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Chapter 1

Introduction

This report presents the details of the governing equations, physical parameterizations, and
numerical algorithms defining the version of the NCAR Community Atmosphere Model desig-
nated CAM2. The material provides an overview of the major model components, and the way
in which they interact as the numerical integration proceeds. Details on the coding implemen-
tation, along with in-depth information on running the CAM2 code, are given in a separate
technical report entitled “User’s Guide to NCAR CAM2” [Kluzek et al., 2002]. As before, it
is our objective that this model provide NCAR and the university research community with
a reliable, well documented atmospheric general circulation model. This version of the CAM2
incorporates significant improvements to the physics package (e.g., generalized cloud overlap for
radiation calculations), new capabilities such as the incorporation of thermodynamic sea ice, and
a number of enhancements to the implementation (e.g., clean separation between physics and
dynamics). We believe that collectively these improvements provide the research community
with a significantly improved atmospheric modeling capability.

1.1 Brief History

1.1.1 CCMO and CCM1

Over the last fifteen years, the NCAR Climate and Global Dynamics (CGD) Division has pro-
vided a comprehensive, three-dimensional global atmospheric model to university and NCAR
scientists for use in the analysis and understanding of global climate. Because of its widespread
use, the model was designated a community tool and given the name Community Climate Model
(CCM). The original versions of the NCAR Community Climate Model, CCM0A [Washington,
1982] and CCMOB [Williamson, 1983], were based on the Australian spectral model [Bourke
et al., 1977; McAvaney et al., 1978] and an adiabatic, inviscid version of the ECMWF spectral
model [Baede et al., 1979]. The CCMO0B implementation was constructed so that its simulated
climate would match the earlier CCM0OA model to within natural variability (e.g., incorporated
the same set of physical parameterizations and numerical approximations), but also provided
a more flexible infrastructure for conducting medium— and long-range global forecast studies.
The major strength of this latter effort was that all aspects of the model were described in a
series of technical notes, which included a Users’ Guide [Sato et al., 1983], a subroutine guide
which provided a detailed description of the code [Williamson et al., 1983] a detailed description



of the algorithms [Williamson, 1983], and a compilation of the simulated circulation statistics
[Williamson and Williamson, 1984]. This development activity firmly established NCAR’s com-
mitment to provide a versatile, modular, and well-documented atmospheric general circulation
model that would be suitable for climate and forecast studies by NCAR and university scien-
tists. A more detailed discussion of the early history and philosophy of the Community Climate
Model can be found in Anthes [1986].

The second generation community model, CCM1, was introduced in July of 1987, and in-
cluded a number of significant changes to the model formulation which were manifested in
changes to the simulated climate. Principal changes to the model included major modifications
to the parameterization of radiation, a revised vertical finite-differencing technique for the dy-
namical core, modifications to vertical and horizontal diffusion processes, and modifications to
the formulation of surface energy exchange. A number of new modeling capabilities were also
introduced, including a seasonal mode in which the specified surface conditions vary with time,
and an optional interactive surface hydrology that followed the formulation presented by Man-
abe [1969]. A detailed series of technical documentation was also made available for this version
[Williamson et al., 1987; Bath et al., 1987; Williamson and Williamson, 1987; Hack et al., 1989]
and more completely describe this version of the CCM.

1.1.2 CCM2

The most ambitious set of model improvements occurred with the introduction of the third
generation of the Community Climate Model, CCM2, which was released in October of 1992.
This version was the product of a major effort to improve the physical representation of a wide
range of key climate processes, including clouds and radiation, moist convection, the planetary
boundary layer, and transport. The introduction of this model also marked a new philosophy
with respect to implementation. The CCM2 code was entirely restructured so as to satisfy three
major objectives: much greater ease of use, which included portability across a wide range of
computational platforms; conformance to a plug-compatible physics interface standard; and the
incorporation of single-job multitasking capabilities.

The standard CCM2 model configuration was significantly different from its predecessor in
almost every way, starting with resolution where the CCM2 employed a horizontal T42 spectral
resolution (approximately 2.8 x 2.8 degree transform grid), with 18 vertical levels and a rigid
lid at 2.917 mb. Principal algorithmic approaches shared with CCM1 were the use of a semi-
implicit, leap frog time integration scheme; the use of the spectral transform method for treating
the dry dynamics; and the use of a bi-harmonic horizontal diffusion operator. Major changes
to the dynamical formalism included the use of a terrain-following hybrid vertical coordinate,
and the incorporation of a shape-preserving semi-Lagrangian transport scheme [Williamson and
Olson, 1994] for advecting water vapor, as well as an arbitrary number of other scalar fields (e.g.,
cloud water variables, chemical constituents, etc.). Principal changes to the physics included
the use of a 6-Eddington approximation to calculate solar absorption [Briegleb, 1992]; the use
of a Voigt line shape to more accurately treat infrared radiative cooling in the stratosphere; the
inclusion of a diurnal cycle to properly account for the interactions between the radiative effects
of the diurnal cycle and the surface fluxes of sensible and latent heat; the incorporation of a
finite heat capacity soil/sea ice model; a more sophisticated cloud fraction parameterization and
treatment of cloud optical properties [Kiehl et al., 1994]; the incorporation of a sophisticated



non-local treatment of boundary-layer processes [Holtslag and Boville, 1993]; the use of a simple
mass flux representation of moist convection [Hack, 1994], and the optional incorporation of the
Biosphere-Atmosphere Transfer Scheme (BATS) of Dickinson et al. [1987]. As with previous
versions of the model, a User’s Guide [Bath et al., 1992] and model description [Hack et al.,
1993] were provided to completely document the model formalism and implementation. Control
simulation data sets were documented in Williamson [1993].

1.1.3 CCM3

The CCM3 was the fourth generation in the series of NCAR’s Community Climate Model. Many
aspects of the model formulation and implementation were identical to the CCM2, although there
were a number of important changes that were incorporated into the collection of parameterized
physics, along with some modest changes to the dynamical formalism. Modifications to the
physical representation of specific climate processes in the CCM3 were motivated by the need
to address the more serious systematic errors apparent in CCM2 simulations, as well as to make
the atmospheric model more suitable for coupling to land, ocean, and sea-ice component models.
Thus, an important aspect of the changes to the model atmosphere was that they address well
known systematic biases in the top-of-atmosphere and surface (to the extent that they were
known) energy budgets. When compared to the CCM2, changes to the model formulation fell
into five major categories: modifications to the representation of radiative transfer through both
clear and cloudy atmospheric columns, modifications to hydrologic processes (i.e., in the form
of changes to the atmospheric boundary layer, moist convection, and surface energy exchange),
the incorporation of a sophisticated land surface model, the incorporation of an optional slab
mixed-layer ocean/thermodynamic sea-ice component, and a collection of other changes to the
formalism which did not introduce significant changes to the model climate.

Changes to the clear-sky radiation formalism included the incorporation of minor CO, bands
trace gases (CHy, N,O, CFC11, CF(C12) in the longwave parameterization, and the incorpo-
ration of a background aerosol (0.14 optical depth) in the shortwave parameterization. All-sky
changes included improvements to the way in which cloud optical properties (effective radius and
liquid water path) were diagnosed, the incorporation of the radiative properties of ice clouds,
and a number of minor modifications to the diagnosis of convective and layered cloud amount.
Collectively these modification substantially reduced systematic biases in the global annually
averaged clear-sky and all-sky outgoing longwave radiation and absorbed solar radiation to well
within observational uncertainty, while maintaining very good agreement with global observa-
tional estimates of cloud forcing. Additionally, the large warm bias in simulated July surface
temperature over the Northern Hemisphere, the systematic over-prediction of precipitation over
warm land areas, and a large component of the stationary-wave error in CCM2, were also reduced
as a result of cloud-radiation improvements.

Modifications to hydrologic processes included revisions to the major contributing parame-
terizations. The formulation of the atmospheric boundary layer parameterization was revised (in
collaboration with Dr. A. A. M. Holtslag of KNMI), resulting in significantly improved estimates
of boundary layer height, and a substantial reduction in the overall magnitude of the hydrologic
cycle. Parameterized convection was also modified where this process was represented using the
deep moist convection formalism of Zhang and McFarlane [1995] in conjunction with the scheme
developed by Hack [1994] for CCM2. This change resulted in an additional reduction in the



magnitude of the hydrologic cycle and a smoother distribution of tropical precipitation. Surface
roughness over oceans was also diagnosed as a function of surface wind speed and stability,
resulting in more realistic surface flux estimates for low wind speed conditions. The combina-
tion of these changes to hydrological components resulted in a 13% reduction in the annually
averaged global latent heat flux and the associated precipitation rate. It should be pointed out
that the improvements in the radiative and hydrologic cycle characteristics of the model climate
were achieved without compromising the quality of the simulated equilibrium thermodynamic
structures (one of the major strengths of the CCM2) thanks in part to the incorporation of a
Sundqvist [1988] style evaporation of stratiform precipitation.

The CCM3 incorporated version 1 of the Land Surface Model (LSM) developed by Bonan
[1996] which provided for the comprehensive treatment of land surface processes. This was a
one-dimensional model of energy, momentum, water, and CO, exchange between the atmosphere
and land, accounting for ecological differences among vegetation types, hydraulic and thermal
differences among soil types, and allowing for multiple surface types including lakes and wetlands
within a grid cell. LSM replaced the prescribed surface wetness, prescribed snow cover, and
prescribed surface albedos in CCM2. It also replaced the land surface fluxes in CCMZ2, using
instead flux parameterizations that included hydrological and ecological processes (e.g., soil
water, phenology, stomatal physiology, interception of water by plants).

The fourth class of changes to the CCM2 included the option to run CCM3 with a simple
slab ocean-thermodynamic sea ice model. The model employs a spatially and temporally pre-
scribed ocean heat flux and mixed layer depth, which ensures replication of realistic sea surface
temperatures and ice distributions for the present climate. The model allowed for the simplest
interactive surface for the ocean and sea ice components of the climate system.

The final class of model modifications included a change to the form of the hydrostatic matrix
which ensures consistency between w and the discrete continuity equation, and a more general-
ized form of the gravity wave drag parameterization. In the latter case, the parameterization
was configured to behave in the same way as the CCM2 parameterization of wave drag, but
included the capability to exploit more sophisticated descriptions of this process.

One of the more significant implementation differences with the earlier model was that CCM3
included an optional message-passing configuration, allowing the model to be executed as a
parallel task in distributed-memory environments. This was an example of how the Climate
and Global Dynamics Division continued to invest in technical improvements to the CCM in
the interest of making it easier to acquire and use in evolving computational environments. As
was the case for CCM2, the code was internally documented, obviating the need for a separate
technical note that describes each subroutine and common block in the model library. Thus,
the Users’ Guide, the land surface technical note, the CCM3 technical note [Kiehl et al., 1996],
the actual code and a series of reviewed scientific publications (including a special issue of the
Journal of Climate, Volume 11, Number 6) were designed to completely document CCM3.

1.2 Overview of CAM2

The CAM2 is the fifth generation of the NCAR atmospheric GCM. The name of the model
series has been changed from Community Climate Model to Community Atmosphere Model to
reflect the role of CAM2 in the fully coupled climate system. In contrast to previous generations
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of the atmospheric model, CAM2 has been designed through a collaborative process with users
and developers in the Atmospheric Model Working Group (AMWG). The AMWG includes
scientists from NCAR, the university community, and government laboratories. For CAM2,
the AMWG proposed testing a variety of dynamical cores and convective parameterizations.
The data from these experiments has been freely shared among the AMWG, particularly with
member organizations (e.g., PCMDI) with methods for comparing modeled climates against
observations. The proposed model configurations have also been extensively evaluated using
a new diagnostics package developed by M. Stevens and J. Hack (CMS). The consensus of
the AMWG is to retain the spectral Eulerian dynamical core for the first official release of
CAM2, although the code includes the option to run with semi-Lagrange dynamics (section 3.2)
or with finite-volume dynamics (FV; section 3.3). The addition of FV is a major extension
to the model provided through a collaboration between NCAR and NASA Goddard’s Data
Assimilation Office (DAO). The AMWG also has decided to retain the Zhang and McFarlane
[1995] parameterization for deep convection (section 4.1) in CAM2.
The major changes in the physics include:

e Treatment of cloud condensed water using a prognostic treatment (section 4.3): The orig-
inal formulation is introduced in Rasch and Kristjansson [1998]. Revisions to the parame-
terization to deal more realistically with the treatment of the condensation and evaporation
under forcing by large scale processes and changing cloud fraction are described in Zhang
et al. [2003].The parameterization has two components: 1) a macroscale component that
describes the exchange of water substance between the condensate and the vapor phase
and the associated temperature change arising from that phase change [Zhang et al., 2003];
and 2) a bulk microphysical component that controls the conversion from condensate to
precipitate [Rasch and Kristjansson, 1998].

e A new thermodynamic package for sea ice (chapter 6): The philosophy behind the design
of the sea ice formulation of CAM2 is to use the same physics, where possible, as in the sea
ice model within CCSM, which is known as CSIM for Community Sea Ice Model. In the
absence of an ocean model, uncoupled simulations with CAM2 require sea ice thickness
and concentration to be specified. Hence the primary function of the sea ice formulation
in CAM2 is to compute surface fluxes. The new sea ice formulation in CAM2 uses pa-
rameterizations from CSIM for predicting snow depth, brine pockets, internal shortwave
radiative transfer, surface albedo, ice-atmosphere drag, and surface exchange fluxes.

e Explicit representation of fractional land and sea-ice coverage (section 7.2): Earlier versions
of the global atmospheric model (the CCM series) included a simple land-ocean-sea ice
mask to define the underlying surface of the model. It is well known that fluxes of fresh
water, heat, and momentum between the atmosphere and underlying surface are strongly
affected by surface type. The CAM2 provides a much more accurate representation of flux
exchanges from coastal boundaries, island regions, and ice edges by including a fractional
specification for land, ice, and ocean. That is, the area occupied by these surface types is
described as a fractional portion of the atmospheric grid box. This fractional specification
provides a mechanism to account for flux differences due to sub-grid inhomogeneity of
surface types.
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e A new, general, and flexible treatment of geometrical cloud overlap in the radiation calcu-
lations (section 4.6.5): The new parameterizations compute the shortwave and longwave
fluxes and heating rates for random overlap, maximum overlap, or an arbitrary combina-
tion of maximum and random overlap. The specification of the type of overlap is identical
for the two bands, and it is completely separated from the radiative parameterizations.
In CAM2, adjacent cloud layers are maximally overlapped and groups of clouds separated
by cloud-free layers are randomly overlapped. The introduction of the generalized overlap
assumptions permits more realistic treatments of cloud-radiative interactions. The param-
eterizations are based upon representations of the radiative transfer equations which are
more accurate than previous approximations in the literature. The methodology has been

designed and validated against calculations based upon the independent column approxi-
mation (ICA).

e A new parameterization for the longwave absorptivity and emissivity of water vapor (sec-
tion 4.7.2): This updated treatment preserves the formulation of the radiative transfer
equations using the absorptivity/emissivity method. However, the components of the
absorptivity and emissivity related to water vapor have been replaced with new terms
calculated with the General Line-by-line Atmospheric Transmittance and Radiance Model
(GENLN2). Mean absolute differences between the cooling rates from the original method
and GENLN2 are typically 0.2 K/day. These differences are reduced by at least a factor
of 3 using the updated parameterization. The mean absolute errors in the surface and
top-of-atmosphere clear-sky longwave fluxes for standard atmospheres are reduced to less
than 1 W/m?. The updated parameterization increases the longwave cooling at 300 mb
by 0.4 to 0.7 K/day, and it decreases the cooling near 800 mb by 0.2 to 0.6 K/day. The
increased cooling is caused by line absorption and the foreign continuum in the rotation
band, and the decreased cooling is caused by the self continuum in the rotation band.

e Evaporation of convective precipitation (section 4.1) following Sundqvist [1988]: The en-
hancement of atmospheric moisture through this mechanism offsets the drying introduced
by changes in the longwave absorptivity and emissivity.

e A careful formulation of vertical diffusion of dry static energy (section 4.9).
Other major enhancements include:

e A new, extensible sea-surface temperature boundary data set (section 7.2): This dataset
prescribes analyzed monthly mid-point mean values of SST and ice concentration for the
period 1950 through 2001. The dataset is a blended product, using the global HadISST
OI dataset prior to 1981 and the Smith/Reynolds EOF dataset post-1981. In addition to
the analyzed time series, a composite of the annual cycle for the period 1981-2001 is also
available in the form of a mean “climatological” dataset.

e Clean separation between the physics and dynamics (chapter 2): The dynamical core can
be coupled to the parameterization suite in a purely time split manner or in a purely pro-
cess split one. The distinction is that in the process split approximation the physics and
dynamics are both calculated from the same past state, while in the time split approx-
imations the dynamics and physics are calculated sequentially, each based on the state
produced by the other.

12



Chapter 2

Coupling of Dynamical Core and
Parameterization Suite

The CAM2 cleanly separates the parameterization suite from the dynamical core, and makes
it easier to replace or modify each in isolation. The dynamical core can be coupled to the
parameterization suite in a purely time split manner or in a purely process split one, as described
below.

Consider the general prediction equation for a generic variable ),

o _

L =DW)+P W), 2.)

where 1 denotes a prognostic variable such as temperature or horizontal wind component. The
dynamical core component is denoted D and the physical parameterization suite P.

A three-time-level notation is employed which is appropriate for the semi-implicit Eulerian
spectral transform dynamical core. However, the numerical characteristics of the physical pa-
rameterizations are more like those of diffusive processes rather than advective ones. They are
therefore approximated with forward or backward differences, rather than centered three-time-
level forms.

The Process Split coupling is approximated by

Y = Tl 2AED (YL ", ) 4 2ALP(9F, 9 (2:2)

where P(¢*, 4" 1) is calculated first from

PF ="+ 2ALP (") (2.3)

The Time Split coupling is approximated by
P o= P 208D (P, Y, ) (2.4)
Y =gt 2ALP (T ) (2.5)

The distinction is that in the Process Split approximation the calculations of D and P are
both based on the same past state, 1" !, while in the Time Split approximations D and P are
calculated sequentially, each based on the state produced by the other.

13



As mentioned above, the Eulerian core employs the three-time-level notation in (2.2)-(2.5).
Eqns. (2.2)-(2.5) also apply to two-time-level semi-Lagrangian and finite volume cores by drop-
ping centered n term dependencies, and replacing n-1 by n and 2At¢ by At.

The parameterization package can be applied to produce an updated field as indicated in
(2.3) and (2.5). Thus (2.5) can be written with an operator notation

Yt =P (YY) (2.6)

where only the past state is included in the operator dependency for notational convenience.
The implicit predicted state dependency is understood. The Process Split equation (2.2) can
also be written in operator notation as

2.7)

wn—l—l — D (,(/Jn—l P(d}nil) - T/fn1>

2At

where the first argument of D denotes the prognostic variable input to the dynamical core and
the second denotes the forcing rate from the parameterization package, e.g. the heating rate in
the thermodynamic equation. Again only the past state is included in the operator dependency,
with the implicit predicted state dependency left understood. With this notation the Time Split
system (2.5) and (2.5) can be written

Y"tt =P (D (" 1,0)) . (2.8)

The total parameterization package in CAM2 consists of a sequence of components, indicated
by
P={M,R,S,T}, (2.9)

where M denotes (Moist) precipitation processes, R denotes clouds and Radiation, S denotes the
Surface model, and 7" denotes Turbulent mixing. Each of these in turn is subdivided into various
components: M includes an optional dry adiabatic adjustment (normally applied only in the
stratosphere), moist penetrative convection, shallow convection, and large-scale stable conden-
sation; R first calculates the cloud parameterization followed by the radiation parameterization;
S provides the surface fluxes obtained from land, ocean and sea ice models, or calculates them
based on specified surface conditions such as sea surface temperatures and sea ice distribution.
These surface fluxes provide lower flux boundary conditions for the turbulent mixing 7" which
is comprised of the planetary boundary layer parameterization, vertical diffusion, and gravity
wave drag.

Defining operators following (2.6) for each of the parameterization components, the couplings
in CAM2 are summarized as:

TIME SPLIT

Y =T (S (R (M (D (v"1,0))))) (2.10)
PROCESS SPLIT

" = D (wn_l’ T (S (R(M (ng‘tl)))) - wl) (2.11)
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The labels Time Split and Process Split refer to the coupling of the dynamical core with the
complete parameterization suite. The components within the parameterization suite are coupled
via time splitting in both forms.

The Process Split form is convenient for spectral transform models. With Time Split approx-
imations extra spectral transforms are required to convert the updated momentum variables
provided by the parameterizations to vorticity and divergence for the Eulerian spectral core, or
to recalculate the temperature gradient for the semi-Lagrangian spectral core. The Time Split
form is convenient for the finite-volume core which adopts a Lagrangian vertical coordinate.
Since the scheme is explicit and restricted to small time-steps by its non-advective component,
it sub-steps the dynamics multiple times during a longer parameterization time step. With
Process Split approximations the forcing terms must be interpolated to an evolving Lagrangian
vertical coordinate every sub-step of the dynamical core. Besides the expense involved, it is not
completely obvious how to interpolate the parameterized forcing, which can have a vertical grid
scale component arising from vertical grid scale clouds, to a different vertical grid. [Williamson,
2002] compares simulations with the Eulerian spectral transform dynamical core coupled to the
CCM3 parameterization suite via Process Split and Time Split approximations.
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Chapter 3

Dynamics

3.1 Eulerian Dynamical Core

The hybrid vertical coordinate that has been implemented in CAM2 is described in this section.
The hybrid coordinate was developed by Simmons and Striifing [1981] in order to provide a
general framework for a vertical coordinate which is terrain following at the Earth’s surface,
but reduces to a pressure coordinate at some point above the surface. The hybrid coordinate
is more general in concept than the modified o scheme of Sangster [1960], which is used in the
GFDL SKYHI model. However, the hybrid coordinate is normally specified in such a way that
the two coordinates are identical.

The following description uses the same general development as Simmons and Striifing [1981],
who based their development on the generalized vertical coordinate of Kasahara [1974]. A
specific form of the coordinate (the hybrid coordinate) is introduced at the latest possible point.
The description here differs from Simmons and Striifing [1981] in allowing for an upper boundary
at finite height (nonzero pressure), as in the original development by Kasahara. Such an upper
boundary may be required when the equations are solved using vertical finite differences.

3.1.1 Generalized terrain-following vertical coordinates

Deriving the primitive equations in a generalized terrain-following vertical coordinate requires
only that certain basic properties of the coordinate be specified. If the surface pressure is 7,
then we require the generalized coordinate 7(p, 7) to satisfy:

1. n(p,m) is a monotonic function of p.

[N)

-
Cn(m,m) =1
3. n(0,7)=0
4. n(ps, ) = n; where p; is the top of the model.

The latter requirement provides that the top of the model will be a pressure surface, simplifying
the specification of boundary conditions. In the case that p; = 0, the last two requirements
are identical and the system reduces to that described in Simmons and Striifing [1981]. The
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boundary conditions that are required to close the system are:
i(mm) = 0, (3.1)
npe,m) = wp) =0.

