ESS (7.1 - 9.6)°C/doubling of CO₂): unlikely a CO₂ issue, changes in other components

Mid–Pliocene Tropical ocean SAT anomaly										
(a)			(d)							
Experiment 2	(b)	(c)	ESS (° C)							
Climate	Pliocene	CS	= mPWP							
Models/Mean	ΔT (°C)	(°C)	$\Delta T \cdot 1.88$							
CCSM4	1.86	3.2	3.51							
COSMOS	3.60	4.1	6.77							
GISS-E2-R	2.12	2.7	3.98							
HADCM3	3.27	3.1	6.16							
IPSLCM5A	2.18	3.4	4.10							
MIROC4m	3.46	4.05	6.51							
MRI-CGCM 2.3	1.84	3.2	3.45							
NorESM-L	3.27	3.1	6.14							
Ensemble Mean	2.66	3.36	5.01							

Energy balance

 $\Delta T = \Delta T(\Delta \alpha, \Delta \varepsilon, \Delta H) + \Delta T(syn), \Delta \alpha = \Delta \alpha(srf, cld, atm), \Delta \varepsilon = \Delta \varepsilon(clr, cldy)$ (Lunt et al., 2013; Hill et al., 2014).

α-cld: Rad (total) – Rad (clear)

 $\Delta \alpha$ -cld = Rad-A (total) – *Rad-A* (*clear*) – (Rad-B (total) – *Rad-B* (clear)) Rad-B (clear) – Rad-A (clear) - due to surface albedo changes instead of clouds

Energy balance for ensemble members of PlioMIP I

When surface albedo lowers, Rad-B (clear) – Rad-A (clear) < 0, Δ Rad < 0, which could mislead the previous analysis.

Clean world in future

Arctic climate during the Pliocene

Pliocene: 5.3 – 2.6 Ma

Ts-Arctic: up to ~18°C warmer than present-day at individual sites

CO₂: close to present

Salzmann et al, 2008; 2013

IPCC AR5: total radiative forcing due to changes in aerosols is 0.7 W/m² (compare to 1.68 W/m² CO₂ forcing)

ACI Definition following Ghan 2013

ACI

- Started (CAM5.3) with ACI about -1.5 Wm⁻²
- Decrease with MG1.5 and MG2
- Increase with CAM5.4 (mixed phase ice nucleation+ MAM4)
- Increase with CAM5.5 (shallow convective regime)
- Can Decrease with new Autoconversion (SB2001)

Gettleman et al., 2016, mini-breck

Table 2. Global (land/ocean) annual mean relationship slopes, computed as linear regression between the logarithm of cloud droplet number concentration (N_d), liquid water path (L), total cloud cover (f_{cld}), cloud-top temperature (T_{top}), planetary albedo (α), and outgoing long-wave radiation (OLR) with the logarithm of aerosol optical depth (τ_a). The land/ocean mean annual mean numbers are given as weighted mean of slopes for all seasons and land/ocean regions. Bold numbers show agreement with the Terra data to within ±25%, gray, underestimation by up to a factor of two, blue, stronger underestimation, green, overestimation by up to a factor of two, red, stronger overestimation compared to the Terra data. The data are plotted in Fig. 2. Gaps indicate that a particular satellite or model did not report all quantities.

Relationship		Terra	Aqua	ORAC	CAM- NCAR	CAM- Oslo	CAM- PNNL	CAM- Umich	ECHAM5	GFDL	GISS	HADLEY	LMDZ- INCA	SPRIN- TARS
$N_d - \tau_a$	land	0.083	0.078		0.180	0.640	0.531	0.340	0.266	0.375	0.168	0.260	0.175	0.154
	ocean	0.256	0.251		0.408	0.787	0.471	0.348	0.111	0.155	0.162	0.483	0.198	0.213
$L-\tau_a$	land	0.074	0.100	0.148	3.064	0.389	0.218	0.313	0.363	1.557	0.192	0.333	0.896	0.690
	ocean	0.134	0.093	0.136	3.615	0.309	0.466	0.315	0.572	1.422	0.000	1.340	0.339	0.308
$f_{\rm cld}$ - τ_a	land	0.51	0.48	0.27		0.34	-0.05	0.20	0.11	0.52	-0.04	0.11	0.09	0.13
	ocean	0.31	0.29	0.09		0.59	-0.00	0.26	0.00	1.09	0.15	0.23	0.14	0.21
$T_{top} - \tau_a$	land	-0.0064	-0.0083	-0.0064	-0.0013	-0.0154	0.0161	-0.0103	-0.0054	-0.0116	0.0083	0.0009	-0.0044	0.0003
	ocean	-0.0150	-0.0141	-0.0082	0.0046	0.0007	0.0195	0.0082	-0.0013	-0.0284	-0.0072	0.0097	-0.0049	0.0200
$\alpha - \tau_a$	land	0.17	0.16			0.14	-0.01	0.13	0.02			0.00	-0.04	0.02
	ocean	0.26	0.25			0.41	0.05	0.27	0.12			0.19	0.00	0.08
$OLR-\tau_a$	land	-0.028	-0.040		-0.070	-0.052	0.053	-0.034	-0.010	-0.060		0.014		0.006
	ocean	-0.050	-0.054		-0.109	-0.084	0.027	-0.042	0.025	-0.140		-0.017		0.034

Quaas et al., 2009