An anisotropic, elastic-decohesive constitutive relation for modeling Arctic sea ice

- Gunter Leguy and Deborah Sulsky

University of New Mexico, Albuquerque, New Mexico

This work is partially supported by grant #NA150AR4310165 to the University of New Mexico from the Climate Variability and Predictability Program, NOAA, US Dept. of Commerce.

Motivation

Explicitly represent lead formation

RGPS (Kwok, 1998) analysis of satellite images shows large ice deformation events occurring in long-lasting linear features that appear to correspond to displacement (or velocity) discontinuities in the deformation field due to leads.

Cracks in the ice (leads) occupy 1-2% of the ice cover in winter but account for half of the ocean-air heat flux. Heat flux through intact ice is 2-5 Wm² compared with 300-500 Wm² through leads.

Model

- Ice dynamics (horizontal momentum equation) is solved using the material point method (Peterson and Sulsky, 2012)
- Mass is conserved for each material point (continuity equation)
- Each material point solves column thermodynamics equations and tracks ice thickness distribution
- The sea ice code is coupled to the MITgcm (Marshall et al., 1997) ocean code through fluxes
- Atmospheric forcing is JRA-25 reanalysis data (Onogi et al., 2007)
- Use of an elastic-decohesive constitutive model for the ice

The Elastic-Decohesive Constitutive Model

- Intact ice is modeled as elastic
- Leads (cracks) are modeled as discontinuities
- Model predicts initiation, orientation and opening of leads
- Traction is reduced with lead opening until a complete fracture forms

The model introduces a jump in displacement as a crack is initiated in the simulation. Crack initiation is governed by a curve in stress space. What is that curve?

Laboratory data

Measurement by Schulson (2001) show the stress state when a crack forms and the orientation of the crack. The observed failure envelope in stress space that describes initiation of failure could be described mathematically by a function $F(\sigma) = 0$.

What is F?

- (a) Loading is purely tensile.
- (b) Biaxial loading tension and compression.
- (c) Axial loading pure compression.
- (d) Biaxial compression.

In (a-c) the crack has a normal in the direction of maximum principal stress. (d) transitions to shear failure with two possible crack orientations.

Corresponding Model

F is a function of stress (Schreyer et al. (2005), Sulky et al. (2006)).

$$F = \max_{n} F_{n}(\sigma), \quad [\sigma] = \begin{pmatrix} \tau_{n} & \tau_{t} \\ \tau_{t} & \sigma_{tt} \end{pmatrix}$$
$$F_{n} = \left(\frac{\tau_{t}}{s_{m}\tau_{sf}}\right)^{2} + e^{\kappa B_{n}} - 1$$
$$B_{n} = \frac{\tau_{n}}{\tau_{nf}} + \frac{\langle -\sigma_{tt} \rangle^{2}}{f_{c}^{\prime 2}} - 1$$

Model parameters:

 τ_{nf} = tensile strength τ_{sf} = shear strength f'_c = compressive strength s_m = shear magnification

Modeled failure envelope F=0. Arrows show the predicted direction of the normal to the crack surface. Directions match experiments at (a-d).

Sea ice concentration 2003

Grid resolution = 36km

Metrics

Multi-category contingency table

				Observed category		
	ij	1	2	•••	Κ	Total
	1	$n\left(F_1,O_1\right)$	$n\left(F_1,O_2\right)$		$n\left(F_1,O_K\right)$	$N\left(F_{1} ight)$
Forecast	2	$n\left(F_2,O_1\right)$	$n\left(F_2,O_2\right)$		$n\left(F_2,O_K\right)$	$N\left(F_{2}\right)$
category	•••					• • •
	Κ	$n\left(F_K,O_1\right)$	$n\left(F_K,O_2\right)$	•••	$n\left(F_K,O_K\right)$	$N\left(F_{K}\right)$
	Total	$N\left(O_{1} ight)$	$N\left(O_2\right)$		$N\left(O_{K}\right)$	Ν

$$\begin{aligned} hits\left[i\right] &= n\left(F_{i},O_{i}\right), & \text{event forecast to occur and did occur} \\ false \ alarm\left[i\right] &= \sum_{j \neq i} n\left(F_{i},O_{j}\right), & \text{event forecast to occur, but did not occur} \\ misses\left[i\right] &= \sum_{j \neq i} n\left(F_{j},O_{i}\right). & \text{event forecast not to occur, but did occur} \end{aligned}$$

Name	Perfect	Definition	Interpretation
Bias	1	$\frac{h+fa}{h+m}$	How did the forecast frequency of 'yes' events compare to the observed frequency of 'yes' events?
POD	1	$\frac{h}{h+m}$	What fraction of the observed 'yes' events were correctly forecast?
SR	1	$\frac{h}{h+fa}$	What fraction of the forecast 'yes' events were correctly observed?
TS	1	$\frac{h}{h+m+fa}$	How well did the forecast 'yes' events correspond to the observed 'yes' events?

Performance diagram

- Roebber (2009)
- Use geometric relationship of 4 metrics:

bias =
$$\frac{\text{POD}}{\text{SR}}$$
,
TS = $\frac{1}{\frac{1}{\frac{1}{\text{SR}} + \frac{1}{\text{POD}} - 1}}$.

• Easy to read and display

Model comparison

Sea ice concentration

Observations

- Nimbus-7 passive microwave data (Cavalieri et. al, 1996)
- Gridded resolution: 25 km * 25 km
- Sensitivity: ±5% in winter and ±15% in summer

Ice compactness on Mar-15-2001

Averaged ice compactness in Mar

Averaged ice compactness in Jul

Forecast

Observation

Forecast

0

0.4

0.6

SR

0.8

0.2

- Bad accuracy is driven by high concentration inaccuracy
- The bias shows the disparity of each bin (the mult Bias looks good because of compensation)
- SR and POD confirm the model's inaccuracy in late spring and summer months

- Late spring and summer months are the least accurate and have the highest RMSE
- Bias (mult) alone does not provide useful information

Conclusion from sea ice concentration comparison

- Sea-ice extent is well matched all year long
- Concentration is well matched year round besides in the summer during which forecast is weaker (larger error in observations as well though)
- Thermodynamics needs to be improved? (can't wait for the column physics package release)
- A similar analysis with different bin size (e.g. equal bin size) provides similar conclusions

Conclusion

- We developed a sea-ice model capable of representing sea-ice fractures and lead openings.
- The model is running and simulates reasonable results.
- Performance and frequency diagrams provide quantitative insight into the validation of multi-category variables. It has the advantage to be easy to read, interpret and implement
- We created a git repository with the code performing the comparison. It is easy to adapt for any model and is available for sea-ice concentration and thickness
- Work in progress for sea ice displacement validation and higher resolution runs