Given the above description of the coordinate, the continuous system of equations can be
written following Kasahara [1974] and Simmons and Striifing [1981]. The prognostic equations
are:

% = k-V x(n/cos¢)+ Fe,, (3.3)
% = V-(n/cos¢) — V2 (E + @) + Fy,, (3.4)
%_f - @ aa)\(UT)+cos¢ CZS(V:F)]Jr:r(s ngT-i-% ,,%

+Q + Fr, + Fr,, (3.5)
5 = @ aaA(Uq)+C°S¢ 26" )] “- "gn+s (30
w = (gf;v)dn (3.7

The notation follows standard conventions, and the following terms have been introduced with
n = (ny,ny):

oU T,1 dp

ng = +(C+ )V - 778 R—a—a Fy, (3.8)

ny = —(C+ U - %—Rpcoz¢gg Fy, (3.9)
U?+v?

E = Dco? g (3.10)

U,V) = (uv)cosé, (3.11)

T, = [1 + (% — 1) q] T, (3.12)

¢ = [1 + <% . 1) q] c,. (3.13)

The terms Fy, Fy,Q, and S represent the sources and sinks from the parameterizations for
momentum (in terms of U and V'), temperature, and moisture, respectively. The terms F;, and
Fy, represent sources due to horizontal diffusion of momentum, while Fr,, and Fp, represent
sources attributable to horizontal diffusion of temperature and a contribution from frictional
heating (see sections on horizontal diffusion and horizontal diffusion correction).
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In addition to the prognostic equations, three diagnostic equations are required:

p(1)
o=, + R/ T,dlnp, (3.14)
p(n)

.Op op / op
_ _ V- V NI
77677 ot nt (377 ) an (3 5)
w:V.Vp—/ V- (gf;‘/)dn (3.16)

mt
Note that the bounds on the vertical integrals are specified as values of n (e.g., n;, 1) or as
functions of p (e.g., p (1), which is the pressure at n = 1).

3.1.2 Conversion to final form

Equations (3.1)-(3.16) are the complete set which must be solved by a GCM. However, in order
to solve them, the function n(p, 7) must be specified. In advance of actually specifying n(p, ),
the equations will be cast in a more convenient form. Most of the changes to the equations
involve simple applications of the chain rule for derivatives, in order to obtain terms that will
be easy to evaluate using the predicted variables in the model. For example, terms involving
horizontal derivatives of p must be converted to terms involving only dp/0m and horizontal
derivatives of 7. The former can be evaluated once the function n(p, 7) is specified.
The vertical advection terms in (3.5), (3.6), (3.8), and (3.9) may be rewritten as:

G20 onov

5 = 15y 3y (3.17)

since 7dp/0n is given by (3.15). Similarly, the first term on the right-hand side of (3.15) can be

expanded as

Op Opom

and (3.7) invoked to specify o /0t.
The integrals which appear in (3.7), (3.15), and (3.16) can be written more conveniently by
expanding the kernel as

op op op
v (6_77V> V. V(@n)+8nv V. (3.19)

The second term in (3.19) is easily treated in vertical integrals, since it reduces to an integral
in pressure. The first term is expanded to:

V-V (gf]) v-2 (wp)

op op on
.2
(aﬁ)v *Vaﬂ(an) (3.20)



The second term in (3.20) vanishes because 0r/dn = 0, while the first term is easily treated
once n(p, ) is specified. Substituting (3.20) into (3.19), one obtains:

op 0 (0p op
APy 9 21
v <anv) o ((%)V v +377V V. (3.21)

Using (3.21) as the kernel of the integral in (3.7), (3.15), and (3.16), one obtains integrals of the

form
/V.<g_zv>dn:/[§ (ggv Vn +g—pv V]d
- /V.vﬁd (%) +/(5dp. (3.22)

The original primitive equations (3.3)-(3.7), together with (3.8), (3.9), and (3.14)-(3.16) can
now be rewritten with the aid of (3.17), (3.18), and (3.22).

% = k-Vx(n/cos¢)+ F, , (3.23)
% = V- (n/COS¢) —V2 (E+©)+F‘5H , (3.24)
oT -1 [0 opdT R w
9 acotg oAU L) Teosd ¢( )] T 05 el
+Q+ Fry + Fry (3.25)
0g -1 [0 9pdg
ot a cos? ¢ 8/\(UQ)+COS¢ ¢( )]"" 0 — 778 ap + 5, (3.26)
1) p(1)
o — [V .V (8” ) / Sdp, (3.27)
ot (1¢) o p(m)
_ .Opo0—-U T,10por
= (C + f)V na_Tp R— ap 87?' a)\ + F (328)
3p8 V _T,cos¢10pon
B T ———— + Fy, 2
ny —(C+ U 677 B R o« ponds + (3.29)
p(1)
p(n)
.Op Op / p(1)
o or d od 31
Ton = or | ) v .vn ( ) + p (3.31)
(m) p(n)
| V-V (ap ) / 5dp.
() on p(m)
() p(n)
w = 2v.vr- ["V.Vrd (ap ) / ddp. (3.32)
or (m) or ) Jowm)

Once n(p, ) is specified, then dp/dn can be determined and (3.23)-(3.32) can be solved in a
GCM.
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In the actual definition of the hybrid coordinate, it is not necessary to specify n(p, 7) explic-
itly, since (3.23)-(3.32) only requires that p and dp/0rn be determined. It is sufficient to specify
p(n,m) and to let n be defined implicitly. This will be done in section 3.1.7. In the case that
p(n,7) = om and n; = 0, (3.23)-(3.32) can be reduced to the set of equations solved by CCM1.

3.1.3 Continuous equations using 0 In(w)/0t

In practice, the solutions generated by solving the above equations are excessively noisy. This
problem appears to arise from aliasing problems in the hydrostatic equation (3.30). The Inp
integral introduces a high order nonlinearity which enters directly into the divergence equation
(3.24). Large gravity waves are generated in the vicinity of steep orography, such as in the
Pacific Ocean west of the Andes.

The noise problem is solved by converting the equations given above, which use 7 as a
prognostic variable, to equations using II = In(w). This results in the hydrostatic equation
becoming only quadratically nonlinear except for moisture contributions to virtual temperature.
Since the spectral transform method will be used to solve the equations, gradients will be
obtained during the transform from wave to grid space. Outside of the prognostic equation for
I1, all terms involving V7 will then appear as 7VIL.
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Equations (3.23)-(3.32) become:
a¢

P k-V x (n/cos¢) + Fr,, (3.33)
)

% = V-(n/cos¢g)—V’(E+ )+ F;,, (3.34)
oT -1 [0 0 Op0T R__w

oL 2 wr Lwn| +16 - 2L L 2 Y .

ot acos? ¢ _8/\(U )+COS¢8¢(V )} 10 77877 op * ¢ 'p (3.35)

+Q + FTH + FFH,
¢ -1 [0 0 .0p Oq
5% = acod _6)\(Uq) + cos ¢8¢(Vq)} +qd 77577 a + 5, (3.36)
(1) p(1)
om _ [y v (@> . l/ 5dp, (3.37)
ot (me) on T Jp(m)
_ O0pd—U _T,n Opoll
_ .Op0—V _T,cos¢m dp Oll
ny = —=(C+ U "3 op o pords Fy, (3.39)
p(1)
® = P, + R/ TydInp, (3.40)
p(n)
(1) p(1)

aor _ o / 7V - VIId <@) +/ 6dp] (3.41)
n o | Jmy) om p(ne)

(n) p(n)
—/ 7V - VIId (@> —/ Sdp,
(m) on p(me)

(m) p(n)
w = @WV - VII - / 7V - VIId o) _ / ddp. (3.42)
om (ne) om p(r)

The above equations reduce to the standard o equations used in CCM1 if » = ¢ and n; = 0.
(Note that in this case Op/0r = p/7m = 0.)

3.1.4 Semi-implicit formulation

The model described by (3.33)-(3.42), without the horizontal diffusion terms, together with
boundary conditions (3.1) and (3.2), is integrated in time using the semi-implicit leapfrog scheme
described below. The semi-implicit form of the time differencing will be applied to (3.34) and
(3.36) without the horizontal diffusion sources, and to (3.37). In order to derive the semi-implicit
form, one must linearize these equations about a reference state. Isolating the terms that will
have their linear parts treated implicitly, the prognostic equations (3.33), (3.34), and (3.37) may
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be rewritten as:

4]

% = —RT,V’Ilnp — V°® + X, (3.43)
oT R_w .0pdl

ey | e i 3.44
ot +c;; P n608p+ ! ( )
o1l 1 /p(l)

— = ddp + 71, (3.45)
ot T Jpm)

where X, Y, Z) are the remaining nonlinear terms not explicitly written in (3.43)-(3.45). The
terms involving ® and w may be expanded into vertical integrals using (3.40) and (3.42), while
the V?Inp term can be converted to V?II, giving:

5 p(1)
D _ _prT Py _ gy / Tdlnp + Xo, (3.46)
8t P 87r p(n)
oT RT [P op p(1) p(1) oT
— = odp — —/ ddp — / odp| — + Yo, (3.47)
ot C P Jp(me) O Jp(ne) p(ne) Ip
ot 1 /Pﬂ)
g Sdp + Zs. 3.48
(915 pt P(’flt) 2 ( )

Once again, only terms that will be linearized have been explicitly represented in (3.46)-(3.48),
and the remaining terms are included in X5, Y5, and Z5. Anticipating the linearization, 7, and
c, have been replaced by 7" and ¢, in (3.46) and (3.47). Furthermore, the virtual temperature
corrections are included with the other nonlinear terms.

In order to linearize (3.46)-(3.48), one specifies a reference state for temperature and pressure,
then expands the equations about the reference state:

T=T +T, (3.49)
T=n" 4+, (3.50)
p=p'(n7")+p. (3.51)

In the special case that p(n,7) = om, (3.46)-(3.48) can be converted into equations involving
only I = Inn instead of p, and (3.50) and (3.51) are not required. This is a major difference
between the hybrid coordinate scheme being developed here and the o coordinate scheme in
CCM1.

Expanding (3.46)-(3.48) about the reference state (3.49)-(3.51) and retaining only the linear
terms explicitly, one obtains:

5 . r P (1) p'(1) pr
% = —rv? |7 (S_P) H+/ T'dInp" +/ —dp'| + X3, (3.52)
pr \orm p"(n) ym P

oT RT" " (1) ap T pep(1) p" (1) oT"

= Sdp" — (—) / Sdp” —/ odp”| o + Y5, (3-53)

ot Cp D" Jpr(my) om pr(ne) P (ne) dp
p" (1)

%_13 _ % Sdp’ + Zs. (3.54)
p"(mt)
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The semi-implicit time differencing scheme treats the linear terms in (3.52)-(3.54) by averaging
in time. The last integral in (3.52) is reduced to purely linear form by the relation

/ ! Op "
dp —Wd(aﬂ_) +z. (3.55)
In the hybrid coordinate described below, p is a linear function of 7, so  above is zero.

We will assume that centered differences are to be used for the nonlinear terms, and the
linear terms are to be treated implicitly by averaging the previous and next time steps. Finite
differences are used in the vertical, and are described in the following sections. At this stage only
some very general properties of the finite difference representation must be specified. A layering
structure is assumed in which field values are predicted on K layer midpoints denoted by an
integer index, 7 (see Figure 3.1). The interface between 7 and 7,1 is denoted by a half-integer
index, 7x11/2. The model top is at 7,/ = n;, and the Earth’s surface is at ng 1o = 1. It is
further assumed that vertical integrals may be written as a matrix (of order K) times a column
vector representing the values of a field at the n grid points in the vertical. The column vectors
representing a vertical column of grid points will be denoted by underbars, the matrices will be
denoted by bold-faced capital letters, and superscript T" will denote the vector transpose. The
finite difference forms of (3.52)-(3.54) may then be written down as:

én—l—l — én—l + ZAtXn
n—1 n+1
_2AtRY V? (% _ H”)

COAtRH'V? ((I’)"‘1 ;r @t (zl)n>

—2AtRR'V? <w — H") : (3.56)
T = TN L 2AtY™ — 2AtDT (énl‘gién“ - g“) , (3.57)
"+ = "+ 2AtZ2™ — 2At (% - Q”)T %@’“, (3.58)

where ()" denotes a time varying value at time step n. The quantities X", Y™, and Z" are
defined so as to complete the right-hand sides of (3.43)-(3.45). The components of Ap" are
given by Apj = p} T pp_ . This definition of the vertical difference operator A will be used in
subsequent equations. The reference matrices H” and D", and the reference column vectors b"
and A", depend on the precise specification of the vertical coordinate and will be defined later.

3.1.5 Energy conservation

We shall impose a requirement on the vertical finite differences of the model that they conserve
the global integral of total energy in the absence of sources and sinks. We need to derive
equations for kinetic and internal energy in order to impose this constraint. The momentum
equations (more painfully, the vorticity and divergence equations) without the Fy, Fy, F,, and
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Figure 3.1: Vertical level structure of CAM2
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F5,. contributions, can be combined with the continuity equation

H
d0 (0p op 0 (0p.\
ot (877) v (677V) "o <3nn> Y (359
to give an equation for the rate of change of kinetic energy:
0 (0Op op o (0dp ..
—|=F) = -V-|=—F —-— | =F
ot <377 ) v (377 V) n (577 77)
RT, Op op
- —V - -Vp——V.Vo —. 3.60
o’ VP 5,V Y (3.60)

The first two terms on the right-hand side of (3.60) are transport terms. The horizontal integral
of the first (horizontal) transport term should be zero, and it is relatively straightforward to
construct horizontal finite difference schemes that ensure this. For spectral models, the integral
of the horizontal transport term will not vanish in general, but we shall ignore this problem.

The vertical integral of the second (vertical) transport term on the right-hand side of (3.60)
should vanish. Since this term is obtained from the vertical advection terms for momentum,
which will be finite differenced, we can construct a finite difference operator that will ensure
that the vertical integral vanishes.

The vertical advection terms are the product of a vertical velocity (70p/0n) and the vertical
derivative of a field (0v¢/0p). The vertical velocity is defined in terms of vertical integrals of
fields (3.42), which are naturally taken to interfaces. The vertical derivatives are also naturally
taken to interfaces, so the product is formed there, and then adjacent interface values of the
products are averaged to give a midpoint value. It is the definition of the average that must be
correct in order to conserve kinetic energy under vertical advection in (3.60). The derivation
will be omitted here, the resulting vertical advection terms are of the form:

(77877 op /), 2Ap; 77677 o2 (Yp41 — Yi) + 77877 oo (Ve —k-1)|, (3.61)

Apr = Pr+1/2 — Pr—1/2- (3.62)

The choice of definitions for the vertical velocity at interfaces is not crucial to the energy con-
servation (although not completely arbitrary), and we shall defer its definition until later. The
vertical advection of temperature is not required to use (3.61) in order to conserve mass or en-
ergy. Other constraints can be imposed that result in different forms for temperature advection,
but we will simply use (3.61) in the system described below.

The last two terms in (3.60) contain the conversion between kinetic and internal (potential)
energy and the form drag. Neglecting the transport terms, under assumption that global in-
tegrals will be taken, noting that Vp/p = %g—gVH, and substituting for the geopotential using
(3.40), (3.60) can be written as:

0 (0p op 7 Op
~(ZE) = —RI,=V-(222VI :
ot (an ) R 6nv (paﬂv ) (3.65)
p(1)
_@V.Ws_a_pv.v/ RT,dlnp+ ...
on on n(n)
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The second term on the right-hand side of (3.64) is a source (form drag) term that can be
neglected as we are only interested in internal conservation properties. The last term on the
right-hand side of (3.64) can be rewritten as

p(1)
Py v/ RT,dlnp =V - apv/ RT,dInp % — V- (@V>/ RT,dInp. (3.64)
on on p(n)

The global integral of the first term on the right-hand side of (3.64) is obviously zero, so that
(3.64) can now be written as:

0 8p op m Op op /p(l)
—_ T gn (2 T,dinp+ ... .
5 (877 > RT, "3 —V- ( 87rv ) +V (877V . R np+ (3.65)

We now turn to the internal energy equation, obtained by combining the thermodynamic
equation (3.36), without the @, Fr,, and FF, terms, and the continuity equation (3.59):

0 (0P «p) _ _ Ip , 0 (op, Opw
at(an )_ v (877 TV> aﬂ(a T>+RTanp (3.66)

Asin (3.60), the first two terms on the right-hand side are advection terms that can be neglected
under global integrals. Using (3.16), (3.66) can be written as:

0 (Op op T Op op1l / op
— “T T, ——VII T, — dn .
ey (an ) R (%V (p 87rv ) R a0 p V. ('377V + .. (3.67)

The rate of change of total energy due to internal processes is obtained by adding (3.65) and
(3.67) and must vanish. The first terms on the right-hand side of (3.65) and (3.67) obviously
cancel in the continuous form. When the equations are discretized in the vertical, the terms will
still cancel, providing that the same definition is used for (1/p dp/0n); in the nonlinear terms of
the vorticity and divergence equations (3.38) and (3.39), and in the w term of (3.36) and (3.42).

The second terms on the right-hand side of (3.65) and (3.67) must also cancel in the global
mean. This cancellation is enforced locally in the horizontal on the column integrals of (3.65)
and (3.67), so that we require:

1 p(1)
/ V- (@V>/ RT,dInp dn:/ {RT ap1/ V- (ap,V) dn}dn- (3.68)
nt on p(n) Nt onp 7t 9

The inner integral on the left-hand side of (3.68) is derived from the hydrostatic equation (3.40),
which we shall approximate as

K
O =P, + R HTy,

L=k
K

=® +RY  HuTu, (3.69)
=1

®=9%,1+ RHT,, (3.70)

26



where Hyy, = 0 for £ < k. The quantity 1 is defined to be the unit vector. The inner integral
on the right-hand side of (3.68) is derived from the vertical velocity equation (3.42), which we
shall approximate as

(9>k: (fa—p> V, - VI — ZCM [&prw(w VHM(SPU, (3.71)

P p Om T

where Cyy = 0 for £ > k, and Cyy is included as an approximation to 1/p; for £ < k and the
symbol A is similarly defined as in (3.62). C, will be determined so that w is consistent with
the discrete continuity equation following Williamson and Olson [1994]. Using (3.69) and (3.71),
the finite difference analog of (3.68) is
K 1 Op

— |0A V- VII) A RY» HpTyp A
;{Aﬂk[k pe+m (Vi ) ((%)J Z ke z} Mk

1
N Apy Jp
k
= kz_l {RTv E Cre [54Ape +7 (V- VI)A (3W)e] } Ay, (3.72)

where we have used the relation
V-V (0p/on)k = [0kApx + 7 (Vi - VII) A (Op/Om), ]/ Any (3.73)

(see 3.22). We can now combine the sums in (3.72) and simplify to give

XKI > { [5kApk F (V- VIDA (gﬁ) ] HMTM}

k=1 £=1
K

= Z { [JgApg +7 (V- VI A (g—j’;)j AkaMT,,,C} : (3.74)

k=1 {=1

Interchanging the indexes on the left-hand side of (3.74) will obviously result in identical ex-
pressions if we require that
Hyy = CopApy. (3.75)

Given the definitions of vertical integrals in (3.70) and (3.71) and of vertical advection in
(3.61) and (3.62) the model will conserve energy as long as we require that C' and H satisfy
(3.75). We are, of course, still neglecting lack of conservation due to the truncation of the
horizontal spherical harmonic expansions.

3.1.6 Horizontal diffusion

CAM2 contains a horizontal diffusion term for 7', (, and ¢ to prevent spectral blocking and to
provide reasonable kinetic energy spectra. The horizontal diffusion operator in CAM2 is also
used to ensure that the CFL condition is not violated in the upper layers of the model. The
horizontal diffusion is a linear V2 form on 7 surfaces in the top three levels of the model and
a linear V* form with a partial correction to pressure surfaces for temperature elsewhere. The
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V? diffusion near the model top is used as a simple sponge to absorb vertically propagating
planetary wave energy and also to control the strength of the stratospheric winter jets. The V?
diffusion coefficient has a vertical variation which has been tuned to give reasonable Northern
and Southern Hemisphere polar night jets.

In the top three model levels, the V2 form of the horizontal diffusion is given by

Foy =K@ [V?(C+ ) +2(C+ f) [a?], (3.76)
Fs, = K® [V% +2(5/a%)] (3.77)
Fr, = KOV, (3.78)

Since these terms are linear, they are easily calculated in spectral space. The undifferentiated
correction term is added to the vorticity and divergence diffusion operators to prevent damping
of uniform (n = 1) rotations [Orszag, 1974; Bourke et al., 1977]. The V? form of the horizontal
diffusion is applied only to pressure surfaces in the standard model configuration.

The horizontal diffusion operator is better applied to pressure surfaces than to terrain-
following surfaces (applying the operator on isentropic surfaces would be still better). Although
the governing system of equations derived above is designed to reduce to pressure surfaces above
some level, problems can still occur from diffusion along the lower surfaces. Partial correction
to pressure surfaces of harmonic horizontal diffusion (9¢/0t = K'V?) can be included using the
relations:

0
V=V, 6 — pa—ivn Inp
0 0 0?
ViE=Vie - pa—ivg Inp — 2V, (8—§—> - Vap + an)vip. (3.79)

Retaining only the first two terms above gives a correction to the 7 surface diffusion which
involves only a vertical derivative and the Laplacian of log surface pressure,

o€ dp
2=V - 2=V +... 3.80
V€ =V, & Wap aﬁv + ( )
Similarly, biharmonic diffusion can be partially corrected to pressure surfaces as:
o€ op
ViE=ViE—m ==V +... 3.81
W= Vi SV (3.81)

The bi-harmonic V* form of the diffusion operator is applied at all other levels (generally
throughout the troposphere) as

Fp = —K® :V‘* C+F)—(C+f) (2/a2)2] , (3.82)

Fs, = —KW [V* —6(2/a*)?], (3.83)

Fr, = —K®% -V‘*T _ 9T @v‘ln] (3.84)
T i p O ' -

The second term in Fr, consists of the leading term in the transformation of the V* operator
to pressure surfaces. It is included to offset partially a spurious diffusion of 7" over mountains.
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As with the V? form, the V* operator can be conveniently calculated in spectral space. The
correction term is then completed after transformation of 7" and V*II back to grid—point space.
As with the V? form, an undifferentiated term is added to the vorticity and divergence diffusion
operators to prevent damping of uniform rotations.

