Modeled response of Greenland snowmelt to the presence of biomass burning-based absorbing aerosols

> Jamie Ward University of Michigan Climate and Space Science

Introduction

- Black carbon (BC): aerosol produced by the incomplete combustion of biomass, biofuels, and fossil fuels.
- BC is highly efficient at absorbing visible radiation.
- Radiative impacts of BC are very pronounced in the high albedo Arctic environment.

Introduction

- Greenland Ice Sheet (GrIS): largest ice sheet in the northern hemisphere.
 - Entire GrIS melt→~7.4 meters of sea level rise (Hanna et al., 2008).
- GrIS is a perennial, high albedo surface.
- July 2012: >97% of the GrIS (Fig. 1) experienced snowmelt (Nghiem et al., 2012).
- Enhanced biomass burning BC burden in GrIS snow (Keegan et al., 2014).

Science Questions

- What are the relative snowmelt and net surface energy flux effects of suspended and in-snow LAAs?
- For a constant atmospheric LAA burden, to what extent does varying single-scattering albedo (SSA) affect Greenland's climate?
- When we simultaneously perturb atmospheric and deposited LAAs, are the associated climate effects additive?

Methods: Model Specifications

- CESM 1.0.3
 - Spatial Resolution: 1.9°×2.5°
 - Monthly output over 11 years (first year discarded for spin-up)
 - Active, coupled CAM and CLM
 - Prescribed SSTs and sea ice
 - Surface aerosol radiative treatment: Snow and Ice Aerosol Radiation Model (SNICAR) (Flanner and Zender, 2005).
 - Dust are aerosols represented using the Bulk Aerosol Module (BAM).
 - Prescribed 3D aerosols outside of the Greenland region.

- Greenland (Fig. 3): 60-80°N, 20-60°W.
- Greenland Cases (18 total):
 - 1. Atmospheric LAAs only ("AODonly", constant SSA=0.93).
 - 2. In-snow BC and dust only ("IN-SNOW").
 - 3. Atmospheric and deposited LAAs ("BOTH").
 - 4. Changing SSA ("SSA", constant AOD=0.50).

Fig. 3: The area over which aerosol perturbations are imposed for each variable simulation

AOD	0.09	0.21	0.50	0.75	1.0
BCE (ng/g)	2.72	15.73	61.84	92.76	123.68
SSA	0.90	0.93	0.96		

Strellis et al., 2013

- Greenland (Fig. 3): 60-80°N, 20-60°W.
- Greenland Cases (18 total):
 - 1. Atmospheric LAAs only ("AODonly", constant SSA=0.93).
 - 2. In-snow BC and dust only ("IN-SNOW").
 - 3. Atmospheric and deposited LAAs ("BOTH").
 - 4. Changing SSA ("SSA", constant AOD=0.50).

Fig. 3: The area over which aerosol perturbations are imposed for each variable simulation

					-
AOD	0.09	0.21	0.50	0.75	1.0
BCE (ng/g)	2.72	15.73	61.84	92.76	123.68
SSA	0.90	0.93	0.96		

Strellis et al., 2013

Stohl et al., 2006

- Greenland (Fig. 3): 60-80°N, 20-60°W.
- Greenland Cases (18 total):
 - 1. Atmospheric LAAs only ("AODonly", constant SSA=0.93).
 - 2. In-snow BC and dust only ("IN-SNOW").
 - 3. Atmospheric and deposited LAAs ("BOTH").
 - 4. Changing SSA ("SSA", constant AOD=0.50).

Fig. 3: The area over which aerosol perturbations are imposed for each variable simulation

AOD	0.09	0.21	0.50	0.75	1.0
BCE (ng/g)	2.72	15.73	61.84	92.76	123.68
SSA	0.90	0.93	0.96		

Strellis et al., 2013

Stohl et al., 2006

- Greenland (Fig. 3): 60-80°N, 20-60°W.
- Greenland Cases (18 total):
 - 1. Atmospheric LAAs only ("AODonly", constant SSA=0.93).
 - 2. In-snow BC and dust only ("IN-SNOW").
 - 3. Atmospheric and deposited LAAs ("BOTH").
 - 4. Changing SSA ("SSA", constant AOD=0.50).

Fig. 3: The area over which aerosol perturbations are imposed for each variable simulation

AOD	0.09	0.21	0.50	0.75	1.0
BCE (ng/g)	2.72	15.73	61.84	92.76	123.68
SSA	0.90	0.93	0.96		

Polashenski et al., 2015

- Greenland (Fig. 3): 60-80°N, 20-60°W.
- Greenland Cases (18 total):
 - 1. Atmospheric LAAs only ("AODonly", constant SSA=0.93).
 - 2. In-snow BC and dust only ("IN-SNOW").
 - 3. Atmospheric and deposited LAAs ("BOTH").
 - 4. Changing SSA ("SSA", constant AOD=0.50).

