Perturbed parameter experiments with CESM2

Benjamin Sanderson CESM summer meeting, 2017

CESM2 on a shoestring budget

10x10 degree land/atmosphere CAM6, CLM5

Slab ocean model

40 years per day on 24 CPUs [100 times faster than FV1]

Preliminary ensemble - 60x20 year simulations@NERSC

Sampling the CAM6 parameter space

- Latin hypercube sample of 37 parameters in:
- MG2 microphysics
- MAM4 aerosol scheme
- CLUBB moist turbulence and cloud macrophysics

CO2 quadrupling experiments

 crashed)
Slab equilibration drift removed

33 simulations

were successful (27

 \bullet

Climate sensitivity range

 CESM2 Climate sensitivity ranges from 1.5 to 5.9K, depending on parameter selection

Parameter correlations

- Parameters dominating sensitivity correlation:
 - Pressure level top for tropospheric clouds
 - Subgrid scaling factor for relative humidity in ice nucleation code (both trop and strat)
- CLUBB's eddy diffusivity for momentum

- Parameters dominating sensitivity correlation:
 - Pressure level top for tropospheric clouds
 - Subgrid scaling factor for relative humidity in ice nucleation code (both trop and strat)
 - CLUBB's eddy diffusivity for momentum

Regression model

- Sensitivity can be modeled as a function of 5 leading parameters
- Likelihood distribution for S between 1.6K and 4.2K implied, with uniform parameter prior

Next steps

Second iteration of low-res ensemble: limited parameters, fully equilibrated slab

Targeted 2 degree test cases to test consistency of climate sensitivity at low and high resolution

COSP/Cloud feedback analysis to provide mechanistic understanding of sensitivity relationship and model adequacy