3.1.7 Finite difference equations

The governing equations are solved using the spectral method in the horizontal, so that only the
vertical and time differences are presented here. The dynamics includes horizontal diffusion of
T,(C+ f), and §. Only T has the leading term correction to pressure surfaces. Thus, equations
that include the terms in this time split sub-step are of the form

ot Dyn () — (‘DiK(%)V%%a (3.85)
for ((+ f) and 6, and
i (1) r(29) 1Y s et i )
5 Dyn (T) — (-1)'K {V,}T Wap aﬁv H} ; (3.86)

where i = 1 in the top few model levels and ¢ = 2 elsewhere (generally within the troposphere).
These equations are further subdivided into time split components:

wn—f—l — ¢n—1 4 2AL Dyn (wn-f—l’ ,(/]n’ ,lpn—l) , (387)
I = gt (3.89)
for ((+ f) and 6, and
Tn—|—1 — Tnfl + 2At Dyn (Tn—H’ Tn’ Tnfl) (390)
. ~ N OT* Op .,
T+l — 7% L oAt (=1) K@ gpr 2 22 211 3.92
4280 (1) K S o, (3.92)

for T, where in the standard model i only takes the value 2 in (3.92). The first step from ( )"~
to ()"*! includes the transformation to spectral coefficients. The second step from ( )"*' to
(") for 6 and ¢, or ( )"*! to ()* for T, is done on the spectral coefficients, and the final step
from ( )* to (*)"™" for T is done after the inverse transform to the grid point representation.
The following finite-difference description details only the forecast given by (3.87) and (3.90).
The finite-difference form of the forecast equation for water vapor will be presented later in
Section 3c. The general structure of the complete finite difference equations is determined by
the semi-implicit time differencing and the energy conservation properties described above. In
order to complete the specification of the finite differencing, we require a definition of the vertical
coordinate. The actual specification of the generalized vertical coordinate takes advantage of the
structure of the equations (3.33)-(3.42). The equations can be finite-differenced in the vertical
and, in time, without having to know the value of  anywhere. The quantities that must be
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known are p and dp/0r at the grid points. Therefore the coordinate is defined implicitly through
the relation:

p(n,m) = A(n)po + B(n)r, (3.93)
which gives
op
g = B(n). (3.94)

A set of levels n; may be specified by specifying A, and By, such that n, = Ay + By, and
difference forms of (3.33)-(3.42) may be derived.

The finite difference forms of the Dyn operator (3.33)-(3.42), including semi-implicit time
integration are:

"t o= ("N +2Atk -V (n”/ cos ), (3.95)

= g 1+2At[ ("] cos ¢) — V2 (E"+¢51+RHR(E’)TL)}

—2AtRH"V? ((Tl)n @ (I')")

2

Hn—l Hn+1
—2AtR (0 + h") V2 <+ - H") , (3.96)
! ! 1 a 1 a
n+l n—1 _ e nn v AR
@y = @y | S ery s Sy | e
n—1 n+1
—2AtD" (% — én)
mt = - 2Azti ((é")T@" + ()" VH"W"M)
n—1 n+1 T
1
_9A¢ (w _ é") — A, (3.98)
B 10p 1 oIl
() = G+ V=BT (GF) 758

1 _6p> <.8p>
_ i Ui — U+ | n— U, —U,_
2Apr (77 an pi1jo (Uk41 k) 77877 /o (Uk k—1)

+ (Fv); (3.99)

(nv), = —(C+f)Ur— RT, <1§§) WCO@SQSZ_E

1 3p> <.3p>
— Vier = Vi) + | = Vi — Vi
2Apy ( 877 k+1/2( k+1 k) on k1/2( ’ k)
+(Fv), , (3.100)
’ RT’Uk <w)
Ty = T+ —2 (2] -
k ET e e \p ), Q
1 .ap) (.829)
- or Torr — Tp) + [ e To —Teo1)|, (3.101
2Apr (77877 k+1/2( k+1 k) 77677 k_l/Q( k k—1) ( )
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By = (w)®+ (w)?, (3.102)

RT, R 17+ T,
= = [l : (3.103)
() P \1+ (% — ) P
op s
(1‘76—) = Bis1j2 Y [6Ape+ V- mVIIAB]
7 kt1/2 =1
k
— [60Ape+ V- 7VIIAB], (3.104)
=1
w 10 k
(—) = (——p) Vi mVII= ) Cie[6Apy + V- mVIIAB,],  (3.105)
P/ por /, —
C { e Lk (3.106)
ke = 1 _ .
a L=k,
Hkg = CgkApg, (3107)
T T R T T Apz T T
DkZ = ApEaTkCKk + M (Tk - kal) (6kg_|_1 - Bk_l/g)
APy (r r
Y (T — T7) (exe — Brs12) s (3.108)
k
€ke 1, 14 < k
o { vsh (3.109)

where notation such as (UT')" denotes a column vector with components (UyT})". In order
to complete the system, it remains to specify the reference vector A", together with the term
(1/p Op/On), which results from the pressure gradient terms and also appears in the semi-implicit

reference vector b":
1 1 B
(_@) _ <_) <@> _ B (3.110)
paﬂ— k P/ o k Dk

vo= T, (3.111)
B = 0. (3.112)

The matrices C™ and H" (i.e., with components Cy, and Hy,) must be evaluated at each time
step and each point in the horizontal. It is more efficient computationally to substitute the
definitions of these matrices into (3.96) and (3.105) at the cost of some loss of generality in
the code. The finite difference equations have been written in the form (3.95)-(3.112) because
this form is quite general. For example, the equations solved by Simmons and Striifing [1981]
at ECMWF can be obtained by changing only the vectors and hydrostatic matrix defined by
(3.109)-(3.112).

3.1.8 Time filter

The time step is completed by applying a recursive time filter originally designed by [Robert,
1966] and later studied by [Asselin, 1972].

31



n

P =yt ta (P -2y 4y (3.113)

3.1.9 Spectral transform

The spectral transform method is used in the horizontal exactly as in CCM1. As shown earlier,
the vertical and temporal aspects of the model are represented by finite-difference approxima-
tions. The horizontal aspects are treated by the spectral-transform method, which is described
in this section. Thus, at certain points in the integration, the prognostic variables (¢ + f),d, 7T,
and II are represented in terms of coefficients of a truncated series of spherical harmonic func-
tions, while at other points they are given by grid-point values on a corresponding Gaussian
grid. In general, physical parameterizations and nonlinear operations are carried out in grid—
point space. Horizontal derivatives and linear operations are performed in spectral space. Ex-
ternally, the model appears to the user to be a grid—point model, as far as data required and
produced by it. Similarly, since all nonlinear parameterizations are developed and carried out in
grid—point space, the model also appears as a grid—point model for the incorporation of physical
parameterizations, and the user need not be too concerned with the spectral aspects. For users
interested in diagnosing the balance of terms in the evolution equations, however, the details are
important and care must be taken to understand which terms have been spectrally truncated
and which have not. The algebra involved in the spectral transformations has been presented in
several publications [Daley et al., 1976; Bourke et al., 1977; Machenhauer, 1979]. In this report,
we present only the details relevant to the model code; for more details and general philosophy,
the reader is referred to these earlier papers.

3.1.10 Spectral algorithm overview

The horizontal representation of an arbitrary variable 1 consists of a truncated series of spherical
harmonic functions,

v = Y Y vmrPT(pe™, (3.114)
m=—M n=|m|

where p = sin¢, M is the highest Fourier wavenumber included in the east—west representa-
tion, and AN (m) is the highest degree of the associated Legendre polynomials for longitudinal
wavenumber m. The properties of the spherical harmonic functions used in the representation
can be found in the review by Machenhauer [1979]. The model is coded for a general pentagonal
truncation, illustrated in Figure 3.2, defined by three parameters: M, K, and N, where M is
defined above, K is the highest degree of the associated Legendre polynomials, and N is the
highest degree of the Legendre polynomials for m = 0. The common truncations are subsets of
this pentagonal case:

Triangular: M =N =K,
Rhomboidal : K =N+ M, (3.115)
Trapezoidal: N = K > M.
The quantity N (m) in (3.114) represents an arbitrary limit on the two-dimensional wavenumber

n, and for the pentagonal truncation described above is simply given by
N (m) = min (N + |m|, K).
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Figure 3.2: Pentagonal truncation parameters
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The associated Legendre polynomials used in the model are normalized such that

1
[ e ae=1. (3.116)
-1
With this normalization, the Coriolis parameter f is
Q
f=—u_p° (3.117)

V0.375 Y

which is required for the absolute vorticity.
The coefficients of the spectral representation (3.114) are given by

1 1 2 )
= [ o [ soumemanr s (3.118)
-1 2T 0
The inner integral represents a Fourier transform,
1 27 )
Y™ (p) = — V(A p)e ™A, (3.119)
2 Jo

which is performed by a Fast Fourier Transform (FFT) subroutine. The outer integral is per-
formed via Gaussian quadrature,

Y = Zwm(uj)P;”(uj)wj, (3.120)

Jj=1

where p; denotes the Gaussian grid points in the meridional direction, w; the Gaussian weight
at point p;, and J the number of Gaussian grid points from pole to pole. The Gaussian grid
points (u;) are given by the roots of the Legendre polynomial P;(u), and the corresponding
weights are given by

2(1 — p?
w; = (—’“)2 (3.121)
[J Pr1(p)]
The weights themselves satisfy
J
D w;=20. (3.122)
j=1

The Gaussian grid used for the north-south transformation is generally chosen to allow un-
aliased computations of quadratic terms only. In this case, the number of Gaussian latitudes J
must satisfy

J>2N+K+M+1)/2 forM <2(K—-N), (3.123)
J>BK+1)/2 for M > 2(K — N). (3.124)

For the common truncations, these become

J>BK+1)/2 for triangular and trapezoidal, (3.125)
J>(3N+2M+1)/2 for rhomboidal. (3.126)
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In order to allow exact Fourier transform of quadratic terms, the number of points P in the
east-west direction must satisfy
P>3M+1. (3.127)

The actual values of J and P are often not set equal to the lower limit in order to allow use of
more efficient transform programs.

Although in the next section of this model description, we continue to indicate the Gaus-
sian quadrature as a sum from pole to pole, the code actually deals with the symmetric and
antisymmetric components of variables and accumulates the sums from equator to pole only.
The model requires an even number of latitudes to easily use the symmetry conditions. This
may be slightly inefficient for some spectral resolutions. We define a new index, which goes
from —1I at the point next to the south pole to +17 at the point next to the north pole and not
including 0 (there are no points at the equator or pole in the Gaussian grid), i.e., let I = J/2
andi=j—J/2forj > J/2+1andi=j—J/2—1 for j < J/2; then the summation in (3.120)

can be rewritten as
I

Y= > ™ () P () wi. (3.128)

i=—1I, i#£0

The symmetric (even) and antisymmetric (odd) components of ™ are defined by

We)]" =5 (" +9)

S Y

(Wo)" = 5 (¥" — ™). (3.129)

Since w; is symmetric about the equator, (3.128) can be rewritten to give formulas for the
coefficients of even and odd spherical harmonics:

I

S (¥r)!" (i) PM(ui)2w;  for n — m even,
=97 (3.130)
> (o) (i) Pl (ps)2w;  for n —m odd.

i=1

The model uses the spectral transform method [Machenhauer, 1979] for all nonlinear terms.
However, the model can be thought of as starting from grid-point values at time ¢ (consistent
with the spectral representation) and producing a forecast of the grid—point values at time ¢+ At
(again, consistent with the spectral resolution). The forecast procedure involves computation
of the nonlinear terms including physical parameterizations at grid points; transformation via
Gaussian quadrature of the nonlinear terms from grid—point space to spectral space; computation
of the spectral coefficients of the prognostic variables at time ¢ + At (with the implied spectral
truncation to the model resolution); and transformation back to grid—point space. The details
of the equations involved in the various transformations are given in the next section.

3.1.11 Combination of terms

In order to describe the transformation to spectral space, for each equation we first group
together all undifferentiated explicit terms, all explicit terms with longitudinal derivatives, and

35



all explicit terms with meridional derivatives appearing in the Dyn operator. Thus, the vorticity
equation (3.95) is rewritten

C+f)"=V+

1 0 ) o
e |8~ (-] (3.131)

where the explicit forms of the vectors V, V,, and V,, are given in Appendix A [(A.1)-(A.3).]
The divergence equation (3.96) is

1 ) 0
n+l __ I AN R v/
ot = Q+a(1_u2) [aA(QAH(l “)au(Q“)] V*Dy,
—AtV*(RH'T'"™ ' + R(b" + ") TI™). (3.132)

The mean component of the temperature is not included in the next-to-last term since the
Laplacian of it is zero. The thermodynamic equation (3.98) is

0
()

TIn—I—l — T_ #
- 1)

T-oa=m o+ - uz)%(_n)—} — AtD" " (3.133)

The surface—pressure tendency (3.98) is

= ps— 2 (Ap")" 6m, (3.134)

"

The grouped explicit terms in (3.132)—(3.134) are all given in Appendix A [(A.4)-(A.11)].

3.1.12 Transformation to spectral space

Formally, Equations (3.131)-(3.134) are transformed to spectral space by performing the opera-
tions indicated in (3.135) to each term. We see that the equations basically contain three types
of terms, for example, in the vorticity equation the undifferentiated term V, the longitudinally
differentiated term V), and the meridionally differentiated term V. All terms in the original
equations were grouped into one of these terms on the Gaussian grid so that they could be
transformed at once.

Transformation of the undifferentiated term is obtained by straightforward application of
(3.118)-(3.120),

T
Z\_/m 1) Py (pg) wj, (3.135)

where V" (;) is the Fourier coefficient of V with wavenumber m at the Gaussian grid line
w;. The longitudinally differentiated term is handled by integration by parts, using the cyclic
boundary conditions,

a " av}\ —zm)\
{5( \_/A)} o SN, (3.136)
= im% / Ve ™A\, (3.137)

(3.138)
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so that the Fourier transform is performed first, then the differentiation is carried out in spectral
space. The transformation to spherical harmonic space then follows (3.141):

1 a }m i Pm uj)
—— m Vi (i r i (3.139)
(@), =S8 e
where V' (1) is the Fourier coefficient of V, with wavenumber m at the Gaussian grid line y;.
The latitudinally differentiated term is handled by integration by parts using zero boundary

conditions at the poles:

1 0 m 1 1 P
——— (=)W ¢ = [ s (L= ) - (V)P 3.140
{a(l—uz)( )3u( )}n /1 a(l—/ﬂ)( H )au(—“) n GH (3.140)

b dpPm

=— | ——5 V)" - p*)—dp 3.141
[ st mwra- @S

Defining the derivative of the associated Legendre polynomial by

dP™

HY' = (1-p")—" 142
m = - (3142)

(3.144) can be written
I PPN VN LR Hp ()
{a(l — 2 (1 )8N(V )}n ;(V) A= )" (3.143)

Similarly, the V2 operator in the divergence equation can be converted to spectral space by
sequential integration by parts and then application of the relationship

2 pm imr _ —n(n+1) imA
VIR (p)e™ = ———— P (n)e™, (3.144)
to each spherical harmonic function individually so that
n(n —|— 1) d
{V2QV}n Z n (1) wj, (3.145)

where D7 (1) is the Fourier coefficient of the original grid variable Dg.

3.1.13 Solution of semi-implicit equations

The prognostic equations can be converted to spectral form by summation over the Gaussian
grid using (3.135), (3.139), and (3.143). The resulting equation for absolute vorticity is

€+ )" =Vsy, (3.146)

where (¢ + f) denotes a spherical harmonic coefficient of (¢ + f)"*', and the form of VS™, as
a summation over the Gaussian grid, is given in Appendix A (A.12).
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The spectral form of the divergence equation (3.132) becomes

n(n +1)
)

0 = DS + At [RH'T," + R (V" + A7) 117, (3.147)

where 6™, T'™, and II" are spectral coefficients of 6"*!, 7'"** and II"*'. The Laplacian of
the total temperature in (3.132) is replaced by the equivalent Laplacian of the perturbation
temperature in (3.147). DS is given in Appendix A (A.13). The spectral thermodynamic
equation is

T™ = TS — AtD"§™, (3.148)
with TS;" defined in Appendix A (A.14), while the surface pressure equation is
7 At

7TT

I = PS)' — 67 (Ap”) (3.149)
where PS' is also given in Appendix A (A.15).

Equation (3.146) for vorticity is explicit and complete at this point. However, the remaining
equations (3.147)—(3.149) are coupled. They are solved by eliminating all variables except 4;":

1
A, 8" = DS™ + At% [RH™(TS)™ + R (b + A" (PS)™], (3.150)
where
1 1
A, =T+ At?% RH'D"+R(Y + 1) ((Ap’)T F)] : (3.151)

which is simply a set of K simultaneous equations for the coefficients with given wavenumbers
(m, n) at each level and is solved by inverting A,. In order to prevent the accumulation of round-
off error in the global mean divergence (which if exactly zero initially, should remain exactly
zero) (A,)” ' is set to the null matrix rather than the identity, and the formal application of
(3.150) then always guarantees 02 = 0. Once 6™ is known, T and II"* can be computed
from (3.148) and (3.149), respectively, and all prognostic variables are known at time n-+1 as
spherical harmonic coefficients. Note that the mean component T% is not necessarily zero since
the perturbations are taken with respect to a specified 7.

3.1.14 Horizontal diffusion

As mentioned earlier, the horizontal diffusion in (3.88) and (3.91) is computed implicitly via
time splitting after the transformations into spectral space and solution of the semi-implicit
equations. In the following, the ( and 0 equations have a similar form, so we write only the §
equation:

n

(T = (T" )" — (—1)" 28t K3 [V2(T*)7] . (3.153)

(7Y = (3710 = (—1) 288 K@) [ 9% (577 = (1) (5] (2/a%)] (3.152)
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The extra term is present in (3.152), (3.156) and (3.158) to prevent damping of uniform
rotations. The solutions are just

(6 = K2 (8) (6™1)7, (3.154)
()7 = K& (T) (1), (3.155)
K2 (§) = {1 + 2AtD, K® [(W) — %} }_ : (3.156)
K3 (T) = {1 + 2AtD, K®? (w) }1 : (3.157)
KW () = {1 +2AtD, KW !(%)2 _ %] }_ , (3.158)
KW (T) = {1 + 2AtD, KW <w>2}_ : (3.159)

K® (0) and K (0) are both set to 1 for n = 0. The quantity D, represents the “Courant
number limiter”, normally set to 1. However, D,, is modified to ensure that the CFL criterion
is not violated in selected upper levels of the model. If the maximum wind speed in any of
these upper levels is sufficiently large, then D, = 1000 in that level for all n > n., where
Ne = aAt/ max |V'|. This condition is applied whenever the wind speed is large enough that
n. < K, the truncation parameter in (3.115), and temporarily reduces the effective resolution of
the model in the affected levels. The number of levels at which this “Courant number limiter”
may be applied is user-selectable, but it is only used in the top level of the 26 level CAM2
control runs.

The diffusion of 7" is not complete at this stage. In order to make the partial correction
from 7 to p in (3.82) local, it is not included until grid—point values are available. This requires
that VII also be transformed from spectral to grid-point space. The values of the coefficients
K@ and K® for the standard T42 resolution are 2.5 x 10°m?sec™! and 1.0 x 10m*sec™,
respectively.

3.1.15 [Initial divergence damping

Occasionally, with poorly balanced initial conditions, the model exhibits numerical instability
during the beginning of an integration because of excessive noise in the solution. Therefore, an
optional divergence damping is included in the model to be applied over the first few days. The
damping has an initial e-folding time of At and linearly decreases to 0 over a specified number
of days, tp, usually set to be 2. The damping is computed implicitly via time splitting after the
horizontal diffusion.

1
_ L 1
r max At(tD t)/tp, 0 (3.160)
«\M 1 N
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3.1.16 Transformation from spectral to physical space

After the prognostic variables are completed at time n+ 1 in spectral space ((C + f) ) (o),

(T*)™, (II"*1)™ they are transformed to grid space. For a variable ¢, the transformation is
given by

m=—M

(A, p) = g: {Z Y™ P™ (1 } imA (3.162)

kg

The inner sum is done essentially as a vector product over n, and the outer is again performed
by an FFT subroutine. The term needed for the remainder of the diffusion terms, V*II, is
calculated from
M| n(n+1)\> ,
Vit = Y Y (7) ()™ P () | €™, (3.163)

a2
m=—M n:‘m‘

In addition, the derivatives of I are needed on the grid for the terms involving VII and V - VII,
U ol V oIl

V.Vll= —i—+ ———(1 — . 3.164
a(l — p?) OA N a(l— ,u2)( )au ( )
These required derivatives are given by
o &
5 = S oim | > PR (p) | €™, (3.165)
m=—M n=|m)|
and using (3.142),
A=i)g, = D | 2 TH ()| &, (3.166)

m=—M fn,:|m‘

which involve basically the same operations as (3.163). The other variables needed on the
grid are U and V. These can be computed directly from the absolute vorticity and divergence
coefficients using the relations

ctpr = M Dyn g (3.167)
op = —7(7’; 1)x;”, (3.168)

in which the only nonzero f* is f? = /+/.375, and
Loy (1-p) 0w

U= P (3.169)
_ 1oy  (1—p?)0x
V=it e o (3.170)
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Thus, the direct transformation is

U= - Z b S — s (G DR )|

n=[m|

_ELHO
2\/037 v

Vo= - Z Z[ PR+ st )| (3a72)

n(n+1)

(3.171)

n=[m|

The horizontal diffusion tendencies are also transformed back to grid space. The spectral
coefficients for the horizontal diffusion tendencies follow from (3.152) and (3.153):

Pr, (T = (=)™ K [V*(T)] ", (3.173)
Foy (C+ 1))y = (-1 K™ {V” C+ N = (D) C+ ) (2/a2)i} , (3.174)
Foy (077 = (-1) K% {92 (") — (-1)" 6" (2/?)'}, (3.175)

using ¢ = 1 or 2 as appropriate for the V2 or V* forms. These coefficients are transformed to
grid space following (3.114) for the 7" term and (3.171) and (3.172) for vorticity and divergence.
Thus, the vorticity and divergence diffusion tendencies are converted to equivalent U and V
diffusion tendencies.

3.1.17 Horizontal diffusion correction

After grid-point values are calculated, frictional heating rates are determined from the momen-
tum diffusion tendencies and are added to the temperature, and the partial correction of the V*
diffusion from 7 to p surfaces is applied to 7. The frictional heating rate is calculated from the
kinetic energy tendency produced by the momentum diffusion

Fp, = —u""'Fy, (u*)/c; —v" ' F,, (v*)/c5, (3.176)
where F,,,, and F,, are the momentum equivalent diffusion tendencies, determined from F;,

and Fj, just as U and V are determined from ¢ and §, and

s (2 1) o] a7
P

These heating rates are then combined with the correction,

oT*
Op

Tyt =Ty + (2AtFp,), + 24t <7rB ) KWV, (3.178)
k
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The vertical derivatives of T* (where the * notation is dropped for convenience) are defined by

8T T

( ap> = 5An [BH% (T, — Tl)} , (3.179)
oT 7
oT T

(WB ap) = San [BK% (Tx — TK,l)} . (3.181)

The corrections are added to the diffusion tendencies calculated earlier (3.173) to give the
total temperature tendency for diagnostic purposes:

. T*
Fr, (T*), = Fr, (T*)i + (2AtFp,), + 2AtBy, (w%—p) KOwA+!. (3.182)
k

3.1.18 Semi-Lagrangian Tracer Transport

The forecast equation for water vapor specific humidity and constituent mixing ratio in the n
system is from (3.36) excluding sources and sinks.

dg _ 0q Op 9q _

= aﬁv Vg +na o (3.183)
or
dg _ g dq
i 184
a at—f—VV-i—na =0 (3.184)

Equation (3.184) is more economical for the semi-Lagrangian vertical advection, as An does not
vary in the horizontal, while Ap does. Written in this form, the n advection equations look
exactly like the o equations.

