

Chemistry-Climate Working Group Current Status – June 2017

Co-chairs: Louisa Emmons (NCAR), Xiaohong Liu (U. Wyoming) Liaison: Simone Tilmes (NCAR) Software Engineer: Francis Vitt (NCAR)

Chemistry-Climate Working Group Session – June 22, 2017

CESM2-Chemistry for CMIP6

CESM2 (CAM6 with MAM4 modal aerosol scheme)

- WACCM: TSMLT (troposphere-stratosphere-mesosphere-lower thermosphere) chemistry
- Expanded tropospheric chemistry ("T1" speciated aromatics, updated isoprene and terpenes oxidation, new organic nitrates)
- New SOA-VBS framework
- Prognostic volcanoes
- Atmospheric nitrogen deposited to land model
- CMIP6 emissions *** corrected June 2017 ***
- Multiple emissions files per species can be read at runtime
 CESM2 special issue in AGU JGR, JAMES, etc.

CMIP6: AerChemMIP

Other features of CESM2

- Compsets for WACCM and CAM-chem
- CAM-chem uses TS mechanism
- New nitrate aerosol scheme
- Online fire model in CLM, coupled to atmospheric chemistry
- Many features not scientifically released yet

CESM1.2.2

CAM4-chem and CAM5-chem, scientific release

CESM1.1.1

CAM4-chem, CCMI version includes some non-released updates now in CESM1.2 and CESM2

Chemistry Updates

Improved treatment of SOA precursors:

- Replace lumped aromatic "TOLUENE" with specific BENZENE, TOLUENE, XYLENES
- Updates to isoprene oxidation scheme
- Updated oxidation of terpenes: replaced "C10H16" with MTERP (C₁₀H₁₆), BCARY (C₁₅H₂₄) or

speciated monoterpenes (APIN, BPIN, MYRC, LIMON) and MBO

 Improved treatment of organic nitrates (replace ONIT with more specific nitrates from alkanes, isoprene, etc.)

Development Plans

Refine and test:

- Nitrate aerosol in MAM
- Brown Carbon
- Aerosol dry deposition
- Specified Dynamics simulations, MERRA2, $56 \rightarrow 32L$
- Interactive fire emissions (from CLM-fire)
- Update chemistry post-processing for diagnostics
- SOA-VBS in CESM2 (including differences for low and high NOx)
- Port VSL halogen chemistry to CESM2

New developments:

- FAST-J/CLOUD-J and/or online TUV
- Add polar halogen chemistry (Alfonso Saiz-Lopez)
- Further improve terpenes, aromatics chemistry (Becky Schwantes, NCAR)
- Test next generation dy. cores: Spectral Element/CSLAM and CESM-MPAS
- Update MEGAN biogenic emissions (in CLM) (Alex Guenther, UCI)
- Improved dust (Xiaohong Liu et al.)
- Interactive methane and other BGC compounds: DMS, ...

Transient CESM2 CAMchem 1850-2015 (FHIST)

Stratospheric Aerosol Optical Depths

Transient CESM2 CAMchem 1850-2015 (FHIST)

Tropospheric Burden (< 200hPa)

Comparison of POSIDON observations with CAM-chem

Obs: Sue Schauffler, Elliot Atlas, Maria Navarro (U.Miami/NCAR) Model: Doug Kinnison, L. Emmons, S. Tilmes, J.-F. Lamarque, A. Saiz-Lopez

POSIDON: Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection

- Western Pacific, Oct 2016, NASA WB-57
- Whole Air Samples provide numerous HFCs, VOCs CESM1.1.1. CAM-chem (CCMI) + Short-lived Halogens
- Includes Short-lived halogens chemistry from Ordonez et al., 2012, Saiz-Lopez et al., 2014 and Fernandez et al., 2014.
- Resolution: 1.0 degree horizontal
- Levels: 56 from surface to ~1 hPa
- Dynamics: Specified dynamics from GEOS5
- Long-lived organic halogens and methane: from Meinshausen, et al., 2016 with updates from S. Montzka for 2015 and 2016. Used for CMIP6 and includes a latitudinal gradient based on observations.

POSIDON provides great opportunity to evaluate new VSL chemistry!

Overall, CAM-chem compares well with WAS measurements from POSIDON, for long and short-lived components. Still looking into seasonal and latitudinal differences.

Aerosol Dry Deposition

• Current aerosol dry deposition scheme in CAM5 by **Zhang et al. (2001)** tends to overestimate the particle deposition in the fine mode significantly.

- We introduce a new aerosol dry deposition scheme by Petroff and Zhang (2010) into CAM5.
- The new scheme predicts smaller dry deposition velocity for fine particles in accumulation, Aitken, and primary carbon mode.
- Seasonality of BC concentration at Polar regions is improved.

Brown Carbon (BrC) in CAM5.4

Saleh et al. (2014). "Brownness of Organics in Aerosols from Biomass Burning Linked to Their Black Carbon Content.", *Nature Geoscience* **7**, 647–650.

BrC Direct Radiative Effect

- Radiative effect due to aerosol-radiation interaction (REari) calculated using Ghan (2013) method
- Strongest positive radiative effects correspond to biomass and biofuel emission regions

Nitrate in CAM5

- In order to better treat NO3 aerosols, Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) module [Zaveri et al., 2008] is coupled with MAM7 and MAM4 in CAM5.
- In the version of MAM coupled with MOSAIC, gas-aerosol exchange is treated by MOSAIC. The other processes are handled by MAM.

	BC	PO M	SOA	SO 4	NH 4	NO3	Cl	Na	Dst	Са	CO3	total
Acc.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	11
Aitken			Х	Х	Х	Х	х	Х				6
Coarse				Х	Х	Х	Х	Х	Х	Х	Х	8
P- Carb.	Х	Х										2

Modeled NO3 vs. observation over China

Dust Transport

Trans-Atlantic transport of North African dust aerosol

Kim et al. 2014

Dust Transport

- CAM5 simulated dust extinction profiles are compared with a new dataset of global dust distributions developed based on Calipso/CloudSat measurements (Luo et al. 2015a,b).
- CAM5 significantly underestimates the dust transport across the Pacific, failing to capture elevated high values of dust extinction.

- Sensitivity experiments have been conducted to investigate processes (emission, dry deposition, wet deposition) that affect dust transport.
- A unified scheme for convective transport/wet scavenging of aerosols (Wang et al. 2013) will be tested.

Long-term variations of dust in CMIP5 models