Fig. 3: The area over which aerosol perturbations are imposed for each variable simulation

AOD	0.09	0.21	0.50	0.75	1.0
BCE (ng/g)	2.72	15.73	61.84	92.76	123.68
SSA	0.90	0.93	0.96		
Polashenski et al., 2015			Bory et al., 200	03;	

McConnell et al., 2007

- Greenland (Fig. 3): 60-80°N, 20-60°W.
- Greenland Cases (18 total):
 - 1. Atmospheric LAAs only ("AODonly", constant SSA=0.93).
 - 2. In-snow BC and dust only ("IN-SNOW").
 - 3. Atmospheric and deposited LAAs ("BOTH").
 - 4. Changing SSA ("SSA", constant AOD=0.50).

Fig. 3: The area over which aerosol perturbations are imposed for each variable simulation

AOD	0.09	0.21	0.50	0.75	1.0
BCE (ng/g)	2.72	15.73	61.84	92.76	123.68
SSA	0.90	0.93	0.96		
Polashenski et al., 2015			Bory et al., 20	03;	

McConnell et al., 2007

- Greenland (Fig. 3): 60-80°N, 20-60°W.
- Greenland Cases (18 total):
 - 1. Atmospheric LAAs only ("AODonly", constant SSA=0.93).
 - 2. In-snow BC and dust only ("IN-SNOW").
 - 3. Atmospheric and deposited LAAs ("BOTH").
 - 4. Changing SSA ("SSA", constant AOD=0.50).

Fig. 3: The area over which aerosol perturbations are imposed for each variable simulation

AOD	0.09	0.21	0.50	0.75	1.0
BCE (ng/g)	2.72	15.73	61.84	92.76	123.68
SSA	0.90	0.93	0.96		

- Greenland (Fig. 3): 60-80°N, 20-60°W.
- Greenland Cases (18 total):
 - 1. Atmospheric LAAs only ("AODonly", constant SSA=0.93).
 - 2. In-snow BC and dust only ("IN-SNOW").
 - 3. Atmospheric and deposited LAAs ("BOTH").
 - 4. Changing SSA ("SSA", constant AOD=0.50).

Fig. 3: The area over which aerosol perturbations are imposed for each variable simulation

AOD	0.09	0.21	0.50	0.75	1.0
BCE (ng/g)	2.72	15.73	61.84	92.76	123.68
SSA	0.90	0.93	0.96		

Strellis et al., 2013

Methods

- Compare each of these runs to a control run (CONTROL)
 - AOD=0.0; BCE=0.0ng/g
- For each variable of interest, determine the impact of the aerosol load for a given case by

 $\Delta Variable = Variable_{case} - Variable_{CONTROL}$

• Difference maps, two-sample t-test (grid-by-grid and spatially-averaged).

Results: Snowmelt (ΔM)

- No significant ΔM in the AODonly and SSA runs.
 - Surface dimming and tropospheric warming offset.
- IN-SNOW and BOTH experiments: larger ΔM signal.
 - "In-snow" direct aerosol effect.

Results: Snowmelt and Net Surface Energy (ΔF_{TOT})

- $\Delta F_{TOT} = \Delta FSNS \Delta FLNS \Delta SHFLX \Delta LHFLX$
- Spatially-averaged ΔF_{TOT} patterns are similar to snowmelt change.

Fig. 5: Surface energy flux (ΔF_{TOT}) and snowmelt changes.

Results: Snowmelt and Net Surface Energy (ΔF_{TOT})

- $\Delta F_{TOT} = \Delta FSNS \Delta FLNS \Delta SHFLX \Delta LHFLX$
- Spatially-averaged ΔF_{TOT} patterns are similar to snowmelt change.
- \Rightarrow Surface energy input is the main influence on GrIS snowmelt.

Fig. 5: Surface energy flux (ΔF_{TOT}) and snowmelt changes.

Results: Snowmelt and Net Surface Energy (ΔF_{TOT})

- $\Delta F_{TOT} = \Delta FSNS \Delta FLNS \Delta SHFLX \Delta LHFLX$
- Spatially-averaged ΔF_{TOT} patterns are similar to snowmelt change.

\Rightarrow Surface energy input is the main influence on GrIS snowmelt.

• How do the energy components of net surface energy change for each aerosol experiment?