The parameterizations are time-split in the moisture equation. The tendency sources have
already been added to the time level (n — 1). The semi-Lagrangian advection step is subdivided
into horizontal and vertical advection sub-steps, which, in an Eulerian form, would be written

¢ =q¢"P+2At(V -Vg)" (3.185)
and
og\"
= 2A } 1
¢t =q" + t( 8n> (3.186)

In the semi-Lagrangian form used here, the general form is

¢ =Ly ("), (3.187)
=1L, (). (3.188)

Equation (3.187) represents the horizontal interpolation of ¢"~! at the departure point calculated
assuming 7 = 0. Equation (3.188) represents the vertical interpolation of ¢* at the departure
point, assuming V' = 0.
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The horizontal departure points are found by first iterating for the mid-point of the trajectory,
using winds at time n, and a first guess as the location of the mid-point of the previous time
step

Mt =X — Atu™ (M, @%) Jacos gl (3.189)
Oht =04 — A" (N, ohr) /a, (3.190)

where subscript A denotes the arrival (Gaussian grid) point and subscript M the midpoint of
the trajectory. The velocity components at ()\’fw, gp’fvf) are determined by Lagrange cubic inter-
polation. For economic reasons, the equivalent Hermite cubic interpolant with cubic derivative
estimates is used at some places in this code. The equations will be presented later.

Once the iteration of (3.189) and (3.190) is complete, the departure point is given by

Ap = Aa — 2Atu™ (Apr, o) /acos OM, (3.191)
©p = Aa — 2A80" (A, oumr) /a, (3.192)

where the subscript D denotes the departure point.

The form given by (3.189)-(3.192) is inaccurate near the poles and thus is only used for
arrival points equatorward of 70° latitude. Poleward of 70° we transform to a local geodesic
coordinate for the calculation at each arrival point. The local geodesic coordinate is essentially
a rotated spherical coordinate system whose equator goes through the arrival point. Details
are provided in Williamson and Rasch [1989]. The transformed system is rotated about the
axis through ()\A -5 O) and ()\A + 3, 0), by an angle ¢4 so the equator goes through (A4, p4).
The longitude of the transformed system is chosen to be zero at the arrival point. If the local
geodesic system is denoted by (X', ¢'), with velocities (u', v'"), the two systems are related by

sing’ = singcosgps — cosdsindycos (Mg — A), (3.193)
sing = sing'cosgy + cosg’ sinsycos N, (3.194)
sin X' cos¢’ = —sin(Ag— \)cosg, (3.195)
v'cosd = wlcospcospy +singsindacos (Mg — N)]
—usin gsin (Ag — A), (3.196)
u' cos N —v'sin N'sing’ = wcos(Ag— A) +vsingsin(Ag — A) . (3.197)

The calculation of the departure point in the local geodesic system is identical to (3.189)-
(3.192) with all variables carrying a prime. The equations can be simplified by noting that

(Xas #l4) = (0,0) by design and v’ (XNy, ¢ls) = u(Aa, pa) and v' (X, ) = v(Aa,04). The
interpolations are always done in global spherical coordinates.
The interpolants are most easily defined on the interval 0 < # < 1. Define

0= (.’L'D - x,) / (x,qu — 331) y (3198)

where z is either A or ¢ and the departure point zp falls within the interval (z;, z;+1). Following
(23) of [Rasch and Williamson, 1990] with r; = 3 the Hermite cubic interpolant is given by

dp = (Gt [3 - 20] 6? — d1'_|_1 [h102 (1 — 0)]
+¢:[3-2(1-0)](1-0)"+d; [h6(1-06)] (3.199)
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where ¢; is the value at the grid point z;, d; is the derivative estimate given below, and h; =
Tit1 — i

Following (3.2.12) and (3.2.13) of Hildebrand [1956], the Lagrangian cubic polynomial inter-
polant used for the velocity interpolation, is given by

fo = Z 4 (zp) fit; (3.200)

j=-1
where

(xp =i 1) ... (Tp — Tiyj 1) (Tp — Tiyjy1) - (T — Tiyo)

(@igj = Tic1) - (Tigj — Tigj1) @i — Tigjar) - - (Tinj — Tiva)

where f can represent either u or v, or their counterparts in the geodesic coordinate system.

The derivative approximations used in (3.199) for ¢ are obtained by differentiating (3.200)
with respect to zp, replacing f by ¢ and evaluating the result at zp equal z; and z;,,. With
these derivative estimates, the Hermite cubic interpolant (3.199) is equivalent to the Lagrangian
(3.200). If we denote the four point stencil (x;_1,z;, it1, Ziv2) by (z1, %2, 3,x4,) the cubic
derivative estimates are

= :(:cl —(xﬁz)_(f)_(z)_(f)_ m)] @ (3.202)
e - z3) (22 . %) (@ . m)} 2 (3.203)
+ (71 —(3;23)_(::)_(2)_(;4)_ w} a3 (3.204)
L _(Ziil)_(?@};‘”’)_ m] 0 (3.205)

and

dy = [ (r3 — 22) (T3 — 24) } " (3.206)

(71 — m2)(21 — 23) (21 — T4)

— (z3 — 1) (23 — 74)
- :(331 — I9) (T2 — 23) (T2 — :1:4)] % (3.207)
1 1 1
N _(xl - 373) * (IL’Q - xg) B (333 — £E4):| 73 (3208)
_ (x5 — z1)(x3 — 22)
(@1 — 24) (22 — z4) (T3 — x4)] 9 (3.209)

The two dimensional (A, ¢) interpolant is obtained as a tensor product application of the
one-dimensional interpolants, with A interpolations done first. Assume the departure point falls
in the grid box (A\;, Ai11) and (¢4, p;11). Four X interpolations are performed to find ¢ values
at (Ap,©j—1), (Ap,¢j), (Ap,¥;+1), and (Ap, @j12). This is followed by one interpolation in ¢
using these four values to obtain the value at (Ap, ¢p). Cyclic continuity is used in longitude.
In latitude, the grid is extended to include a pole point (row) and one row across the pole. The
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pole row is set equal to the average of the row next to the pole for ¢ and to wavenumber 1
components for v and v. The row across the pole is filled with the values from the first row
below the pole shifted 7 in longitude for ¢ and minus the value shifted by 7 in longitude for u
and v.

Once the departure point is known, the constituent value of ¢* = q%‘l is obtained as indicated
in (3.187) by Hermite cubic interpolation (3.199), with cubic derivative estimates (3.200) and
(3.201) modified to satisfy the Sufficient Condition for Monotonicity with C° continuity (SCMO)
described below. Define A;q by

Ayg =Tt~ 4 (3.210)
Tit1 — T4
First, if A;q = 0 then
Then, if either
d;
0< <3 3.212
< Ag S (3.212)
or J
0< -4 <3 3.213
<5 o (3213)

is violated, d; or d;; is brought to the appropriate bound of the relationship. These conditions
ensure that the Hermite cubic interpolant is monotonic in the interval [z;, ;1]

The horizontal semi-Lagrangian sub-step (3.187) is followed by the vertical step (3.188). The
vertical velocity 7 is obtained from that diagnosed in the dynamical calculations (3.94) by

. . 8p) <pk:+1 - plc)
1= — —_—, 3.214
(77)1H_§ (77 an v / S ( )

with n, = A + Bg. Note, this is the only place that the model actually requires an explicit
specification of 7. The mid-point of the vertical trajectory is found by iteration

mit = na — A" (k) - (3.215)

Note, the arrival point 74 is a mid-level point where ¢ is carried, while the 7 used for the
interpolation to mid-points is at interfaces. We restrict n,, by

m < v < Nk, (3.216)

which is equivalent to assuming that ¢ is constant from the surface to the first model level and
above the top ¢ level. Once the mid-point is determined, the departure point is calculated from

np = Na — 200" (nm) , (3.217)
with the restriction
m < 1p < Nk- (3.218)

The appropriate values of 7 and ¢ are determined by interpolation (3.199), with the derivative
estimates given by (3.200) and (3.201) for s = 2 to K — 1. At the top and bottom we assume
a zero derivative (which is consistent with (3.216) and (3.218)), d; = 0 for the interval k = 1,
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and d;11 = 0 for the interval £ = K — 1. The estimate at the interior end of the first and last
grid intervals is determined from an uncentered cubic approximation; that is d;; at the k =1
interval is equal to d; from the k = 2 interval, and d; at the £ = K — 1 interval is equal to d; 1
at the £ = K — 2 interval. The monotonic conditions (3.212) to (3.213) are applied to the g
derivative estimates.

3.1.19 Mass fixers

The fixers which ensure conservation are applied to the dry atmospheric mass, water vapor
specific humidity and constituent mixing ratios. For water vapor and atmospheric mass the
desired discrete relations, following Williamson and Olson [1994] are

/7r+—/q+Ap+ = P, (3.219)

2 3
/ gtApt = / qg Ap~, (3.220)
3 3

where P is the dry mass of the atmosphere. From the definition of the vertical coordinate,
Ap = ppAA + 7AB, (3.221)

and the integral [ denotes the normal Gaussian quadrature while [ includes a vertical sum

2 3
followed by Gaussian quadrature. The actual fixers are chosen to have the form
Tt (N ) = Mzat (X ), (3.222)

preserving the horizontal gradient of I, which was calculated earlier during the inverse spectral
transform, and

g (N o,n) =t +angtlgt —q7 . (3.223)

In (3.222) and (3.223) the ( ) denotes the provisional value before adjustment. The form (3.223)
forces the arbitrary corrections to be small when the mixing ratio is small and when the change
made to the mixing ratio by the advection is small. In addition, the 7 factor is included to make
the changes approximately proportional to mass per unit volume [Rasch et al., 1995]. Satisfying
(3.219) and (3.220) gives

f g Ap~ — f GTpoAA — Mf(j*‘fﬁAB
3 3 3

0= 3 3 : 3.224
[ natlqt —a | pAA+ M [ngt|gt —q |7t AB ( )
3 3

M = P+/q_Ap_ //7?r (3.225)
3 2

Note that water vapor and dry mass are corrected simultaneously. Additional advected con-
stituents are treated as mixing ratios normalized by the mass of dry air. This choice was made

and
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so that as the water vapor of a parcel changed, the constituent mixing ratios would not change.
Thus the fixers which ensure conservation involve the dry mass of the atmosphere rather than
the moist mass as in the case of the specific humidity above. Let x denote the mixing ratio of
constituents, then the desired relationship for conservation is

/X+(1 —q¢")Apt = /X(1 —q )Ap- (3.226)

3 3
Following Rasch et al. [1995] the change made by the fixer is the same form as (3.223)
X" em) =X +amxTIXT - x| (3.227)

Substituting (3.227) into (3.226) and using (3.222) through (3.225) gives
Sx A =q)Ap™ = [ XA =¢)Ap" + o [ Xni*lq" —q7|Ap
3 A,B A,B

_s : _ __ (3.228)
[ oIt —x- 11— ¢t )Ap—a [ nx*t[xt — x"Indtlgt —q-|Ap
AB A,B

Qy

where the following shorthand notation is adopted

/( )Ap=/( )poAA+M/( )psAB (3.229)

A,B 3

3.1.20 Reduced grid

The Eulerian core and semi-Lagrangian tracer transport can be run on reduced grids. The
term reduced grid generally refers to a grid based on latitude and longitude circles in which the
longitudinal grid increment increases at latitudes approaching the poles so that the longitudinal
distance between grid points is reasonably constant. Details are provided in [Williamson and
Rosinski, 2000]. This option provides a saving of computer time of up to 25%.

3.2 Semi-Lagrangian Dynamical Core

3.2.1 Introduction

The two-time-level semi-implicit semi-Lagrangian spectral transform dynamical core in CAM2
evolved from the three-time-level CCM2 semi-Lagrangian version detailed in Williamson and
Olson [1994] hereafter referred to as W&094. As a first approximation, to convert from a three-
time-level scheme to a two-time-level scheme, the time level index n-1 becomes n, the time level
index n becomes n—i—%, and 2At becomes At. Terms needed at n—i—% are extrapolated in time
using time n and n-1 terms, except the Coriolis term which is implicit as the average of time n
and n+1. This leads to a more complex semi-implicit equation to solve. Additional changes have
been made in the scheme to incorporate advances in semi-Lagrangian methods developed since
W&O94. In the following, reference is made to changes from the scheme developed in W&094.
The reader is referred to that paper for additional details of the derivation of basic aspects of
the semi-Lagrangian approximations. Only the details of the two-time-level approximations are
provided here.
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3.2.2 Vertical coordinate and hydrostatic equation

The semi-Lagrangian dynamical core adopts the same hybrid vertical coordinate (n) as the
Eulerian core defined by

p(n,ps) = A(n)po + B(n)ps , (3.230)

where p is pressure, p, is surface pressure, and p, is a specified constant reference pressure. The
coeflicients A and B specify the actual coordinate used. As mentioned by Simmons and Burridge
[1981] and implemented by Simmons and Striifing [1981] and Simmons and Striifing [1983], the
coefficients A and B are defined only at the discrete model levels. This has implications in the
continuity equation development which follows.

In the n system the hydrostatic equation is approximated in a general way by

K
O =0, + R Hy(p)Tu (3.231)

=k

where k is the vertical grid index running from 1 at the top of the model to K at the first model
level above the surface, ®, is the geopotential at level k, @, is the surface geopotential, 7T}, is the
virtual temperature, and R is the gas constant. The matrix H, referred to as the hydrostatic
matrix, represents the discrete approximation to the hydrostatic integral and is left unspecified
for now. It depends on pressure, which varies from horizontal point to point.

3.2.3 Semi-implicit reference state

The semi-implicit equations are linearized about a reference state with constant 7" and p}. We
choose
T" = 350K, p’=10°Pa (3.232)

3.2.4 Perturbation surface pressure prognostic variable

To ameliorate the mountain resonance problem, Ritchie and Tanguay [1996] introduce a pertur-
bation In p, surface pressure prognostic variable

Inp, = Inps—Inp: (3.233)
0]
Inpt = - 3.234

The perturbation surface pressure, Inp’, is never actually used as a grid point variable in the
CAM2 code. It is only used for the semi-implicit development and solution. The total In p;
is reclaimed in spectral space from the spectral coefficients of &, immediately after the semi-
implicit equations are solved, and transformed back to spectral space along with its derivatives.
This is in part because V*Inp, is needed for the horizontal diffusion correction to pressure
surfaces. However the semi-Lagrangian CAM2 default is to run with no horizontal diffusion.
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3.2.5 Extrapolated variables

Variables needed at time (n + 1) are obtained by extrapolation
13 _
(=S =50 (3.235)

3.2.6 Interpolants

Lagrangian polynomial quasi-cubic interpolation is used in the prognostic equations for the
dynamical core. Monotonic Hermite quasi-cubic interpolation is used for tracers. Details are
provided in the Eulerian Dynamical Core description. The trajectory calculation uses tri-linear
interpolation of the wind field.

3.2.7 Continuity Equation

The discrete semi-Lagrangian, semi-implicit continuity equation is obtained from (16) of W& 094
modified to be spatially uncentered by a fraction ¢, and to predict In p

n+1 n CDS
AB[ {(lnp{sl)A - [(lnpsl) + RTT:|D2} /At:

{ [(1 LA (pisﬁg—i)l] :H + [(1 _oA (iﬁg_z)l] D } (3.236)

1
2
~(an),, R 0V o
1 1 . n+1 1 . n 1 . n—l—%
-{3]0+o (ﬁ‘WL = (E;W>DJ ‘(p—;wz)m }
where
AC )= ( )z+%_( )l—% (3.237)
and
nt3 1 n+j n+i
( =50+ Ja*+A=9( )p, (3.238)

A( ), denotes a vertical difference, [ denotes the vertical level, A denotes the arrival point, D,
the departure point from horizontal (two-dimensional) advection, and M, the midpoint of that
trajectory.

The surface pressure forecast equation is obtained by summing over all levels and is related
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o (18) of W&094 but is spatially uncentered and uses In p/,

(Inp,)" yrHl ZABl [lnpsl ;IS”’“] — —Atz [ (1—¢) (1 810) ]

P, on
_Atz ( (51Apl>n+§ + Atz RT )"+2 (3.239)
—Atipis{é [ara @ +a-aen,] -t fay

The corresponding ( pisﬁg—g) equation for the semi-implicit development follows and is related

0 (19) of W&094, again spatially uncentered and using (19)In p’.

oo ) Efmstnr B3] )
HonGa,

2§k: L5 n+%+2z AB, (v, - v<1>)"+2
“\p 12D RT"

M>

23 L [ar o s a-a] - e

This is not the actual equation used to determine ( piﬁg—;’) in the code. The equation actually
used in the code to calculate (p%ﬁg—f}) involves only the divergence at time (n+1) with (In p,)"*"

eliminated.
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k+3
2 [& K] @
213 - By Y| am [ wp+ ]
LI=1 =1/ D>
. - )
1 .0p
5w e aa (52)]
lzzl: k+2zz:1: ps o) p,
[k K 7 1 n—}-%
2> - B (p—élApl)M (3.241)
| =1 =1 $ 2
. P
AB n-l—%
2|3 - B Y| 22w, ey
Li=1 =1
[k K 7 1 1 L
2|3 - By, ];{5[<1+e> )7+ (=) (@), | —(&)"M?}Ap;"
Li=1 =14 "

The combination [(ln ps)" + 2 +18L(V.V <I>s)"+% is treated as a unit, and follows from
Do
(3.238).

3.2.8 Thermodynamic Equation

The thermodynamic equation is obtained from (25) of W&(094 modified to be spatially uncen-
tered and to use Inp.. In addition Hortal’s modification [Temperton et al., 2001] is included, in

which
d or\ @
— | — [ psB— 5
dt [ (p ap)mf RT"

is subtracted from both sides of the temperature equation. This is akin to horizontal diffusion

which includes the first order term converting horizontal derivatives from eta to pressure co-

o,
RT’I‘ 7

invariant with time and can commute with the differential operators.

(3.242)

ordinates, with (In ps) replaced by — and (psB%) ; taken as a global average so it is
re
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(3.243)

Note that Q™ represents the heating calculated to advance from time n to time n + 1 and is

valid over the interval.
The calculation of (ps B‘Z—z)

follows that of the ECMWF (Research Manual 3, ECMWF

ref

Forecast Model, Adiabatic Part, ECMWF Research Department, 2nd edition, 1/88, pp 2.25-
2.26) Consider a constant lapse rate atmosphere

T
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oT
B
»Bo

orT
sB 0
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|
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ap ref
(pk)ref
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(ps)ref

ref
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ahly N
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(ps)ref R7
B — (T )rer for (Ti)rer > T
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3.2.9 Momentum equations

The momentum equations follow from (3) of W&094 modified to be spatially uncentered, to use
Inp!, and with the Coriolis term implicit following Coté and Staniforth [1988] and Temperton
[1997]. The semi-implicit, semi-Lagrangian momentum equation at level k£ (but with the level
subscript &k suppressed) is

Vit -V, 1
At 2
1
2
B nta
+(1—¢€) |V(®s+ RH,-T,) + RTvEpSV]nps] }
1
—5{ (1+¢€)V[RH} - T + RT" lnp;]Tl (3.256)
— (14 €¢)V[®, + RH}-T + RT" Inp,]"**
+(1—-€¢)V[® +RH}-T+ RT"Inp,|”
- (1-¢VI[®+RH,-T+ RTTlnps]?_% }

The gradient of the geopotential is more complex than in the ¢ system because the hydro-
static matrix H depends on the local pressure:

V(H T,) = Hy-[(1+6,q) VT + ,TVq| + T, - VH, (3.257)

where ¢, is (R,/R — 1) and R, is the gas constant for water vapor. The gradient of T is
calculated from the spectral representation and that of ¢ from a discrete cubic approximation
that is consistent with the interpolation used in the semi-Lagrangian water vapor advection. In
general, the elements of H are functions of pressure at adjacent discrete model levels

Hyy = fru(pis1/2, 01, Pi-1)2) (3.258)
The gradient is then a function of pressure and the pressure gradient
VHkl = gkl(pl+1/2’ pl’ pl—1/2’ vpl+1/2’ Vpl’ Vpl—1/2) (3259)

The pressure gradient is available from (3.230) and the surface pressure gradient calculated from
the spectral representation

Vp, = B;Vps = Bjp;V In p (3.260)
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3.2.10 Development of semi-implicit system equations

The momentum equation can be written as

W :_%{(He) (1% x V]Z+1+(1—e) [k x V]Z}

1 n
—5{ (1+¢)V[RH} -T + RT" ]np;];rl } + RHSy (3.261)

where RH Sy contains known terms at times (n + 1) and (n).
By combining terms, 3.261 can be written in general as

n+1

UL, +V 5, = UL, V5, U, AV, (3.262)

where 1 and j denote the spherical unit vectors in the longitudinal and latitudinal directions,
respectively, at the points indicated by the subscripts, and U and V denote the appropriate
combinations of terms in 3.261. Note that Z/{:Jrl is distinct from the U,. Following Bates et al.
[1990], equations for the individual components are obtained by relating the unit vectors at the
departure points (i,,j,) to those at the arrival points (i,.],):

i, =a'i, + 8], (3.263)
bpr=ai, +8],, (3.264)
in which the vertical components (k) are ignored. The dependence of o’s and s on the latitudes
and longitudes of the arrival and departure points is given in the Appendix of Bates et al. [1990].

