

A paleo perspective on some current issues and challenges in coupled CESM-CISM simulations

Marcus Löfverström NCAR

CESM workshop, Breckenridge, CO, 2016

Bette Otto-Bliesner Bill Sacks Jeremy Fyke Bill Lipscomb Shawn Marshall Jan Lenearts Leo van Kampenhout

Community Climate System Model (CCSM 1,2,3,4) Community Earth System Model (CESM1)

Community Earth System Model 2 (CESM2)

Community Earth System Model 2 (CESM2)

Information about the evolving ice-sheet topography has to be passed to the other model components at runtime

Community Earth System Model 2 (CESM2)

Information about the evolving ice-sheet topography has to be passed to the other model components at runtime

Dynamic ice-sheet topography

Information about the evolving ice-sheet topography has to be passed to the other model components at runtime

When is this important?

(kudos to Jeremy Fyke and Peter Lauritzen)

Information about the evolving ice-sheet topography has to be passed to the other model components at runtime*

runtime update is impossible but an annual update can be done

(kudos to Jeremy Fyke and Peter Lauritzen)

Information about the evolving ice-sheet topography has to be passed to the other model components at runtime*

runtime update is impossible but an annual update can be done

*annual in a "CESM sense", CISM can run multiple years per CESM year

(kudos to Jeremy Fyke and Peter Lauritzen)

Which fields are computed?

(kudos to Jeremy Fyke and Peter Lauritzen)

Which fields are computed?

(kudos to Jeremy Fyke and Peter Lauritzen)

How does the topography updating work?

CESM restart step:

1: Automatic submission of *topography updating routine* (independent submission that runs parallel to CESM)

(kudos to Jeremy Fyke and Peter Lauritzen)

How does the topography updating work?

CESM restart step:

1: Automatic submission of *topography updating routine* (independent submission that runs parallel to CESM)

Topography updating routine:

1: CISM topography remapped and inserted into 30" global topography file 2: Compute new topography, sub-grid topography variations (SGH and SGH30) and update landmask if necessary

3: Write fields to a temporary file (used in step 2 above)

(kudos to Jeremy Fyke and Peter Lauritzen)

How does the topography updating work?

CESM restart step:

1: Automatic submission of *topography updating routine* (independent submission that runs parallel to CESM)

- 2: If updated topography from previous year exists, insert into CAM restart file
- 3: Data archiver

4: CESM resubmission

Topography updating routine:

1: CISM topography remapped and inserted into 30" global topography file 2: Compute new topography, sub-grid topography variations (SGH and SGH30) and update landmask if necessary

3: Write fields to a temporary file (used in step 2 above)

(kudos to Jeremy Fyke and Peter Lauritzen)

What is new?

- Support for CAM FV1 & FV2 resolutions and CISM 4 & 5km grids
- Using latest version of Fortran library to compute SGH and SGH30
- Accelerated by Python interface to write large datasets
- Takes advantage of "data assimilation call" in CIME

New routine is 30-40% faster (15 mins instead of 25 mins) and more versatile than predecessor

https://svn-ccsm-models.cgd.ucar.edu/tools/dynamic_cam_topography/trunk

Problem with present day climate in CESM2 Annual precip

Problem with present day climate in CESM2 Annual precip

Too much precipitation in southern Greenland

Problem with present day climate in CESM2 Annual precip

	PI (1850)	LIG (127 ka)	CMIP6
CO ₂	285x10 ⁻⁶	287x10-6	
CH ₄	792x10 ⁻⁹	724x10 ⁻⁹	
N ₂ O	276x10 ⁻⁹	262x10 ⁻⁹	
CFC ₁	125x10 ⁻¹³	0	
CFC ₂	0	0	

	PI (1850)	LIG (127 ka)	CMIP6
CO ₂	285x10 ⁻⁶	287x10 ⁻⁶	
CH ₄	792x10 ⁻⁹	724x10 ⁻⁹	
N ₂ O	276x10 ⁻⁹	262x10 ⁻⁹	
CFC ₁	125x10 ⁻¹³	0	
CFC ₂	0	0	

IPCC AR5 chapter 5, 2013

FV2 fully coupled CESM-CISM 10x acceleration of CISM

Comparison with IPCC simulations

Summary and conclusions

CESM status:

- Support for dynamic topography in CESM-CISM
- Too much precipitation in southern Greenland

Last interglacial simulations:

- Basal sliding is important (default parameterization slides too much)
- Ice loss in northern and western Greenland (w.r.t. PI)
- Substantial growth in southern Greenland

Problem with isostasy (?)

Problem with isostasy (?)

Problem with isostasy (?)

Synchronous coupling (glacial inception)

Last interglacial simulation

IPCC AR5 chapter 5, 2013