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Motivation
 Explicitly represent lead formation

RGPS (Kwok, 1998) analysis of satellite images shows 
large ice deformation events occurring in long-lasting 
linear features that appear to correspond to 
displacement (or velocity) discontinuities in the 
deformation field due to leads. 

Cracks in the ice (leads) occupy 1-2% of the ice cover  
in winter but account for half of the ocean-air heat flux.  
Heat flux through intact ice is 2-5 Wm2 compared with  
300-500 Wm2 through leads.



Model
• Ice dynamics (horizontal momentum equation) is solved using the 

material point method (Peterson and Sulsky, 2012) 

• Mass is conserved for each material point (continuity equation) 

• Each material point solves column thermodynamics equations and 
tracks ice thickness distribution 

• The sea ice code is coupled to the MITgcm (Marshall et al., 1997) 
ocean code through fluxes 

• Atmospheric forcing is JRA-25 reanalysis data (Onogi et al., 2007) 

• Use of an elastic-decohesive constitutive model for the ice



The Elastic-Decohesive Constitutive Model
• Intact ice is modeled as elastic 

• Leads (cracks) are modeled as discontinuities 

• Model predicts initiation, orientation and opening of leads 

• Traction is reduced with lead opening until a complete fracture 
forms

The model introduces a jump in displacement as 
a crack is initiated in the simulation. Crack 
initiation is governed by a curve in stress space. 
What is that curve?



Laboratory data

Measurement by Schulson 
(2001) show the stress state 
when a crack forms and the 
orientation of the crack. The 
observed failure envelope in 
stress space that describes 
initiation of failure could be 
described mathematically by a 
function F(  ) = 0.�

What is F? (a)  Loading is purely tensile. 
(b) Biaxial loading - tension and compression. 
(c)  Axial loading - pure compression. 
(d) Biaxial compression. 
In (a-c) the crack has a normal in the direction of  
maximum principal stress. (d) transitions to shear  
failure with two possible crack orientations.



Corresponding Model

F is a function of stress (Schreyer et al. 
(2005), Sulky et al. (2006)). 

Model parameters:

Modeled failure envelope F=0. Arrows show  
the predicted direction of the normal to the  
crack surface. Directions match experiments  
at (a-d).
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Metrics



Multi-category contingency table
Observed category

ij 1 2 · · · K Total
1 n (F1, O1) n (F1, O2) · · · n (F1, OK) N (F1)

Forecast 2 n (F2, O1) n (F2, O2) · · · n (F2, OK) N (F2)
category · · · · · · · · · · · · · · · · · ·

K n (FK , O1) n (FK , O2) · · · n (FK , OK) N (FK)
Total N (O1) N (O2) · · · N (OK) N

h+ fa

h+m
h

h+m
h

h+ fa
h

h+m+ fa

Name Perfect Definition Interpretation

Bias 1 How did the forecast frequency of ‘yes’ events 
compare to the observed frequency of ‘yes’ events? 

POD 1 What fraction of the observed ‘yes’ events were 
correctly forecast?

SR 1 What fraction of the forecast ‘yes’ events were 
correctly observed?

TS 1 How well did the forecast ‘yes’ events correspond to 
the observed ‘yes’ events? 

hits [i] = n (Fi, Oi) ,

false alarm [i] =
X

j 6=i

n (Fi, Oj) ,

misses [i] =
X

j 6=i

n (Fj , Oi) .

event forecast to occur and did occur 

event forecast to occur, but did not occur 

event forecast not to occur, but did occur



Performance diagram
• Roebber (2009) 

• Use geometric 
relationship of 4 metrics: 

• Easy to read and display
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Model comparison



Ice compactness on Mar-15-2001
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• Nimbus-7 passive microwave data 
(Cavalieri et. al, 1996) 

• Gridded resolution: 25 km * 25 km 

• Sensitivity: ±5% in winter and ±15% 
in summer

Observations



Averaged ice compactness in Mar
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• Late spring and summer months are the least 
accurate and have the highest RMSE 

• Bias (mult) alone does not provide useful 
information 

• Bad accuracy is driven by high concentration 
inaccuracy 

• The bias shows the disparity of each bin (the 
mult Bias looks good because of compensation) 

• SR and POD confirm the model’s inaccuracy in 
late spring and summer months
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Conclusion from sea ice 
concentration comparison

• Sea-ice extent is well matched all year long 

• Concentration is well matched year round besides 
in the summer during which forecast is weaker 
(larger error in observations as well though) 

• Thermodynamics needs to be improved? (can’t 
wait for the column physics package release) 

• A similar analysis with different bin size (e.g. equal 
bin size) provides similar conclusions



Conclusion

• We developed a sea-ice model capable of representing sea-ice 
fractures and lead openings. 

• The model is running and simulates reasonable results. 

• Performance and frequency diagrams provide quantitative insight into 
the validation of multi-category variables. It has the advantage to be 
easy to read, interpret and implement 

• We created a git repository with the code performing the comparison. 
It is easy to adapt for any model and is available for sea-ice 
concentration and thickness 

• Work in progress for sea ice displacement validation and higher 
resolution runs