W&094 followed Bates et al. [1990] which ignored rotating the vector to remain parallel to
the earth’s surface during translation. We include that factor by keeping the length of the vector

written in terms of (5 A,j’ A) the same as the length of the vector written in terms of ('Z D,3 D).
Thus, (10) of W&094 becomes

U™ =U, + o U, + 7V,
Vi =V, 985U, + 182V, (3.265)
where )
Uz + V2 :
V= 2 2 (3.266)
Uyt +V,a%)" + (U8 +V,6Y)

After the momentum equation is written in a common set of unit vectors

1 N n+1 1 n
v (%) At [k x V]A + ( ‘2”) AtV [RHG T+ RT"np "' =Ry, (3.267)

Drop the ( )%*! from the notation, define

a=(1+¢€) AtQ (3.268)
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and transform to vorticity and divergence

1 {87%: ~ 9 (R Cosgo)] (3.269)

¢+ asinpd + gvcosgp =
a o\ Op

@ cos ¢

1 n
§—asingC + Sucosp + ( ;6) AtV? [RH} - T + RT" lnp)|""!
a

1 OR;, 0
= vy — (R 3.270
a CoS ¢ { oA + 0y (R cos @)} ( )
Note that
1
ucosp = a@a)\ (V72%) — COZQD% (V%) (3.271)
10 0
veosp = —ov (V720 + cocslw% (V~26) (3.272)
Then the vorticity and divergence equations become
. 0 v-2 acosy O 9
C+as1n(p5+—2a—)\( ¢) + 20, (V~2%5)
1 OR 0
a cos [ ox 0Oy (R, cos 90)} £ ( )
1 n
§ — asingC + > > a9 (v25) - T2 9 (V2¢) + ( i 6) AtV? [RH} - T + RT" Inp/|""!
) a? Oy
1 R 0
Py [ R + o (’vaosgo)] M (3.274)

Transform to spectral space as described in the description of the Eulerian spectral transform
dynamical core. Note, from (4.5b) and (4.6) on page 177 of Machenhauer [1979]

pP = DL P, + DR, (3.275)
1
m n? —m?\?

and from (4.5a) on page 177 of Machenhauer [1979]

8 m m m m
(1—12) R R (n+1) D"P™, (3.277)

Then the equations for the spectral coefficients at time n + 1 at each vertical level are

) 1
¢m (1 . L‘)‘)) + 6™ (#1) mem (”: ) D™ = L™ (3.278)

n(n+1
mmao n n+1
m o __rm Dm m D™ D)
6n <1 n(n+1)> n—|—1a (n+1) n+l 101( n ) n (3 79)
1 1 m
—< ‘2”) At”("ij) [RH}, - T + RT"Inp/)'] = M
a
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m 1 At
Inp,™ = Ps;%—( +6>p—T(Ap’")T§? (3.280)
1
" = T_s;n_< +6> AtD" 5" (3.281)

The underbar denotes a vector over vertical levels. Rewrite the vorticity and divergence equa-
tions in terms of vectors over vertical levels.

mao n n+1
mli]——— |} =¢m — | =D™ (™ D™ 282
i (1- ) - e () - P e (250 o (3.282)
- <1—2H) Atn(na: 2 [RH'T + RT"Inp,;'| = DSV

1mao n n+1
Qn ( n (n + 1)) + én—kla (n + 1) n+1 + én—la ( n ) n V_Sn (3 83)

Define h;' by

ghy' = RH'T" + RI" Inp." (3.284)
and
mao
m=1-——-: 3.285
A Dt D) (3.285)
BT =a (n - 1) Dr, (3.286)
m 1
B =a (” i ) pr (3.287)
n
Then the vorticity and divergence equations are
AV + B O + BTG, = VS (3-288)
m Sm m ~m —m m 1 t€ n (n + 1) m

Note that these equations are uncoupled in the vertical, i.e. each vertical level involves variables
at that level only. The equation for h;' however couples all levels.

m 1 + € T T T (M)T m T T m
gh™ = — 5 At |RH"D" + RT o o'+ RH"TS, + RT"PS;, (3.290)
Define C" and HS;' so that
1
gh™ = — ( ‘2“) AtC' 8™ + HS™ (3.291)

Let gD, denote the eigenvalues of C" with corresponding eigenvectors ®, and ® is the matrix
with columns @,
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®=(9,9,...2,) (3.292)

and gD the diagonal matrix of corresponding eigenvalues

D; 0--- 0
0 Dy--- 0
gD = g . .. . (3.293)
0 0---Dy
C'® = ®gD (3.294)
& 'C'® = gD (3.295)
Then transform
M=ai¢m | VS =@ vsT (3.296)
§"=% g™ | DS =& 'DS" (3.297)
B =& '™ | HS =& 'HS" (3.298)
A"+ B + By = VS, (3.299)
mEm m=m _m ~m 1+6 (n—l—l) ~m -~ m
A, —BYC BT =G~ ( 5 )At > gh, = DS, (3.300)
gm l+e 1 1cm g
ghy, + ( —— | At@7'CT®@74T = HS, (3.301)

~ 1+4+¢€ = 1~
By + ( 5 ) AtDS, = —-HS,  (3.302)
Since D is diagonal, all equations are now uncoupled in the vertical.

For each vertical mode, i.e. element of (7)™, and for each Fourier wavenumber m we have
a system of equations in n to solve. In following we drop the Fourier index m and the modal
element index ( ), from the notation.

AnCo + Bt nbpi1 + B nbps = VS, (3.303)
_ - - 1 1) - —
AS, — Bl B ol — ( ‘2“) Atn(n;; )gh, — D5, (3.304)
- 1 . 1~
hn+< ;L€> AtDS, = HS, (3.305)

The modal index ( ), was included in the above equation on D only as a reminder, but will also
be dropped in the following.
Substitute ¢ and & into the & equation.
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1+¢)? 1 .
Au+ ( ‘2”) a0 I g 4 Bt A B+ B AT B,

+ (B At iB 1) dnse + (B A B 1) dus (3.306)
— 1 1) — — —
_ DS, + (%) A D s 4 B AL VS + B VS,

a?

which is just two tri-diagonal systems of equations, one for the even and one for the odd n’s,
and m<n<N
At the end of the system, the boundary conditions are

n=m, B ,=B=0 (3.307)
n=m+1, B n1=B =B,y 1=0

the &,_» term is not present, and from the underlying truncation
Of1 = 0Ny =0 (3.308)

For each m and ¢ we have the general systems of equations

( N+1
n=m,m-+2,..., or
% * < N +2
—Ap0pio+ Bpo, —Cp =0, 2 = D, , 3 N+1 (3.309)
n=m+1m+3,.., or
{ N +2
Cn=Cpny1 = 0 (3.310)
5N+1 - 5N+2 - O (3311)
Assume solutions of the form 3 .
On = Enlpio+ Fp (3.312)
then
Am
E, = — 3.313
5 (3313)
D,
E, = ———— | = 2, 4, ..., 3.315
B _CE_, n=m+2,m+ Noig ( )
N
D, +C,F,_
F, = Sntonlnz o mad or (3.316)
Bn - CnEn—2 N-—1
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oy =Fy or dy_1=Fy_,
( m
n=N-2N-4 .., or
X o m+1
6n—En6n+2+Fn, \ m+1
n=N-3,N-5,.., or
L m

Divergence in physical space is obtained from the vertical mode coefficients by

o = 5,

The remaining variables are obtained in physical space by

e (1—

ma m
n(n—i—l)) = L=

(1
(5

=
Inp,™ = PSP —

3.2.11 Trajectory Calculation

n m
1 (ﬁ) Dy —

1
5o (" i ) pr

n

) AtD"4!

) Ap')' o

(3.317)

(3.318)

(3.319)

(3.320)
(3.321)

(3.322)

The trajectory calculation follows Hortal [1999] Let R denote the position vector of the parcel,

dR
dt
which can be approximated in general by
R}, =R} -

=V

AtV”+2

Hortal’s method is based on a Taylor’s series expansion

d
Ry = R} + At ( d?)

or substituting for dR/dt

L AP (RN
2 iz /

At® (dV"
2 \dt ),

R = R} + AtV +
Approximate
av\" Vi- Vi
a ), At
giving
ntl 1
Vi i=_[(2v"

for the trajectory equation.

99

(3.323)

(3.324)

(3.325)

(3.326)

(3.327)

(3.328)



3.2.12 Energy Fixer

Following notation in section 3.1.19, the total energy integrals are

1 1
/ - [c,,T+ + & + (u+2 + v+2)] Apt =E (3.329)
g 2
3
1 1
B! [CPT b4t (s H)] Ap 48 (3.330)
g 2
3

S = / [(FSNT — FLNT) — (FSNS — FLNS — SHFLX — pm,0L,PRECT) =] At (3.331)
2

where S is the net source of energy from the parameterizations. F'SNT is the net downward
solar flux at the model top, FFLNT is the net upward longwave flux at the model top, FSNS
is the net downward solar flux at the surface, FLNS is the net upward longwave flux at the
surface, SH FLX is the surface sensible heat flux, and PREC'T is the total precipitation during
the time step. From equation (3.222)

7t (\ ) = M7t (), p) (3.332)

and from (3.221)
Ap = pyAA + TAB (3.333)

The energy fixer is chosen to have the form

TH(\@,n) = TT+pITH—T7| (3.334)
ut (N ) = a4t (3.335)
vt (N = oF (3.336)

Then

9B — [ [T+ @, + 4 (0" + 07 )| jAd - M [ 7" +0,+ 1 (" + %) | #+AB
= 3

[ e)|T+ = T=| peAA+ M [ ¢,|T+ — T-|#+AB
3 3
(3.337)

3.3 Finite Volume Dynamical Core

3.3.1 Overview

This document describes the Finite-Volume (FV) dynamical core that was initially developed
and used at the NASA Data Assimilation Office (DAO) for data assimilation, numerical weather
predictions, and climate simulations. The finite-volume discretization is local and entirely
in physical space. The horizontal discretization is based on a conservative “fluz-form semi-
Lagrangian” scheme described by Lin and Rood [1996] (hereafter LR96) and Lin and Rood
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[1997] (hereafter LR97). The vertical discretization can be best described as Lagrangian with
a conservative re-mapping, which essentially makes it quasi-Lagrangian. The quasi-Lagrangian
aspect of the vertical coordinate is transparent to model users or physical parameterization de-
velopers, and it functions exactly like the n — coordinate (a hybrid o — p coordinate) used by
other dynamical cores within CAM.

In the current implementation for use in CAM, the FV dynamics and physics are “time
split” in the sense that all prognostic variables are updated sequentially by the “dynamics”
and then the “physics”. The time integration within the FV dynamics is fully explicit, with
sub-cycling within the 2D Lagrangian dynamics to stabilize the fastest wave (see section 3.3.4).
The transport for tracers, however, can take a much larger time step (e.g., 30 minutes as for the
physics).

3.3.2 The governing equations for the hydrostatic atmosphere

For reference purposes, we present the continuous differential equations for the hydrostatic 3D
atmospheric flow on the sphere for a general vertical coordinate ¢ (e.g., Kasahara [1974]). Using
standard notations, the hydrostatic balance equation is given as follows:

10p

- +g=0, 3.338

59, 9= (3.338)
where p is the density of the air, p the pressure, and g the gravitational constant. Introducing
the “pseudo-density” m g’& (i.e., the vertical pressure gradient in the general coordinate), from

the hydrostatic balance equation the pseudo-density and the true density are related as follows:

0P
ac p7
where & = gz is the geopotential. Note that 7 reduces to the “true density” if ( = —gz, and

the “surface pressure” P, if ( =0 (0 = P%). The conservation of total air mass using 7 as the
prognostic variable can be written as

(3.339)

m™ = —

9 v (V') =0, (3.340)
ot

where 7 = (u,v, dt) Similarly, the mass conservation law for tracer species (or water vapor)
can be written as

gt (1q) +V - (77rq) - (3.341)

where ¢ is the mass mixing ratio (or specific humidity) of the tracers (or water vapor).
Choosing the (virtual) potential temperature © as the thermodynamic variable, the first law
of thermodynamics is written as

g 7€)+ V- (Vo) =o. (3.342)

Letting (A, #) denote the (longitude, latitude) coordinate, the momentum equations can be
written in the “vector-invariant form” as follows:
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9 1 [d 10 d¢ du
" =Y dosd [a/\ (Rt ®—vD)+ 5w } T @ (3:343)
0 8 1 8 dgav

where A is the radius of the earth, v is the coefficient for the optional divergence damping, D
is the horizontal divergence

1 0 0
~ Acosb [8 (w) + 00 20" 6080)]
= (u® +v?)
2 7

and €2, the vertical component of the absolute vorticity, is defined as follows:
1 0 0

— — — 0
Acosl [8/\ o <08 )}

where w is the angular velocity of the earth. Note that the last term in (3.343) and (3.344)
vanishes if the vertical coordinate ( is a conservative quantity (e.g., entropy under adiabatic
conditions [Hsu and Arakawa, 1990] or an imaginary conservative tracer), and the 3D divergence
operator becomes 2D along constant ¢ surfaces. The discretization of the 2D horizontal transport
process is described in section 3.3.3. The complete dynamical system using the Lagrangian
control-volume vertical discretization is described in section 3.3.4. A mass, momentum, and
total energy conservative mapping algorithm is described in section 3.3.5.

QO = 2w sinf +

3.3.3 Horizontal discretization of the transport process on the sphere

Since the vertical transport term would vanish after the introduction of the vertical Lagrangian
control-volume discretization (see section 3.3.4), we shall present here only the 2D (horizontal)
forms of the FFSL transport algorithm for the transport of density (3.340) and mixing ratio-like
quantities (3.341) on the sphere. The governing equation for the pseudo-density (3.340) becomes

0 1 0 0
a’ﬂ' + m |:a)\ (U/]T) + %(’Uﬂ' 6080):| 0. (3345)

The finite-volume (integral) representation of the continuous = field is defined as follows:

i 1 _ 2
7(t) = ARG A eosd //W(t, A, 0)A*cost dfd . (3.346)

Given the ezact 2D wind field V(t; A, 0) = (U,V) the 2D integral representation of the conser-
vation law for 7 can be obtained by integrating (3.345) in time and in space

" 1 t+At v R
Al o £A0V - Hdl| dt. 34
ToeT A2A9A/\cosﬁ/t [% T,V - (3:347)
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The above 2D transport equation is still ezact for the finite-volume under consideration. To
carry out the contour integral, certain approximations must be made. LR96 essentially decom-
posed the flux integral using two orthogonal 1D flux-form transport operators. Introducing the
following difference operator

Ax Azx

5zq = q(ﬂ? + 7) - Q(‘T - 7):

and assuming (u*,v*) is the time-averaged (from time ¢ to time ¢ + At) 7 on the C-grid (e.g.,
Fig. 1in LR96), the 1-D finite-volume flux-form transport operator F' in the A-direction is

_ 1 t+AL At
F(U ,At, ’ﬂ') = —m 5)\ |:/; U dt:| = —m 5)\ [X(U ,At, ’ﬂ')] y (3348)

where x , the time-accumulated (from ¢ to {+At) mass flux across the cell wall, is defined as
follows,

t+At
x(u*, Aty ) = E/ mU dt = u*n*(u*, At,7), (3.349)
t
and
1 t+ At
T (u*, At; ) & A_t/t mdt (3.350)

can be interpreted as a time mean (from time ¢ to time ¢ + At) pseudo-density value of all
material that passed through the cell edge from the upwind direction.

Note that the above time integration is to be carried out along the backward-in-time trajec-
tory of the cell edge position from ¢ = ¢+ At (the arrival point; (e.g., point B in Fig. 3 of LR96)
back to time ¢ (the departure point; e.g., point B’ in Fig. 3 of LR96). The very essence of the 1D
finite-volume algorithm is to construct, based on the given initial cell-mean values of 7, an ap-
proximated subgrid distribution of the true 7 field, to enable an analytic integration of (3.350).
Assuming there is no error in obtaining the time-mean wind (u*), the only error produced by the
1D transport scheme would be solely due to the approximation to the continuous distribution
of m within the subgrid under consideration. From this perspective, it can be said that the 1D
finite-volume transport algorithm combines the time-space discretization in the approximation
of the time-mean cell-edge values 7*. The physically correct way of approximating the integral
(3.350) must be “upwind”, in the sense that it is integrated along the backward trajectory of
the cell edges. For example, a center difference approximation to (3.350) would be physically
incorrect, and consequently numerically unstable unless artificial numerical diffusion is added.

Central to the accuracy and computational efficiency of the finite-volume algorithms is the
degrees of freedom that describe the subgrid distribution. The first order upwind scheme, for
example, has zero degrees of freedom within the volume as it is assumed that the subgrid distri-
bution is piecewise constant having the same value as the given volume-mean. The second order
finite-volume scheme (e.g., Lin et al. [1994]) assumes a piece-wise linear subgrid distribution,
which allows one degree of freedom for the specification of the “slope” of the linear distribution
to improve the accuracy of integrating (3.350). The Piecewise Parabolic Method (PPM, Colella
and Woodward [1984]) has two degrees of freedom in the construction of the second order poly-
nomial within the volume, and as a result, the accuracy is significantly enhanced. The PPM
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appears to strike a good balance between computational efficiency and accuracy. Therefore, the
PPM is the basic 1D scheme we chose. (An extension of the standard PPM by S.-J. Lin has
also been documented in Machenhauer [1998]). Note that the subgrid PPM distributions are
compact, and do not extend beyond the volume under consideration. The accuracy is therefore
significantly better than the order of the chosen polynomials implies. While the PPM scheme
possesses all the desirable attributes (mass conserving, monotonicity preserving, and high-order
accuracy) in 1D, it is important that a solution be found to avoid the directional splitting in
the multi-dimensional problem of modeling the dynamics and transport processes of the Earth’s
atmosphere.

The first step for reducing the splitting error is to apply the two orthogonal 1D flux-form
operators in a directionally symmetric way. After symmetry is achieved, the “inner operators”
are then replaced with corresponding advective-form operators. A consistent advective-form
operator in the A—direction can be derived from its flux-form counterpart (F') as follows:

fw*, At,7) = F(u",At,7) + pF(u*, At, 7 = 1) = F(u", At,7) + %C’&\ef, (3.351)
At dyu*
A A
Caer = AANcos’ (3.352)

where C7, s 1s a dimensionless number indicating the degree of the flow deformation in the A-
direction. The above derivation of f is slightly different from LR96’s approach, which adopted
the traditional 1D advective-form semi-Lagrangian scheme. The advantage of using (3.351) is
that computation of winds at cell centers (Eq. 2.25 in LR96) are avoided.

Analogously, the 1D flux-form transport operator G in the latitudinal (#) direction is derived
as follows:

1 At At
Gv*, At,7) = TN g [/t 7wV cost dt} =~ Afeosd dg [v cosO ], (3.353)
and likewise the advective-form operator,
g(v*, At, ) = G(v*, At, ) + %Cgef, (3.354)
where
Ches = At d [vicosh] (3.355)

AABcost

To complete the construction of the 2D algorithm on the sphere, we introduce the following
short hand notations:

() =0"+ %g [v*, At, ()], (3.356)

1, ., "
O*= 0"+ 5w, At ("] (3.357)
The 2D transport algorithm (cf, Eq. 2.24 in LR96) can then be written as

T =7+ F [uf, AL 7] + G v, ALY (3.358)
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Using explicitly the mass fluxes (x,Y), (3.358) is rewritten as

At 1 1
" ™7 Acosh {A)\é’\ De(u”, At 7] + AG(SH [cosOY (v, At; )] } ; (3.359)

where Y, the mass flux in the meridional direction, is defined in a similar fashion as x (3.349).
It can be verified that in the special case of constant density flow (7 = constant) the above
equation degenerates to the finite-difference representation of the incompressibility condition of
the “time mean” wind field (u*,v*), i.e.,

1 1
A—)\(S)‘u* + A—Q(sa (v*cost) = 0. (3.360)
The fulfillment of the above incompressibility condition for constant density flows is crucial
to the accuracy of the 2D flux-form formulation. For transport of volume mean mixing ratio-like
quantities (¢) the mass fluxes (x,Y") as defined previously should be used as follows

1 ~
7 = = 70"+ F(x, A, @) + G(Y, At, )] . (3.361)
ﬂ-n
Note that the above form of the tracer transport equation consistently degenerates to (3.358)
if =1 (i.e., the tracer density equals to the backgroud air density), which is another important
condition for a flux-form transport algorithm to be able to avoid generation of noise (e.g., creation
of artificial gradients) and to maintain mass conservation.

3.3.4 A wertically Lagrangian and horizontally FEulerian control-
volume discretization of the hydrodynamics

The very idea of using Lagrangian vertical coordinate for formulating governing equations for
the atmosphere is not entirely new. Starr [1945]) is likely the first to have formulated, in the
continuous differential form, the governing equations using a Lagrangian coordinate. Starr did
not make use of the discrete Lagrangian control-volume concept for discretization nor did he
present a solution to the problem of computing the pressure gradient forces. In the finite-volume
discretization to be described here, the Lagrangian surfaces are treated as the bounding material
surfaces of the Lagrangian control-volumes within which the finite-volume algorithms developed
in LR96, LR97, and L97 will be directly applied.

To use a vertical Lagrangian coordinate system to reduce the 3D governing equations to the
2D forms, one must first address the issue of whether it is an inertial coordinate or not. For
hydrostatic flows, it is. This is because both the right-hand-side and the left-hand-side of the
vertical momentum equation vanish for purely hydrostatic flows.

Realizing that the earth’s surface, for all practical modeling purposes, can be regarded as
a non-penetrable material surface, it becomes straightforward to construct a terrain-following
Lagrangian control-volume coordinate system. In fact, any commonly used terrain-following
coordinates can be used as the starting reference (i.e., fixed, Eulerian coordinate) of the floating
Lagrangian coordinate system. To close the coordinate system, the model top (at a prescribed
constant pressure) is also assumed to be a Lagrangian surface, which is the same assumption
being used by practically all global hydrostatic models.
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The basic idea is to start the time marching from the chosen terrain-following Eulerian coor-
dinate (e.g., pure o or hybrid o-p), treating the initial coordinate surfaces as material surfaces,
the finite-volumes bounded by two coordinate surfaces, i.e., the Lagrangian control-volumes,
are free vertically, to float, compress, or expand with the flow as dictated by the hydrostatic
dynamics.

By choosing an imaginary conservative tracer ¢ that is a monotonic function of height and
constant on the initial reference coordinate surfaces (e.g., the value of “n” in the hybrid o —p
coordinate used in CAM), the 3D governing equations ertten for the general vertical coordinate
in setion 1.2 can be reduced to 2D forms. After factoring out the constant §¢, (3.340), the
conservation law for the pseudo-density (7 = g—g), becomes

0 vop cosh) | = (3.362)

0 0
— (udp) + 80(

op + !
ot P Acosf | O\

where the symbol § represents the vertical difference between the two neighboring Lagrangian
surfaces that bound the finite control-volume. From (3.338), the pressure thickness dp of that
control-volume is proportional to the total mass, i.e., dp = —pgdz. Therefore, it can be said that
the Lagrangian control-volume vertical discretization has the hydrostatic balance built-in, and
0p can be regarded as the “pseudo-density” for the discretized Lagrangian vertical coordinate
system.

Similarly, (3.341), the mass conservation law for all tracer species, is

0 1 0 0
5;(40P) + 71— { 7, (uadp) + =5 (vgdp 6080)] =0, (3.363)

the thermodynamic equation, (3.342), becomes

0 1 0 0
.364
5 —(©dp) + Teosd [8)\ (uBdp) + %0 — (vOdp cosﬁ)} (3.364)
and (3.343) and (3.344), the momentum equations, are reduced to
0 1 0 10
EUZQU_ACOSO [3)\ (H+(I>—I/D)+;a—)\ ] (3.365)
0 1[0 1 6

Given the prescribed pressure at the model top Py, the p0s1t10n of each Lagrangian surface
P, (horizontal subscripts omitted) is determined in terms of the hydrostatic pressure as follows:

!
P =Py+)» 6P, (forl=1,2,3, .., N), (3.367)

where the subscript [ is the vertical index ranging from 1 at the lower bounding Lagrangian
surface of the first (the highest) layer to N at the Earth’s surface. There are N+1 Lagrangian
surfaces to define a total number of N Lagrangian layers. The surface pressure, which is the
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pressure at the lowest Lagrangian surface, is easily computed as Py using (3.367). The sur-
face pressure is needed for the physical parameterizations and to define the reference Eulerian
coordinate for the mapping procedure (to be described in section 3.3.5).

With the exception of the pressure-gradient terms and the addition of a thermodynamic
equation, the above 2D Lagrangian dynamical system is the same as the shallow water system
described in LR97. The conservation law for the depth of fluid A in the shallow water system
of LRI7 is replaced by (3.362) for the pressure thickness dp. The ideal gas law, the mass con-
servation law for air mass, the conservation law for the potential temperature (3.364), together
with the modified momentum equations (3.365) and (3.366) close the 2D Lagrangian dynamical
system, which are vertically coupled only by the hydrostatic relation (see (3.382), section 3.3.5).