Fig. 5: Surface energy flux (ΔF_{TOT}) and snowmelt changes.

Results: Net Surface Energy Components

- $\Delta FSNS < 0$ for AOD-only* and SSA
- $\Delta FSNS > 0$ for IN-SNOW and BOTH.
 - *AOD = 0.09, 0.21 cases: $\Delta FSNS > 0$ because of cloud burn-off, decreasing surface albedo.

Fig. 6: Net Surface Energy Components for all experiments

Results: Net Surface Energy Components

- $\Delta FLNS < 0$ due to Stefan-Boltzmann response.
- $\Delta SHFLX$, $\Delta LHFLX > 0$ for AOD-only, SSA, and BOTH experiments.
- $\Delta SHFLX$, $\Delta LHFLX < 0$ for IN-SNOW experiment.

Fig. 6: Net Surface Energy Components for all experiments

Conclusions

- Snowmelt Changes (ΔM)
 - Largest positive changes occur in the IN-SNOW experiment.
 - AOD-only and SSA cases do not have any significant changes due to offsetting surface dimming and tropospheric warming.
 - BOTH magnitude is smaller than IN-SNOW due to the competing atmospheric aerosol effects.
- Net Surface Energy (ΔF_{TOT})
 - $\Delta FSNS$ is largest in the IN-SNOW and BOTH scenarios.
 - $\Delta SHFLX$, $\Delta LHFLX$ are more sensitive to atmospheric LAA presence.

Acknowledgements

- I would like to thank Dr. Mark Flanner for the excellent advice and assistance he provided throughout the progress of this study.
- I also received very valuable input from Dr. Amber Soja, Dr. Jack Dibb, Dr. Mike Bergin, Dr. Jennie Thomas, and Dr. Chris Polashenski.
- This work was partially supported by NASA Grant NNX14AE72G.

References

Bory, A.J.-M., Biscaye, P.E., Piotrowski, A.M., & Steffensen, J.P. (2003, December). Regional variability of ice core dust composition and provenance in Greenland. *Geochemistry, Geophysics, Geosystems, 4*(12), doi:10.1029/2003GC000627.

Brandt, R.E., Warren, S.G., & Clarke, A.D. (2011). A controlled snowmaking experiment testing the relation between black carbon content and reduction of snow albedo. *Journal of Geophysical Research*, *116*(D08109), doi:10.1029/2010JD015330.

Flanner, M.G., & Zender, C.S. (2005). Snowpack radiative heating: Influence on Tibetan Plateau climate. *Geophysical Research Letters,* 32(L06501), doi:10.1029/2004GL022076.

Hanna, E., et al. (2008, January). Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming. *Journal of Climate*, 21, 331-341.

Keegan, K.M., et al. (2014). Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet. *Proceedings of the National Academy of Sciences, 111*(22), 7964-7967, doi:10.1073/pnas.1405397111.

McConnell, J.R. (2007, September). 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing. *Science*, *317*, 1381-1384, doi:10.1126/science.1144856.

Nghiem, S.V., et al. (2012). The extreme melt across the Greenland ice sheet in 2012. *Geophysical Research Letters, 39*(L20502), doi:10.1029/2012GL053611.

Polashenski, C.M, et al. (2015). Neither dust nor black carbon causing apparent albedo decline in Greenland's dry snow zone: Implications for MODIS C5 surface reflectance. *Geophysical Research Letters*, *42*, 9319-9327, doi:10.1002/2015GL065912.

Stohl, A., et al. (2006). Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004. *Journal of Geophysical Research*, 111(D22214), doi:10.1029/2006JD007216.

Strellis, B. (2013). Aerosol Radiative Forcing over Central Greenland: Estimates based on Field Measurements. Unpublished master's thesis (submitted), Georgia Institute of Technology, Atlanta, Georgia.

Thank You! Questions?

Supplementary Information: BCE formula

$$BCE = [BC] + \sum_{i=1}^{4} \left([Dust]_{i} * \frac{MAC_{Dust,i}}{MAC_{BC}} \right)$$

- [BC] is the mixing ratio of BC in the snow.
- [Dust] is the mixing ratio of dust in the snow for bin "i".
- MAC is the mass absorption cross section the aerosol in question.
 - MAC changes for dust depending on the bin designation.

Tropospheric Warming

Vertical Profile Temperature

Snow-water Equivalent

Snow Water Equivalent Differences (H₂O-Snow) in JJA

ΔF_{TOT} : Spatial Map

Deviations in Net Surface Energy Flux (FTOT) in JJA

28

T_{2m} for all runs

Low Cloud Fraction

Low-Level Cloud Fraction Differences in JJA

30