The time marching procedure for the 2D Lagrangian dynamics follows closely that of the
shallow water dynamics fully described in LR97. For computational efficiency, we shall take
advantage of the stability of the FFSL transport algorithm by using a much larger time step
(At) for the transport of all tracer species (including water vapor). As in the shallow water
system, the Lagrangian dynamics uses a relatively small time step, A7 = At/m, where m is
the number of the sub-cycling needed to stabilize the fastest wave in the system. We shall
describe here this time-split procedure for the prognostic variables [6p, ©,u,v;q] on the D-grid.
Discretization on the C-grid for obtaining the diagnostic variables, the time-averaged winds
(u*,v*), is analogous to that of the D-grid (see also LR97).

Introducing the following short hand notations (cf, (3.356) and (3.357)):

i—1

07 = ("7 + Sglof, Ar, (1),

—

= 1o, nis!
O0F = (= + g fluf, Ar, (),
and applying directly (3.359), the update of “pressure thickness” Jp, using the fractional time

step A7 = At/m, can be written as

i i—1 A’T 1 1
e =St — —— *(ut AT 6l _ (v AT 5 .
6p 6p ACOSQ { AA 6)\ I:‘/E'L (u'L7 T’ 5pz )j| + Ao 69 [6050 yz (/UZ Y 7-7 6pz )] } (3 368)

(fori=1,...,m),

where [z}, y?] are the background air mass fluxes, which are then used as input to Eq. 24 for
transport of the potential temperature ©:

ot = [ 5 @t 4 Fay, Am;©0) + Gyl Am, O] . (3.369)

5pn+%

The discretized momentum equations for the shallow water system (cf, Eq. 16 and Eq. 17
in LRI7) are modified for the pressure gradient terms as follows:

i i— 1 —~
utm o=yt 4 AT [yz* (v, AT; Q) — m&\(/{* —vD*) + PA} , (3.370)
nik =t (ur ArQ0) + Sk —vDY) — B,
v v AT [xz (UZ,AT,Q ) + AAH(SG(K vD") P9:| , (3.371)
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where £* is the upwind-biased “kinetic energy” (as defined by Eq. 18 in LR97), and D*, the
horizontal divergence on the D-grid, is discretized as follows:

1 1 i=1 1 i=1
D= —— | 6"t " + —8y (v 7 cosh) | .
Acosh | AN * N (U cos )]

The finite-volume mean pressure-gradient terms in (3.370) and (3.371) are computed as

follows: £
P, = —i=A , (3.372)

Acost §;_, TIdA

— fHAa odll
Py=——"F——— 3.373
’ A fH:G Td6’ ( )

where Il = p* (k = R/C,), and the symbols “Il = A\’ and “Il= 6" indicate that the contour
integrations are to be carried out, using the finite-volume algorithm described in 1.97, in the
(TT, \) and (11, #) space, respectively.

To complete one time step, equations (3.368-3.371), together with their counterparts on the
C-grid are cycled m times using the fractional time step A7, which are followed by the tracer
transport using (3.363) with the large-time-step At.

Mass fluxes (z*,y*) and the winds (u*, v*) on the C-grid are accumulated for the large-time-
step transport of tracer species (including water vapor) ¢ as

n 1 n 7 * *
" = s [0+ FOX, A g) + GO At Y], (3.374)

where the time-accumulated mass fluxes (X*,Y™*) are computed as

X* = "ai(u}, Ar, 6p)), (3.375)
=1

Y* =) yr(vi, AT, 6p}). (3.376)
i=1

The time-averaged winds (U*,V*), defined as follows, are to be used as input for the com-
putations of ¢* and ¢? :

1 m
U* = — * 3.377
2 (3.377)
V = E £ Ui . (3378)

The use of the time accumulated mass fluxes and the time-averaged winds for the large-
time-step tracer transport in the manner described above ensures the conservation of the tracer
mass and maintains the highest degree of consistency possible given the time split integration
procedure.
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The algorithm described here can be readily applied to a regional model if appropriate bound-
ary conditions are supplied. There is formally no Courant number related time step restriction
associated with the transport processes. There is, however, a stability condition imposed by the
gravity-wave processes. For application on the whole sphere, it is computationally advantageous
to apply a polar filter to allow a dramatic increase of the size of the small time step A7. The
effect of the polar filter is to stabilize the short-in-wavelength (and high-in-frequency) gravity
waves that are being unnecessarily and unidirectionally resolved at very high latitudes in the
zonal direction. To minimize the impact to meteorologically significant larger scale waves, the
polar filter is highly scale selective and is applied only to the diagnostic variables on the auxiliary
C-grid and the tendency terms in the D-grid momentum equations. No polar filter is applied
directly to any of the prognostic variables.

The design of the polar filter follows closely that of Suarez and Takacs [1995] for the C-
grid Arakawa type dynamical core (e.g., Arakawa and Lamb [1981]). Because our prognostic
variables are computed on the D-grid and the fact that the FFSL transport scheme is stable for
Courant number greater than one, in realistic test cases the maximum size of the time step is
about two to three times larger than a model based on Arakawa and Lamb’s C-grid differencing
scheme. It is possible to avoid the use of the polar filter if, for example, the “Cubed grid” is
chosen, instead of the current latitude-longitude grid. However, this would require a significant
rewrite of the rest of the model codes including physics parameterizations, the land model, and
most of the post processing packages.

The size of the small time step for the Lagrangian dynamics is only a function of the horizontal
resolution. Applying the polar filter, for the 2-degree horizontal resolution, a small-time-step size
of 450 seconds can be used for the Lagrangian dynamics. From the large-time-step transport
perspective, the small-time-step integration of the 2D Lagrangian dynamics can be regarded
as a very accurate iterative solver, with m iterations, for computing the time mean winds
and the mass fluxes, analogous in functionality to a semi-implicit algorithm’s elliptic solver
(e.g., Ringler et al. [2000]). Besides accuracy, the merit of an “explicit” versus “semi-implicit”
algorithm ultimately depends on the computational efficiency of each approach. In light of the
advantage of the explicit algorithm in parallelization, we do not regard the explicit algorithm for
the Lagrangian dynamics as an impedance to computational efficiency, particularly on modern
parallel computing platforms. Furthermore, it may be possible to further increase the size of the
small time step via vertical mode decomposition. This approach is one of the algorithm design
issues we plan to revisit.

3.3.5 A mass, momentum, and total energy conserving mapping al-
gorithm

The Lagrangian surfaces that bound the finite-volume will eventually deform, particularly in
the presence of persistent diabatic heating/cooling, in a time scale of a few hours to a day
depending on the strength of the heating and cooling, to a degree that it will negatively impact
the accuracy of the horizontal-to-Lagrangian-coordinate transport and the computation of the
pressure gradient forces. Therefore, a key to the success of the Lagrangian control-volume
discretization is an accurate and conservative algorithm for mapping the deformed Lagrangian
coordinate back to a fixed reference Eulerian coordinate.

There are some degrees of freedom in the design of the vertical mapping algorithm. To ensure
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conservation, our current (and recommended) mapping algorithm is based on the reconstruction
of the “mass” (pressure thickness dp), zonal and meridional “winds”, “tracer mixing ratios”, and
“total energy” (volume integrated sum of the internal, potential, and kinetic energy), using the
monotonic Piecewise Parabolic sub-grid distributions with the hydrostatic pressure (as defined
by (3.367)) as the mapping coordinate. We outline the mapping procedure as follows.

Step 1: Define a suitable Eulerian reference coordinate. The mass in each layer
(0p) is then distributed vertically according to the chosen Eulerian coordinate.
The surface pressure typically plays an “anchoring” role in defining the terrain
following Eulerian vertical coordinate. The hybrid 1 — coordinate used in the
NCAR CCM3 [Kiehl et al., 1996] is adopted in the current model setup.

Step 2: Construct the piece-wise continuous vertical subgrid profiles of tracer mixing
ratios (¢), zonal and meridional winds (u and v), and total energy (') in the
Lagrangian control-volume coordinate based on the Piece-wise Parabolic Method
(PPM, Colella and Woodward [1984]). The total energy I' is computed as the
sum of the finite-volume integrated geopotential ¢, internal energy (C,T), and
the kinetic energy (K) as follows:

1
= % / [CUT +o+5 (u® +v%) | dp. (3.379)

Applying integration by parts and the ideal gas law, the above integral can be
rewritten as

r=cC,T+ %5 (pd) + K, (3.380)

where T is the layer mean temperature, K is the kinetic energy, p is the pressure
at layer edges, and C, and C), are the specific heat of the air at constant volume
and at constant pressure, respectively. Layer mean values of ¢, (u, v), and T in
the Eulerian coordinate system are obtained by integrating analytically the sub-
grid distributions, in the vertical direction, from model top to the surface, layer
by layer. Since the hydrostatic pressure is chosen as the mapping coordinate,
tracer mass, momentum, and total energy are locally and globally conserved.

Step 3: Compute kinetic energy in the Eulerian coordinate system for each layer.
Substituting kinetic energy and the hydrostatic relationship into (3.380), the layer
mean temperature T, for layer k in the Eulerian coordinate is then retrieved from
the reconstructed total energy (done in Step 2) by a fully explicit integration
procedure starting from the surface up to the model top as follows:

Fk - Kk - ¢k+%

lnpk+%—lnpk_% )

Ty = (3.381)

Cp |1 — KDy 1 Pert i
To convert the potential temperature © to the layer mean temperature the conversion factor is
obtained by equating the following two equivalent forms of the hydrostatic relation for © and
T:

0¢p = —C,0dII, (3.382)
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8¢ = —RT 6InTl, (3.383)

where II = p*. The conversion formula between layer mean temperature and layer mean poten-
tial temperaure is obtained as follows:

SinTl—
iy (3.384)

O =x ST L

The physical implication of retrieving the layer mean temperature from the total energy as
described in Step 3 is that the dissipated kinetic energy, if any, is locally converted into internal
energy via the vertically sub-grid mixing (dissipation) processes. Due to the monotonicity
preserving nature of the sub-grid reconstruction the column-integrated kinetic energy inevitably
decreases (dissipates), which leads to local frictional heating. The frictional heating is a physical
process that maintains the conservation of the total energy in a closed system.

As viewed by an observer riding on the Lagrangian surfaces, the mapping procedure essen-
tially performs the physical function of the relative-to-the-Eulerian-coordinate vertical trans-
port, by vertically redistributing (air and tracer) mass, momentum, and total energy from the
Lagrangian control-volume back to the Eulerian framework.

As described in section 3.3.4, the model time integration cycle consists of m small time steps
for the 2D Lagrangian dynamics and one large time step for tracer transport. The mapping time
step can be much larger than that used for the large-time-step tracer transport. In tests using
the Held-Suarez forcing [Held and Suarez, 1994], a three-hour mapping time interval is found
to be adequate. In the full model integration, one may choose the same time step used for the
physical parameterizations so as to ensure the input state variables to physical parameterizations
are in the usual “Eulerian” vertical coordinate.

3.3.6 Further discussion

There are still aspects of the numerical formulation in the finite volume dynamical core that can
be further improved. For example, the choice of the horizontal grid, the computational efficiency
of the split-explicit time marching scheme, the choice of the various monotonicity constraints,
and how the conservation of total energy is achieved.

The impact of the non-linear diffusion associated with the monotonicity constraint is dif-
ficult to assess. All discrete schemes must address the problem of subgrid-scale mixing. The
finite-volume algorithm contains a non-linear diffusion that mixes strongly when monotonicity
principles are locally violated. However, the effect of nonlinear diffusion due to the imposed
monotonicity constraint diminishes quickly as the resolution matches better to the spatial struc-
ture of the flow. In other numerical schemes, however, an explicit (and tunable) linear diffusion
is often added to the equations to provide the subgrid-scale mixing as well as to smooth and/or
stabilize the time marching.

The finite-volume dynamical core as implemented in CAM and described here conserves the
dry air and all other tracer mass exactly without a “mass fixer”. The vertical Lagrangian dis-
cretization and the associated remapping conserves the total energy exactly. The only remaining
issue regarding conservation of the total energy is the horizontal discretization and the use of the
“diffusive” transport scheme with monotonicity constraint. To compensate for the loss of total
energy due to horizontal discretization, we apply a global fixer to add the loss in kinetic energy
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due to “diffusion” back to the thermodynamic equation so that the total energy is conserved.
However, it should be noted that even without the “energy fixer” the loss in total energy (in
flux unit) is found to be less than 2 (W/m?) with the 2 degrees resolution, and much smaller
with higher resolution. In the future, we may consider using the total energy as a transported
prognostic variable so that the total energy could be automatically conserved.
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Chapter 4
Model Physics

As stated in chapter 2, the total parameterization package in CAM2 consists of a sequence of

components, indicated by
P={M,R,S,T}, (4.1)

where M denotes (Moist) precipitation processes, R denotes clouds and Radiation, S denotes the
Surface model, and T denotes Turbulent mixing. Each of these in turn is subdivided into vari-
ous components: M includes an optional dry adiabatic adjustment normally applied only in the
stratosphere, moist penetrative convection, shallow convection, and large-scale stable condensa-
tion; R first calculates the cloud parameterization followed by the radiation parameterization;
S provides the surface fluxes obtained from land, ocean and sea ice models, or calculates them
based on specified surface conditions such as sea surface temperatures and sea ice distribution.
These surface fluxes provide lower flux boundary conditions for the turbulent mixing 7" which
is comprised of the planetary boundary layer parameterization, vertical diffusion, and gravity
wave drag.

4.1 Deep Convection

The process of deep convection is treated with a parameterization scheme developed by Zhang
and McFarlane [1995]. The scheme is based on a plume ensemble approach where it is assumed
that an ensemble of convective scale updrafts (and the associated saturated downdrafts) may
exist whenever the atmosphere is conditionally unstable in the lower troposphere. The updraft
ensemble is comprised of plumes sufficiently buoyant so as to penetrate the unstable layer,
where all plumes have the same upward mass flux at the bottom of the convective layer. Moist
convection occurs only when there is convective available potential energy (CAPE) for which
parcel ascent from the sub-cloud layer acts to destroy the CAPE at an exponential rate using a
specified adjustment time scale. For the convenience of the reader we will review some aspects
of the formulation, but refer the interested reader to Zhang and McFarlane [1995] for additional
detail, including behavioral characteristics of the parameterization scheme.

The large-scale budget equations distinguish between a cloud and sub-cloud layer where
temperature and moisture response to convection in the cloud layer is written in terms of bulk
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convective fluxes as

oT 10
K (a) =~ gz (MuSu+ MaSy = Mc5) + L(C — F) 42)
0q 10
(E)Cu - _;a (MUQu + Mde - Mcq) + E-C ) (43)

for z > z,, where z; is the height of the cloud base. For z; < 2z < 2, where z; is the surface
height, the sub-cloud layer response is written as

% <P%—f) = 1 o (M3[S(z) = Su(z0)] + MalS(z) = Salz)]) (4.4)
(p %) I, i - (Mbla(2s) — qu(z)] + Malg(zs) — qa(2)]) , (4.5)

where the net vertical mass flux in the convective region, M., is comprised of upward, M,,, and
downward, My, components, C' and E are the large-scale condensation and evaporation rates,
S, Su, S4, ¢, qu, q4, are the corresponding values of the dry static energy and specific humidity,
and M, is the cloud base mass flux.

4.1.1 Updraft Ensemble

The updraft ensemble is represented as a collection of entraining plumes, each with a charac-
teristic fractional entrainment rate A\. The moist static energy in each plume h, is given by

Oh,
0z

=ANh—he), zm<z<zp. (4.6)

Mass carried upward by the plumes is detrained into the environment in a thin layer at the top
of the plume, zp, where the detrained air is assumed to have the same thermal properties as
in the environment (S, = S). Plumes with smaller A penetrate to larger zp. The entrainment
rate \p for the plume which detrains at height z is then determined by solving (4.6), with lower
boundary condition h.(z) = hs:

78(5@3%) = Ap(h—hy) = Ap(he — hy) (4.7)
% — Ap(he — ) = Ap(h—hy) (4.8)
e "ze,:;(z_%) = Ap(h— hy)e =) (19)
(he — hy)e*P=20) = / Z Ap(h — hy)erP =) d! (4.10)
2
(he —hy) = Ap / z(h — hy)eE =y (4.11)
2
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Since the plume is saturated, the detraining air must have h. = h*, so that

(hy — h*) = Ap / (hy — h)e*? =)z (4.12)

2b

Then, Ap is determined by solving (4.12) iteratively at each z.

The top of the shallowest of the convective plumes, z; is assumed to be no lower than the
mid-tropospheric minimum in saturated moist static energy, h*, ensuring that the cloud top
detrainment is confined to the conditionally stable portion of the atmospheric column. All
condensation is assumed to occur within the updraft plumes, so that C = C,. Each plume is
assumed to have the same value for the cloud base mass flux M,, which is specified below. The
vertical distribution of the cloud updraft mass flux is given by

Ap(z—zp) _ 1
¢ (4.13)

)\D 1
M, =M / —eME g\ = My————— =
b 0 )\0 b )\0(2—21))

where )y is the maximum detrainment rate, which occurs for the plume detraining at height
z9, and Ap is the entrainment rate for the updraft that detrains at height z. Detrainment is
confined to regions where A\p decreases with height, so that the total detrainment D, = 0 for

z < zy. Above zg,

Mb 8)\D
D, = — =D 4.14
)\() 0z ( )

The total entrainment rate is then just given by the change in mass flux and the total detrain-
ment,
E, = oM,
0z
The updraft budget equations for dry static energy, water vapor mixing ratio, moist static
energy, and cloud liquid water, ¢, are:

—D, . (4.15)

% (MS,) = (Bu—Dy)S+pLC, (4.16)
% (Myg,) = FEuq— Dyq" + pC, (4.17)
% (Myh,) = Eyh— Dyh* (4.18)
a% (Myl) = —Dyly+ pCy — pR, (4.19)

where (4.18) is formed from (4.16) and (4.17) and detraining air has been assumed to be sat-
urated (¢ = ¢* and h = h*). It is also assumed that the liquid content of the detrained air is
the same as the ensemble mean cloud water (¢; = £). The conversion from cloud water to rain

water is given by
pR, = cgM, ¢ | (4.20)

following Lord et al. [1982], with ¢g =2 x 1072 m~".
Since M,, E, and D, are given by (4.13-4.15), and h and h* are environmental profiles,
(4.18) can be solved for h,, given a lower boundary condition. The lower boundary condition
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is obtained by adding a 0.5 K temperature perturbation to the dry (and moist) static energy
at cloud base, or h, = h+ ¢, X 0.5 at z = 2,. Below the lifting condensation level (LCL), S,
and ¢, are given by (4.16) and (4.17). Above the LCL, g, is reduced by condensation and S, is
increased by the latent heat of vaporization. In order to obtain to obtain a saturated updraft at
the temperature implied by S,, we define AT as the temperature perturbation in the updraft,
then:

hy = Sy+Lq, (4.21)
Su = S+cAT (4.22)
dg*
= ¢ AT . 4.2
Qu ¢+ o (4.23)

Substituting (4.22) and (4.23) into (4.21),

L dqg*
= Lg* 1+ = AT 4.24
Dy S+ q+cp<+cpdT> (4.24)
= b +¢,(1+7)AT (4.25)
L dqg*
= — 4.26
v o dT (4.26)
1 _ *
A = Lhazh (4.27)
cp 1+7

The required updraft quantities are then

hy — h*

S, = S+ 4.28

147 ( )
th_h*

w = ¢+ 2 , 4.29

q L 1+~ ( )

With S, given by (4.28), (4.16) can be solved for C,, then (4.19) and (4.20) can be solved for ¢
and R,.
The expressions above require both the saturation specific humidity to be

*

¢ =— -, €' <p, (4.30)
p—€

where e* is the saturation vapor pressure, and its dependence on temperature (in order to
maintain saturation as the temperature varies) to be

dg* € der e’ d(p—e) (431)
dar p—edl (p—e*)? dT )
€ 1 de*
= 1 4.32
p—e*( +p—€*> dT (4:32)
€ q*\ de*
= 1+ — . 4.33
p— €* ( * ee*) dr (433)
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The deep convection scheme does not use the same approximation for the saturation vapor
pressure e* as is used in the rest of the model. Instead,

¢ = ¢y exp [%} , (4.34)

where ¢; = 6.112, c; = 17.67, c3 = 243.5 K and Ty = 273.16 K is the freezing point. For this
approximation,

i = alaen il 9
o
- T _‘;3;1 7 (4.37)
CZE = q (1 + eqe) (T — %01 3)? (438)

We note that the expression for 7 in the code gives
g () i <4-39>

The expressions for dg*/dT in (4.38) and (4.39) are not identical. Also, T'— Ty +c3 # T and
CoC3 ?é EL/R

4.1.2 Downdraft Ensemble

Downdrafts are assumed to exist whenever there is precipitation production in the updraft
ensemble where the downdrafts start at or below the bottom of the updraft detrainment layer.
Detrainment from the downdrafts is confined to the sub-cloud layer, where all downdrafts have
the same mass flux at the top of the downdraft region. Accordingly, the ensemble downdraft
mass flux takes a similar form to (4.13) but includes a “proportionality factor” to ensure that
the downdraft strength is physically consistent with precipitation availability. This coefficient
takes the form

S »

where P is the total precipitation in the convective layer and Ej is the rain water evaporation
required to maintain the downdraft in a saturated state. This formalism ensures that the
downdraft mass flux vanishes in the absence of precipitation, and that evaporation cannot
exceed some fraction, u, of the precipitation, where u = 0.2.

4.1.3 Closure

The parameterization is closed, i.e., the cloud base mass fluxes are determined, as a function of
the rate at which the cumulus consume convective available potential energy (CAPE). Since the
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large-scale temperature and moisture changes in both the cloud and sub-cloud layer are linearly
proportional to the cloud base updraft mass flux (e.g., see eq. 4.2 — 4.5), the CAPE change due
to convective activity can be written as

0A
) = 4.41
< ot >cu MpE, (4.41)

where F' is the CAPE consumption rate per unit cloud base mass flux. The closure condition is
that the CAPE is consumed at an exponential rate by cumulus convection with characteristic

adjustment time scale 7 = 7200 s:
A

M, = — .
b TF

(4.42)

4.1.4 Numerical Approximations

The quantities My 4, ¢, Sud, Qud, hua are defined on layer interfaces, while D,, C,, R, are
defined on layer midpoints. S, ¢, h, v are required on both midpoints and interfaces and the
interface values ¥** are determined from the midpoint values ¢* as

k-1 k—1,/k
YF~ =log (w@b’“ ) wjf_l _¢¢k i (4.43)

All of the differencing within the deep convection is in height coordinates. The differences are
naturally taken as

o k— _ o, k+
i = v - ’ (4.44)
0z zk— — Zk+
where ¢*~ and 1** represent values on the upper and lower interfaces, respectively for layer
k. The convention elsewhere in this note (and elsewhere in the code) is 6% = ¢kt — opk—.

Therefore, we avoid using the compact 6% notation, except for height, and define
dz = 2F — A = 5k, (4.45)

so that d*z corresponds to the variable dz(k) in the deep convection code.

Although differences are in height coordinates, the equations are cast in flux form and the
tendencies are computed in units kg m=® s~!. The expected units are recovered at the end by
multiplying by gdz/dp.

The environmental profiles at midpoints are

Sk = ¢, TF + g2F (4.46)
h* = SF+ Lg" (4.47)
h* = Sk 4 Lg** (4.48)
q*lc — €€>x<lc/(plc _ e*k) (4.49)
xk CQ(Tk B Tf)
— 4.50
= e | (450)
xk 2
. q el
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The environmental profiles at interfaces of S, ¢, ¢*, and v are determined using (4.43) if |1 —
Y¥| is large enough. However, there are inconsistencies in what happens if [/*~! — ¢*|
is not large enough. For S and ¢ the condition is

Al -
S T — <107%. (4.52)

Y= (P 9R) /2,
For ¢* and v the condition is
R = gk, T - gk < 1076 (4.53)
Interface values of h are not needed and interface values of h* are given by
R = SF 4 Lgt . (4.54)

The unitless updraft mass flux (scaled by the inverse of the cloud base mass flux) is given
by differencing (4.13) as

]. k (,k—
1V — ( Ap (277 —2) _ 1) 4.55
u )\Q(Zk_ _ Zb) € ) ( )

with the boundary condition that MM* = 1. The entrainment and detrainment are calculated
using

1 ]

e S (é’ﬁl(zk ) 1) (4.56)
0 — <b
mk— — MK+

: — (457
mk— o Mk—

pf = Tu — P 4.
: — (1.58)

Note that M*~ and m*~ differ only by the value of Ap.
The updraft moist static energy is determined by differencing (4.18)

My~ hy~ — My hy*

7 = EFp* — DEp** (4.59)
1
hE= = T [MFTREY + d*2 (EER® — DER)] (4.60)
with A}~ = h™ + ¢,/2, where M is the layer of maximum h.

Once h,, is determined, the lifting condensation level is found by differencing (4.16) and
(4.17) similarly to (4.18):

St = L [MFtSH 4 dbs (ERS* - DESH)] (4.61)

¢ = ]Mlk_ [Mf+qﬁ+ +d¥z (E’Jq’C - Dﬁq*k)] ) (4.62)
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The detrainment of S, is given by DfS* not by D¥S¥ since detrainment occurs at the environ-
mental value of S. The detrainment of ¢, is given by D¥g**, even though the updraft is not yet
saturated. The LCL will usually occur below zj, the level at which detrainment begins, but this
is not guaranteed.

The lower boundary conditions, S¥~ = S™ + ¢,/2 and ¢}~ = ¢, are determined from
the first midpoint values in the plume, rather than from the interface values of S and g. The
solution of (4.61) and (4.62) continues upward until the updraft is saturated according to the

condition

o > ¢(Ty), (4.63)
1

T = C—(Sf_—gzk_). (4.64)
14

The condensation (in units of m™!) is determined by a centered differencing of (4.16):

My~ Sk~ — Myt St

7 = (Ef — DE)S* + LC¥ (4.65)

1 Mkfskf _ Mk+Sk+
crF = 7 “dk u v (EF — DFYSF| . (4.66)
z

The rain production (in units of m~') and condensed liquid are then determined by differencing
(4.19) as
Mk_fk_ - Mk-l—gk-l—

o = -DFi*t + CF — RF (4.67)

and (4.20) as
RF = coM¥ =05 . (4.68)

Then
ME 0 = MEVT — dF2 (DECST — CF 4 oM 0F) (4.69)
MEOF~ (1 + cod®2) = MENET 4 dF 2 (DECT — OF) (4.70)
1

0 = [MEFeEt —db2 (DEC+ —CB)] . (411)

My~ (1 + cod*z)

4.1.5 Deep Convective Tracer Transport

The CAM2 provides the ability to transport constituents via convection. The method used
for constituent transport by deep convection is a modification of the formulation described in
[Zhang and McFarlane, 1995].

We assume the updrafts and downdrafts are described by a steady state mass continuity
equation for a “bulk” updraft or downdraft

0(M,q,)

— E,q, — Dyq, . 4.72
9 q q (4.72)
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The subscript z is used to denote the updraft (u) or downdraft (d) quantity. M, here is the
mass flux in units of Pa/s defined at the layer interfaces, g, is the mixing ratio of the updraft or
downdraft. ¢, is the mixing ratio of the quantity in the environment (that part of the grid volume
not occupied by the up and downdrafts). E, and D, are the entrainment and detrainment rates
(units of s71) for the up- and down-drafts. Updrafts are allowed to entrain or detrain in any
layer. Downdrafts are assumed to entrain only, and all of the mass is assumed to be deposited
into the surface layer.

Equation 4.72 is first solved for up and downdraft mixing ratios ¢, and ¢4, assuming the
environmental mixing ratio g, is the same as the gridbox averaged mixing ratio q.

Given the up- and down-draft mixing ratios, the mass continuity equation used to solve for
the gridbox averaged mixing ratio ¢ is

0g 0
— = —(M, —-q)+ M, —-q)) - 4.73
5 ap( w(qu — @) + Ma(ga — ) (4.73)

These equations are solved for in subroutine CONVTRAN. There are a few numerical details
employed in CONVTRAN that are worth mentioning here as well.

e mixing quantities needed at interfaces are calculated using the geometric mean of the layer
mean values.

e simple first order upstream biased finite differences are used to solve 4.72 and 4.73.

o fluxes calculated at the interfaces are constrained so that the resulting mixing ratios are
positive definite. This means that this parameterization is not suitable for moving mizing
ratios of quantities meant to represent perturbations of a trace constituent about a mean
value (in which case the quantity can meaningfully take on positive and negative mix-
ing ratios). The algorithm can be modified in a straightforward fashion to remove this
constraint, and provide meaningful transport of perturbation quantities if necessary. the
reader 1s warned however that there are other places in the model code where similar mod-
ifications are required because the model assumes that all mizing ratios should be positive
definite quantities.

The CAM2 employs a Sundqvist [1988] style evaporation of the convective precipitation as
it makes its way to the surface. This scheme relates the rate at which raindrops evaporate to
the local large-scale subsaturation, and the rate at which convective rainwater is made available
to the subsaturated model layer

B, = Ky (1—RHy) (&) . (4.74)

where RHj is the relative humidity at level k, Rrk denotes the total rainwater flux at level
k (which can be different from the locally diagnosed rainwater flux from the convective pa-
rameterization, as will be shown below), the coefficient Kp takes the value 0.2 - 107 (kg m—
s71)71/257!, and the variable E,, has units of s™'. The evaporation rate E,, is used to determine
a local change in ¢, and T}, associated with an evaporative reduction of Rrk. Conceptually, the
evaporation process is invoked after a vertical profile of R, has been evaluated. An evaporation
rate is then computed for the uppermost level of the model for which R,, # 0 using (4.74),
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where in this case R,, = Rrk. This rate is used to evaluate an evaporative reduction in R,,
which is then accumulated with the previously diagnosed rainwater flux in the layer below,

Apx

; ) E, +R,,.,, . (4.75)

R""k+1 = RTk - (

A local increase in the specific humidity ¢, and a local reduction of T}, are also calculated in
accordance with the net evaporation

and I
Cp

The procedure, (4.74)-(4.77), is then successively repeated for each model level in a downward
direction where the final convective precipitation rate is that portion of the condensed rainwater
in the column to survive the evaporation process

P, = (R,.K — (%) ETK) /Py - (4.78)

In global annually averaged terms, this evaporation procedure produces a very small reduction
in the convective precipitation rate where the evaporated condensate acts to moisten the middle
and lower troposphere.

4.2 Shallow/Middle Tropospheric Moist Convection

To characterize the convective forcing associated with shallow and middle-level convection (i.e.,
convective activity not treated by the primary convective parameterization scheme) we write
the large-scale budget equations for dry static energy and total water as

Js — ows 0 —
= . ° - - _ 1! L
o V-Vs o o (w's}) + LR + ¢,Qr
Js 0 —
== - oy (@50 + IR (4.79)
R.S.
and
oq - 0wg 0 ()
="V Vi-% ap(w (q+€)) R
0q 0 (—r—r
R.S.

where s = ¢,T" + gz is the dry static energy; ¢ represents liquid water; s, = s — L¢ is the static
energy analogue of the liquid water potential temperature introduced by Betts [1975]; R is the
“convective-scale” liquid water sink (sometimes denoted by C' — E); and Qg is the net radiative
heating rate. The subscript R.S. denotes the resolvable-scale contributions to the large-scale
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budget. Note that variations of the mean liquid water on the large scale have been neglected.
The barred quantities represent horizontal averages over an area large enough to contain a
collection of cloud elements, but small enough so as to cover only a fraction of a large-scale
disturbance. By writing the mean thermodynamic variables in terms of their average cloud and
environment properties, and assuming that the convection occupies only a small fraction of the
averaging area, the vertical eddy transports w's), and w’ (¢’ + ¢') can be approximated by the
difference between the upward flux inside a typical convective element and the downward flux
(i.e., induced subsidence) in the environment (cf. Yanai et al. [1973]). Mathematically, this
approximation takes the form

Fo(p) = = (05) % =M. (9) (56) = 5. () + L () (481)
and
Foe(p) = —é (w’ (¢ + ﬂ’)) ~—M.(p) (@ (p) —q.(p) —£(p)) , (4.82)

where M, is a convective mass flux, and s., ¢., and £ represent cloud-scale properties. Thus,
(4.79) and (4.80) can be written as

Js O0s 0

T “F, +LR, 4,

% = o1 R.S.—i-gap , + LR (4.83)
and

o7, 0q 0

—f= = —F, ., — . 4.84

Let us now turn our attention to a vertically discrete model atmosphere and consider the
case where layers k£ and k£ + 1 are moist adiabatically unstable, i.e., a non-entraining parcel of
air at level £+ 1 (with moist static energy h.) would be unstable if raised to level k. We assume
the existence of a non-entraining convective element with roots in level k£ + 1, condensation
and rainout processes in level £, and limited detrainment in level £ — 1 (see Figure 4.1). In
accordance with (4.83) and (4.84), the discrete dry static energy and specific humidity budget
equations for these three layers can be written as

R 2Atg
Sp—1 = Sk_1+ {mc(sc—E_f—LZ)}, 4.85
k—1 k—1 Apk—l 5 k ; k ( )
N _ 2Atg _ _
S =S + Ap {mc (SC — sk+%) — Bm, (sc — L, — s,c_%) + LRk} , (4.86)
~ _ 2Atg _
Sk+1 = Sk+1 + Apros {mc (sk+% — sc)} , (4.87)
e _ 2Atg _
qk*l - qkfl + Apk,I {ﬁmc (QC - qk—%) } ) (4.88)
~ _ 2Atg _ _
G =06+ 3 {mc (qc - qk+%) — pme (qc - qk_;—) Rk} : (4.89)
= _ 2Atg _
ki1 = Qpy1 T+ Ar {mc (qk+% - QC>} ) (490)
Pr+1
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where the subscript ¢ denotes cloud properties in the ascent region, m,. is a convective mass
flux at the bottom of the condensation layer (level k + %, “cloud base”), and 3 is a yet to be
determined “detrainment parameter” at level k — % that will take a value between zero and one.
Note that the convective-scale liquid water sink R has been redefined in terms of mass per unit
area per unit time (denoted by R), and the resolvable-scale components have been dropped for
the convenience of the following discussion. In the general case, the thermodynamic properties
of the updraft region can be assumed to be equal to their large-scale values in the sub-cloud
layer, level k + 1, plus some arbitrary thermodynamic perturbation; i.e.,

S¢ = Sgp1 + 8, (4.91)

Qe = Qo1 + 4, (4.92)
and

h. = 5.+ Lq. . (4.93)

In the CAM2 implementation of this scheme, when a sub-cloud layer lies within the diagnosed
atmospheric boundary layer, the perturbation quantities ¢’ and s’ are assumed to be equal to

b (T—qﬁ?s (e.g., see 4.458 and the atmospheric boundary layer discussion) and zero.
The liquid water generation rate at level k£ is given by
meley = me[qe — (¢c),] - (4.94)
Using the saturation relation
(@) =T + 2 1 (he— ) (4.95)
k 147, L ’

where ¢* denotes the saturated specific humidity

e
T =e—0 4.
T = g (4.96)

h* denotes the saturated moist state energy, e, is the saturation vapor pressure (determined
from a precomputed table), and v = (L/c,)(0g*/0T),, and assuming that the large-scale liquid
water divergence in layer k is zero, (4.94) can be manipulated to give the rainout term in layer
k as

LR = L(1L = B)mobs = (1 — Bym. { st - jy (he =) } , (4.97)

and the liquid water flux into layer k£ — 1 as

_ 1 .
BmLe = fm, {sk - et T (hc - hk>} . (4.98)

Equations (4.87) and (4.90) can be combined to give an equation for moist static energy in
layer £+ 1

Oh.

8Ek+1 _ g — -~
me (Fipy = he) ~ “3 (4.99)

ot Appi
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Figure 4.1: Conceptual three-level non-entraining cloud model

where the approximation follows from the assumption that 0h'/0t can be neglected. Using the

relation (1 +1,) %k = Oh, Ot, (4.86) can be manipulated to give an expression for the time rate
of change of saturated moist static energy in layer &

= e { (eome e 20) <8 (emma) )

2

Subtracting (4.100) from (4.99) results in
0 (hc — ) 9 (+
—2 = mgy——(h 1 — hc)
8t m {Apk+1 ( k+%
g — - _
(147 (5 = 5rs) =B (5= 5-2) | (4.101)
from which the convective mass flux m, can be written as
he—h,
Me = = (1) _ _ L
gT{ Ap: [(SC_SIH-%"'LZ/G) _,6<Sc_8k_%>j| —_ Apk+1 |:hk:+% —hc:|}

where 7 is a characteristic convective adjustment time scale.
Physically realistic solutions require that the convective mass flux m. be positive, implying
the following constraint on the detrainment parameter 5

(4.102)

B(1+7) (sc - EH) < (1+7%) (sc ~ Sy + sz) . % (E,H% . hc) . (4.103)

A second physical constraint is imposed to ensure that the adjustment process does not supersat-
urate the “detrainment layer”, £ — 1, which leads to the following constraint on the detrainment
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parameter, [3:

Aipk [ (14 7) (sc — Spy1 + L£k> } . ﬁkﬂ [EH% - hc] >
2Nt he — h, _
[ T Fre o (R
+h. — Elcf% — S +§k%:| + Aipk (1+ ) (SC — §k7%) } : (4.104)

A final constraint on the adjustment process attempts to minimize the introduction of 2An
computational structures in the thermodynamic field by not allowing the procedure to increase
the vertical gradient of A when % < 0in the upper pair of layers. Mathematically this constraint
is formulated by discretizing in time the moist static energy equations in layers k£ and &k — 1,
leading to the following constraint on (3

E (;zfi%,:_) : (QLt) (A;h [(1 + ) (e = Spet + Lfk)} - Ap1+% [EH% - hci|)

+Aka (e = Puys] > 5{Ek ;E%;_ : (2215) (1;;9?) (e =%1)

_ 1 1
— 1 — L —_— . (4.1
" (hc s Ek) (Apk " Aplc+1> } (4.105)

where G is an arbitrary vertical difference in the adjusted moist static energy profile (cf. Hack
et al. [1993]).

The first guess for the detrainment parameter, 3, comes from a crude buoyancy argument
where

ﬂmin
B=max{ [ Bmax (4.106)

) B (e e

(hc *h‘I: )Apk

and By is assumed to be 0.10 (i.e., 10% detrainment). Since 3 effectively determines the actual
autoconversion from cloud water to rainwater, Spm., is determined from a minimum autoconver-

sion requirement which is mathematically written as

ﬁmin
Bmax = max (4.107)
1 —¢o(62 — 02min)

where ¢, is a constant autoconversion coefficient assumed to be equal to 1.0x10™* m™?, dz is

the depth of contiguous convective activity (i.e., layers in which condensation and rainout takes
place) including and below layer k, and 0zmi, is a minimum depth for precipitating convection.

86



The physical constraints on the adjustment process are then applied to determine the actual
value of 8 appropriate to the stabilization of levels £ and k + 1.

In summary, the adjustment procedure is applied as follows. A first guess at 3 is determined
from (4.106) and (4.107), and further refined using (4.103), (4.104), and (4.105). The convective
mass flux, m,, is then determined from (4.102), followed by application of budget equations
(4.85)-(4.90) to complete the thermodynamic adjustment in layers £ — 1 through k£ + 1. By
repeated application of this procedure from the bottom of the model to the top, the thermody-
namic structure is locally stabilized, and a vertical profile of the total cloud mass flux associated
with shallow and mid-level convection, M, (where Mclch = Mey +4 Me, %) can be constructed.

This mass flux profile can also be used to estimate the convective-scale transport of arbitrary
passive scalars. The total convective precipitation rate is obtained by vertically integrating the

convective-scale liquid water sink

1 K

PH>0

pP=

Ry. (4.108)
k=1
The free parameters for the scheme consist of a minimum convective detrainment, £.,;,, a charac-
teristic adjustment time scale for the convection, 7, a cloud-water to rain-water autoconversion
coefficient ¢y, and a minimum depth for precipitating convection 6 zy;,.

4.3 Prognostic Condensate and Precipitation Parame-
terization

4.3.1 Introductory comments

The parameterization of non-convective cloud processes in CAM2 are described in Rasch and
Kristjansson [1998] and Zhang et al. [2003]. The original formulation is introduced in Rasch
and Kristjansson [1998]. Revisions to the parameterization to deal more realistically with the
treatment of the condensation and evaporation under forcing by large scale processes and chang-
ing cloud fraction are described in Zhang et al. [2003]. The equations used in the formulation
are discussed here. The papers contain a more thorough description of the formulation and a
discussion of the impact on the model simulation.

The formulation for cloud water combines a representation for condensation and evaporation
with a bulk microphysical parameterization closer to that used in cloud resolving models. The
parameterization replaces the diagnosed liquid water path of CCM3 with an evolution equation
for one additional predicted variable, the sum of liquid and ice phase condensate. It is assumed
to have a negligible fall velocity and is suspended within a parcel. It is assumed to be sufficiently
short lived that resolved (i.e. advective) processes have little influence upon it, but unresolved
processes (i.e. convective and turbulent processes in the boundary layer) can effect it. Advection
by resolved processes can be enabled with a switch. The condensate can evaporate back into
the environment or be converted to a precipitating form depending upon its in-cloud value and
the forcing by other atmospheric processes. The precipitate is assumed to be either rain above
a freezing temperature or a graupel-like snow below the freezing point. The precipitating snow
and rain are treated in diagnostic form, i.e. their time derivative has been neglected.
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The parameterization calculates the condensation rate more consistently with the change in
fractional cloudiness and in-cloud condensate than the previous CCM3 formulation. Changes in
water vapor and heat in a grid volume are treated consistently with changes to cloud fraction
and in-cloud condensate. Condensate can form prior to the onset of grid-box saturation and
can require a significant length of time to convert (via the cloud microphysics) to a precipitable
form. Thus a substantially wider range of variation in condensate amount than in the CCM3 is
possible.

The new parameterization adds significantly to the flexibility in the model and to the range of
scientific problems that can be studied. This type of scheme is needed for quantitative treatment
of scavenging of atmospheric trace constituents and cloud aqueous and surface chemistry. The
addition of a more realistic condensate parameterization closely links the radiative properties
of the clouds and their formation and dissipation. These processes must be treated for many
problems of interest today (e.g. anthropogenic aerosol-climate interactions).

The parameterization has two components: 1) a macroscale component that describes the
exchange of water substance between the condensate and the vapor phase and the associated
temperature change arising from that phase change [Zhang et al., 2003]; and 2) a bulk mi-
crophysical component that controls the conversion from condensate to precipitate [Rasch and
Kristjansson, 1998]. These components are discussed in the following two sections.

4.3.2 Description of the macroscale component

As in Sundqvist [1988] and Rasch and Kristjansson [1998], the controlling equations for the
water vapor mixing ratio, temperature, and total cloud water are written as

% —A,-Q+E, (4.109)
orT L

—=A — — F 4.11
6t T+ Cp(Q r) ( 0)
A A +Q-R (4.111)
8t — 44 1 .

where A,, Ar, and A; are tendencies of water vapor, temperature, and cloud water from processes
other than large-scale condensation and evaporation of cloud and rain water. A,, Ay and A4,
include advective, expansive, radiative, turbulent, and convective tendencies. The convective
tendencies include evaporation of convective cloud and convective rain water. For simplicity,
all these processes are collectively called advective tendencies. They are assumed to be uniform
across the whole model grid cell, although this assumption can be relaxed as discussed in Zhang
et al. [2003]. @ is the grid-averaged net stratiform condensation of cloud water (condensation
minus evaporation). E,. is the grid-averaged evaporative rate of rain and snow water. R; is
the conversion rate of cloud water to rain and snow water. This section is devoted to the
determination of the term @ in equations (4.109)—(4.111).
The controlling equation of relative humidity U, when written on a pressure surface, can be
derived from (4.109) and (4.110) as
W _ a0 9T (4.112)
ot ot ot
= ad, — fAr —7(Q - E,) (4.113)

88



where

a=—, (4.114)
gs
q 9g;
B = 20T (4.115)
L
y=a+—0. (4.116)

Cp

Note that «, [, and ~ are all positive. They can be viewed as the efficiencies of moisture
advection, cold advection, and net evaporation in changing the relative humidity U. Changing
U can alter the fractional cloud cover. As in Sundqvist [1988] and Rasch and Kristjansson [1998],
ice saturation is not separately considered here; rather, it is approximated by a weighted average
¢s(T') of the saturation mixing ratios over ice and water. The dependence of g5 on pressure is
not made explicit since pressure enters into the calculation only as a parameter.

Equations (4.109)—(4.113) are applicable on both the grid scale and sub-grid scale as long
as @), E., and R; are appropriately defined. In the following, a hat denotes variables in the
cloudy portion of a grid box to distinguish them from variables of the whole grid box, and C
denotes the fractional cloud coverage. For the portion of the grid box that is cloudy before and
after the calculation of fractional condensation (i.e., the cloudy area that does not experience
clear-cloudy conversion), equation (4.113) becomes

O!Aq _BAT —’,S/QA = 0.

This follows from the assumption that £, = 0 and U =1 in the saturated cloud interior. Thus
the condensation rate in this portion of the grid box is

~ A A

A, — BAr

O=20a " POT (4.117)
Y
and the in-cloud condensate equation becomes
ol . ad,—BAp
—=A+ -1 " _R. 4.118
o~ B : (4118)
Since the total cloud water can be written as [ = Cl , it follows that
ol ol ..oc
—=C=+1"— 4.11
o=t (4.119)

The symbol [* denotes the mean cloud water of the newly formed or dissipated clouds within a
time step. The first term on the right hand side of the above equation represents the evolution
of cloud water within existing clouds, and the second term represents the change in cloud water
associated with expansion and contraction of cloud boundaries. Theoretically, newly formed or
dissipated clouds should have zero cloud water content, except for detrained cloud from cumulus.
However, because of the finite time step in the integration of the cloud water equation, the second
term may be nonzero. Rasch and Kristjdnsson [1998] set I*=1 , and the same closure is used in
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CAM2. Inserting (4.118) and the relations R; = CR, as well as Ap = AT, A, = flq, and A, = A,
into (4.111) yields:
ZA* ac O,/Aq - ,BAT

o = (1-0A+Q-C(—7—) (4.120)

This equation states that the condensation rate is linked with fractional cloudiness change as
required by the total water budget. Equation (4.120) is not integrated in the present formulation.
Instead, it is used to calculate the condensation rate as follows.

The fractional cloud cover and grid-scale relative humidity are related by

¢ =C(U,b) (4.121)

where b denotes a generic variable describing vertical stability, local Richardson number, cumulus
mass flux, etc. The term b varies with space and time. This equation is assumed to be valid when
the relative humidity U is larger than a threshold value Uyg, which is the minimum grid-scale
relative humidity at which clouds are present.

Taking partial derivatives of the equation (4.121) with respect to time gives

oC _ ocoU o ob
gt oU ot 0bot
With the definitions
_oc

and Fo= U (4.122)
oCc. ., 0C . .0b
F, = [(%)/(@HE ; (4.123)
the time derivative of cloud amount becomes
ocC oU
-1 =" 4 F 4.124
by =30 T (4.124)

It is assumed that F;, and Fj can be calculated without the knowledge of the condensation rate.
Substituting the relative humidity equation (4.113) into equation (4.124) yields

ac
ot
Eliminating 0C/0t between (4.120) and (4.125) gives

Fl'— =ad,— BAr —v(Q — E,) + F, (4.125)

Q = Cqu - CTAT — ClAl + C,,-E,,- + JZ*Fb (4126)
with

Cg= -C+ (1 - lc) oal* (4.127)
y v

or =5+ (1-28¢) opir (4.128)
v B

a=(1-C)oF;! (4.129)

¢y = onl* (4.130)
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where

1

o=—. (4.131)
F7 1+l

All coefficient variables are positive, and all are non-dimensional except for Cr and [ which
have units of 1/K. Equation (4.126) is valid when U > Uy. The terms in the equation have the
following physical interpretation. Moist advection (positive A,) and cold advection (negative
Ar) produce condensation. Evaporation of rain/snow water (positive F,) also produces cloud
condensation because it changes the mean relative humidity, thus increasing cloud amount and
cloud water. Import of cloud water (positive 4;) leads to evaporation. The reason is that it
increases cloud fraction, thus requiring a higher clear-sky relative humidity which has to be
generated by evaporation. The increase of cloud fraction from a non-water source through Fj,
however, requires condensation.

To evaluate F,, the cloud routine is called twice each time step with relative humidity
perturbed by one percent (indicated by a * superscript) while holding all other variables in the
model fixed. Thus,

_AC  Cr-=C

TAU U-U

In this implementation, all b variables are assumed fixed in the stratiform condensation cal-
culation, and therefore F, = 0. Since a top-hat distribution is adopted for the cloud water
distribution, I* = [.

The effects of convection on cloud cover are introduced through the convective tendencies.
Detrainment of cloud water from the Zhang and McFarlane [1995] convection scheme is used as
input in the calculation of A;, Ar and A,. In the original version of the Zhang and McFarlane
[1995] parameterization, the detrained cloud water from convection was assumed to evaporate.

The calculation is carried out by categorizing each model grid into one of four cases:

F,

o If U =1, Q is calculated from (4.117);

o if 1 > U > Uy, @ calculated from (4.126);
o if U < Uy but I >0, QQ =—I; and

e if U< Uypandl=0,Q =0.

The use of the threshold relative humidity follows from equation (4.121).

4.3.3 Description of the microscale component

The condensation process has been determined by forcing terms and closure assumptions de-
scribed in the previous subsection rather than an approach in which a supersaturation is calcu-
lated and CCN can nucleate and grow. Therefore the whole microphysical calculation reduces to
modeling the process of conversion of cloud water to precipitating water. The microscale com-
ponent of the parameterization determines the evaporation Er and conversion of condensate to
precipitate R;.

The formulation follows closely the bulk microphysical formulations used in smaller scale
cloud resolving models rather than those of Sundqvist [1988]. A method based upon cloud
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resolving models makes an explicit connection between the formation of precipitate and individ-
ual physical quantities like droplet number, shape of size distribution of precipitate, etc. It also
separates the various processes contributing to precipitation more strongly, and makes diagnosis
more straightforward. Because these quantities must represent an ensemble of cloud types in
any given region (or grid volume) the new formulation still involves gross approximations, but
it is much easier to control the parameterizations and understand their individual impact when
the processes are isolated from each other.

As in Sundqvist [1988], the parameterization is expressed in terms of a single predicted
variable representing total suspended condensate. Within the parameterization, however, there
are four types of condensate expressed as mixing ratios: a liquid and ice phase for suspended
condensate with no appreciable fall speed (¢ and ¢;) and a liquid and ice phase for falling
condensate, i.e. precipitation (g. and ¢5). Currently, only the total suspended condensate
(gc = q + qi) is integrated in time; the other quantities are diagnosed as described below.
The latent heat of fusion is ignored in this form of the parameterization. Before beginning the
microphysical calculation, the total condensate is decomposed into the liquid and ice phases
assuming the fraction of ice is

Wice = max{O, min|[1., (T} — T)/QO]} (4.132)

where T is the grid volume temperature and 7y (= 273.16K) is the temperature at which
freezing begins. Thus, w;. is assumed to vary linearly between the freezing point and —20°C.
Observations and more detailed microphysical models show a broad range of ratios of liquid to
ice in clouds, and it is difficult to be certain of an appropriate range for this parameter. The
in-cloud liquid water mixing ratio is

qu = (1 - wice)Qc/C (4133)
and the in-cloud ice water mixing ratio is assumed to be

(ji = (wice)qc/c- (4134)

The precipitate falling from above is assumed to be snow (rain) at temperatures below (above)
freezing. The grid volume mean quantities have been converted to in-cloud quantities by dividing
the mean mixing ratios by the cloud fraction.

E, is parameterized as in Sundqvist [1988]:

E, = kg(1 — RH)(1 — C)P°3, (4.135)

where kg = 10 5ms /2kg™'/2, and RH is the relative humidity. The factor 1 — RH expresses
the subsaturation, while the 1 — C factor expresses the fact that evaporation only takes place in
the cloud-free part of the grid box. The term P represents the flux of precipitation coming into
the grid box from above, and assumes maximum cloud overlap.

It is assumed that there are five processes that convert condensate to precipitate:

e The conversion of liquid water to rain (PWAUT) follows a formulation originally suggested
by Chen and Cotton [1987]:

PWAUT = C, 42 pa/ pu(Gipa) puN) Y2 H (rs — r31c). (4.136)
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Here p, and p, are the local densities of air and water respectively, and N is the assumed
number density of cloud droplets. Cjau = 0.5573k(3/4)%3(1.1)%, and k = 1.18 x 10° cm™!
sec™! is the Stokes constant. N is set to 400/cm? over land near the surface and to 150/cm?
over ocean. The number density varies linearly with distance from the nearest land point over a
transition region of 1000 km. The prescribed number density of warm (liquid) clouds over land
surfaces south of 60°S has the same value as that over pristine ocean surfaces to account for the
absence of aerosols over ice covered land surfaces in the southern hemisphere. The prescribed
number density of warm (liquid) clouds over sea ice is assumed to be 5 particles/cm®. This low
value was chosen to reduce the albedo of polar clouds and improve the model simulations made
with the coupled sea-ice model.

The terms r3; and r3,. are the mean volume radii of the droplets and a critical value below
which no auto-conversion is allowed to take place, respectively. H is the Heaviside function with
the definition H(x) = (0,1) for z(<,>)0. The volume radius 73 = [(3paq;)/(47Npy)]'/3. The
standard value for the critical mean volume radius at which conversion begins is 15um. Baker
[1993] has shown that this parameterization results in collection rates that far exceed those
calculated in more realistic stochastic collection models. This is because the parameterization is
based upon a collection efficiency corresponding to a cloud droplet distribution that has already
been substantially modified by precipitation. Austin et al. [1995] suggest that a much smaller
choice is appropriate prior to precipitation onset. Therefore the parameterization is adjusted by
making C) 4yt — 0.1C} 4, When the precipitation flux leaving the grid box is below 0.5 mm/day.

e The collection of cloud water by rain from above (PRACW) follows Tripoli and Cotton
[1980]

PRACW = Oracwp3/2quCIT (4137)

where Cpaey = 0.884(g/(py 2.7x1074))1/2571 is derived by assuming a Marshall-Palmer distribu-
tion of rainwater falling through a uniformly distributed cloud water field, and ¢, is determined
iteratively.

e The auto-conversion of ice to snow (PSAUT) is similar in form to that originally proposed
by Kessler [1969] for liquid processes and Lin et al. [1983] for ice. However, it includes a
temperature dependence similar to that proposed in Sundqvist [1988]

PSAUT = C’i,autH(Qi - qzc) (4138)

The rate of conversion of ice (Cj qut) to snow is set to 1073s7! when the ice mixing ratio exceeds
a critical threshold g;.. The threshold is set to 5.x10™* at 7= 0°C and 5. x 107% at T = —20°C.
The threshold varies linearly in temperature between these two limits.
e The collection of ice by snow (PSACI) follows Lin et al. [1983], although it has been
rewritten in the form:
PSACI = Csaceiin- (4139)

where e; (= 1) is an ice collection efficiency. The coefficient of collection is
Ciae = C7p38]5“5 (4.140)

Here, c5, ¢; and cg are constants arising from the assumed shape of the snow distribution.
The coefficients of the equation (4.140) arise from some algebraic manipulation of the expres-
sions appearing in Lin et al. [1983]. They in turn depend upon the specification for parameters
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describing an exponential size distribution for graupel-like snow. The parameter values used in
Lin et al. [1983] are adopted in the CAM2 implementation. The parameters are a slope param-
eter d = 0.25; an empirical parameter ¢ = 152.93 controlling the fall speed of graupel-like snow;
and the assumed integrated number density of snow N, = 3. x 1072. The constants appearing
in equation (4.140) can be expressed as

c¢; =mNgel'(3+d)/4 ( )
c2 = 6(mps Ns)***/ eI (4 + d) o] (4.142)
5= (3+d)/(4+d) (4.143)
co = (3+d)/4 (4.144)
o7 = c1py”cs’ [ (psNs)* (4.145)

and

s =—0.5/(4+d) . (4.146)

Here I' is the Gamma function, p, = 0.1 is the density of snow, and py = 1.275 x 1073 is
a reference air density at the surface. All constants have been expressed in CGS units. The
constants follow from integrating the geometric collection of a uniform distribution of suspended
cloud liquid or ice over the size distribution of snow.

The collection of liquid by snow (PSACW) also follows Lin et al. [1983]:

PSACW = Cyuceuiis. (4.147)

where e, is the water collection efficiency. Lohmann and Roeckner [1996] note that the work by
Levkov et al. [1992] suggests that the riming process is too efficient using the standard values.
There the collection efficiency is reduced by an order of magnitude to e,, = 0.1.

4.4 Dry Adiabatic Adjustment

If a layer is unstable with respect to the dry adiabatic lapse rate, dry adiabatic adjustment is
performed. The layer is stable if

oTr kT
of _ kL 4.148
o < 7 (4.148)
In finite—difference form, this becomes
Tk+1 T < 01k+1(Tk+1 + Tk) + (5, (4149)
where
Clp, = Pt = P8) (4.150)
2Dk 1172

If there are any unstable layers in the top three model layers, the temperature is adjusted
so that (4.149) is satisfied everywhere in the column. The variable J represents a convergence
criterion. The adjustment is done so that sensible heat is conserved,

ep(TeApk + To1 Apii1) = cp(TeApr + Thos1 APe1), (4.151)
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and so that the layer has neutral stability:
Tk:—l—l - Tk = Clk—l—l (Tk—l—l + Tk) . (4152)

As mentioned above, the hats denote the variables after adjustment. Thus, the adjusted tem-
peratures are given by

A Apy, Apit1
Tei1 = Ty + Tyiq, 4.153
ST Apri + ApkC2%1 ¢ Apers + ApC2yy T ( )
and
Tk = Czk—l—lTk—l—l; (4154)
where
1 = Clgn
C2 =~ 4.155
T 4 Clpn (4.155)

Whenever the two layers undergo dry adjustment, the moisture is assumed to be completely
mixed by the process as well. Thus, the specific humidity is changed in the two layers in a
conserving manner to be the average value of the original values,

Gre+1 = Gk = (QGe+18Pk+1 + G APE) / (APkt1 + Api). (4.156)

The layers are adjusted iteratively. Initially, 6 = 0.01 in the stability check (4.149). The column
is passed through from k£ = 1 to a user-specifiable lower level (set to 3 in the standard model
configuration) up to 15 times; each time unstable layers are adjusted until the entire column is
stable. If convergence is not reached by the 15th pass, the convergence criterion is doubled, a
message is printed, and the entire process is repeated. If § exceeds 0.1 and the column is still
not stable, the model stops.

As indicated above, the dry convective adjustment is only applied to the top three levels
of the standard model. The vertical diffusion provides the stabilizing vertical mixing at other
levels. Thus, in practice, momentum is mixed as well as moisture and potential temperature in
the unstable case.

4.5 Parameterization of Cloud Fraction

Cloud amount (or cloud fraction), and the associated optical properties, are evaluated via a
diagnostic method in CAM2. The basic approach is similar to that employed in the CCM2
and CCM3. The diagnosis of cloud fraction is a generalization of the scheme introduced by
Slingo [1987], with variations described in Hack et al. [1993]; Kiehl et al. [1998], and Rasch and
Kristjansson [1998]. Cloud fraction depends on relative humidity, vertical velocity, atmospheric
stability and convective mass fluxes. Three types of cloud are diagnosed by the scheme: low-
level marine stratus (Cyz), convective cloud (C..), and layered cloud (C.). Clouds associated
with convective anvils are made proportional to the rate of mass flux detrained from convective
updrafts above 500 mb. Layered clouds form when the relative humidity exceeds a threshold
value which varies according to pressure, stability, and large scale vertical velocity. The diagnoses
of these cloud types are described in more detail in the following paragraphs.
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Marine stratocumulus clouds are diagnosed using an empirical relationship between marine
stratocumulus cloud fraction and the stratification between the surface and 700mb derived by
Klein and Hartmann [1993]. The CCM3 parameterization for stratus cloud fraction over oceans
has been replaced with

Cst = min{l., max [0., (f700 — 05) * .057 — .5573] } (4.157)

0700 and 6 are the potential temperatures at 700 mb and the surface, respectively.

To tie diagnosis of cirrus anvils very strongly to the regions of convective outflow, convective
cloud fraction is proportional to the rate at which mass is detrained from the parameterized
convective updrafts above 500mb:

Ceir = min{RH, min 1., max(0., D, % 5. X 1045)]} (4.158)

where RH is the local relative humidity, and D, is the rate of detrainment of mass (in units of
s7!) from the convective updraft. This results in a strong correlation between deep convection
and convective clouds.

The remaining cloud types are diagnosed on the basis of RH. Frontal and tropical low cloud
fraction, ¢.e., clouds occurring below 750 mb, are diagnosed according to

0 w > We
_ RH—RH!9® 2
Co={ () (MEEER) 0<w<w (4.159)
RH—RH'® \?
(i) “ <0

The parameter w, is set to 50 mb/day, allowing low level clouds to form under weak sub-
sidence conditions. The parameter RH!", the relative humidity threshold for low cloud for-
mation, is assumed to be 0.9 (i.e., 90%) over open ocean and 0.8 over land. This distinction
is made to account for the increased sub-grid-scale variability of the water vapor field due to
inhomogeneities in the land surface properties and subgrid orographic effects.

Middle and upper level clouds are defined to occur between 750 mb and the uppermost model
level. This change relaxes an earlier constraint that clouds form only in the troposphere. Mid-

and high-level stratified (or layered) cloud amounts are determined from the relation

RH' — RHym \|*
Cc = [maX ( 0 y W)} y (4160)
high N?
. = — — 9 — mi - -
RHyp, 999 — (1 - RH_T") [1 min (1, 35 x 104)] , (4.161)

where N? is the square of the Brunt-Viisilla frequency:

2 90
N2=_9P% 4162
5 o (4.162)

96



The parameter RH™""  the relative humidity threshold for mid-level and high cloud formation,

min

is assumed to be 0.9 (i.e., 90%). The cloud cover in any layer is finally defined as
C. = min [0.999, (1.0 — Ceonv)Ce + Ceonv | (4.163)

The total cloud C;,; within each volume is then diagnosed as
Ctot = maX(CCa Ccir; Cst)a

This is equivalent to a maximum overlap assumption of cloud types within each gridbox. The
condensate value is assumed uniform within any and all types of cloud within each grid box.

4.6 Parameterization of Shortwave Radiation

4.6.1 Diurnal cycle

With standard name-list settings, both the longwave and shortwave heating rates are evaluated
every model hour. Between hourly evaluations, the longwave and shortwave fluxes and heating
rates are held constant.

In CAM2, insolation is computed using the method of Berger [1978]. Using this formulation,
the insolation can be determined for any time within 10°® years of 1950 AD. This facilitates using
CAM?2 for paleoclimate simulations. The insolation at the top of the model atmosphere is given
by

Sr=S8yp 2 cosu, (4.164)

where Sy is the solar constant, p is the solar zenith angle, and p~2 is the distance factor (square
of the ratio of mean to actual distance that depends on the time of year). In the standard
configuration, Sy = 1367.0 W/m?2. We represent the annual and diurnal cycle of solar insolation
with a repeatable solar year of exactly 365 days and with a mean solar day of exactly 24 hours,
respectively. The repeatable solar year does not allow for leap years. The expressions defining
the annual and diurnal variation of solar insolation are:

cos i1 = sin ¢ sin § — cos ¢ cos 6 cos(H ) (4.165)
d = arcsin(sin e sin \) (4.166)
1-—¢?
= 4.1
P=1 e cos(A — @) (4.167)
o=T+1v (4.168)
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where

¢ = latitude in radians

0 = solar declination in radians
H = hour angle of sun during the day

€ = obliquity

A = true longitude of the earth relative to vernal equinox (4.169)
e = eccentricity factor

@ = longitude of the perihelion + 180°

IT = longitude of perihelion based on the fixed equinox

1) = general precession .

Note that II is denoted by 7 in Berger [1978].
The hour angle H in the expression for cos ;4 depends on the calendar day d as well as model
longitude:

0
H=2 4.170
7r<d+3600>, ( )

where # = model longitude in degrees starting from Greenwich running eastward. Note that the
calendar day d varies continuously throughout the repeatable year and is updated every model
time step. The values of d at 0 GMT for January 1 and December 31 are 0 and 364, respectively.
This would mean, for example, that a model calendar day d having no fraction (such as 182.00)
would refer to local midnight at Greenwich, and to local noon at the date line (180° longitude).

The obliquity € may be approximated by an empirical series expansion of solutions for the

Earth’s orbit
47

€e=¢" + ZA] COS (f] t+ (SJ) (4171)
j=1
where A;, f;, and ; are determined by numerical fitting. The term €* = 23.320556°, and ¢ is
the time (in years) relative to 1950 AD.
Since the series expansion for the eccentricity e is slowly convergent, it is computed using

e= \/(e cosIT)% + (esin 1) (4.172)

The terms on the right-hand side may also be written as empirical series expansions:

19
e{ ETE }H: > M { ZTE }(gjt+5j) (4.173)
7j=1

where M;, g;, and j3; are estimated from numerical fitting. Once these series have been com-
puted, the longitude of perihelion II is calculated using

e sinll
IT = arct 4.174
arctan (e cosH) ( )
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The general precession is given by another empirical series expansion

78
Y=9t+C+ Y Fysin(fjt+0)) (4.175)

=1

where ¢ = 50.439273", ¢ = 3.392506°, and Fy, f;, and &’ are estimated from the numerical
solution for the Earth’s orbit.

The calculation of A requires first determining two mean longitudes for the orbit. The mean
longitude Ao at the time of the vernal equinox is :

Amo = 2 { (g + %j) (1 + B) sin(@)

¢ (% + 5) sin(2@) (4.176)

4
+ ? (% +5) sin(BcD)}

where 5 = 4/1 — e2. The mean longitude is

27 (d — dye)

An = A
ot 365

(4.177)

where d,. = 80.5 is the calendar day for the vernal equinox at noon on March 21. The true
longitude A is then given by:

?
A=\, + (26— Z) sin(\,, — @)
5er | ~
+ — sin 2\ — ©)] (4.178)
13¢?

+ 12

sin [3(A, — @)]

The orbital state used to calculate the insolation is held fixed over the length of the model
integration. This state may be specified in one of two ways. The first method is to specify
a year for computing ¢. The value of the year is held constant for the entire length of the
integration. The year must fall within the range of 1950 & 10°. The second method is to specify
the eccentricity factor e, longitude of perihelion @ — 180°, and obliquity €. This set of values
is sufficient to specify the complete orbital state. Settings for AMIP II style integrations under
1995 AD conditions are € = 23.4441, e = 0.016715, and & — 180 = 102.7.
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4.6.2 Formulation of shortwave solution

The 6-Eddington approximation of Joseph et al. [1976] and Coakley et al. [1983] has been
adopted and is described in Briegleb [1992]. This approximation has been shown to simulate

quite well the effects of multiple scattering. The major differences between the shortwave pa-
rameterizations in CCM3 and CAM2 are

1. the new treatment of cloud vertical overlap [Collins, 2001];
2. updated parameterization for near-infrared absorption by water vapor; and
3. inclusion of a prescribed aerosol data for computing shortwave aerosol radiative forcing.

The solar spectrum is divided into 19 discrete spectral and pseudo-spectral intervals (7 for
O3, 1 for the visible, 7 for H,O, 3 for COs, and 1 for the near-infrared following Collins [1998]).
The CAM2 model atmosphere consists of a discrete vertical set of horizontally homogeneous
layers within which radiative heating rates are to be specified (see Figure 3.1). Each of these
layers is considered to be a homogeneous combination of several radiatively active constituents.
Solar irradiance, surface reflectivity for direct and diffuse radiation in each spectral interval,
and the cosine of the solar zenith angle are specified. The surface albedo is specified in two
wavebands (0.2-0.7 pym, and 0.7-5.0 pym) and distinguishes albedos for direct and diffuse incident
radiation. Albedos for ocean surfaces, geographically varying land surfaces, and sea ice surfaces
are distinguished.

The method involves evaluating the jJ-Eddington solution for the reflectivity and transmis-
sivity for each layer in the vertical under clear and overcast conditions. The layers are then
combined together, accounting for multiple scattering between layers, which allows evaluation
of upward and downward spectral fluxes at each interface boundary between layers. This pro-
cedure is repeated for each spectral or pseudo-spectral interval and binary cloud configuration
(see “Cloud vertical overlap” below) to accumulate broad band fluxes, from which the heat-
ing rate can be evaluated from flux differences across each layer. The J-Eddington scheme is
implemented so that the solar radiation is evaluated once every model hour (in the standard
configuration) over the sunlit portions of the model earth.

The 6-Eddington approximation allows for gaseous absorption by Oz, COs, Oy, and H50.
Molecular scattering and scattering/absorption by cloud droplets and aerosols are included.
With the exception of HyO, a summary of the spectral intervals and the absorption/scattering
data used in the formulation are given in Briegleb [1992] and Collins [1998]. Diagnostic cloud
amount is evaluated every model hour just prior to the solar radiation calculation.

The absorption by water vapor of sunlight between 1000 and 18000 cm~! is treated using
seven pseudo-spectral intervals. A constant specific extinction is specified for each interval.
These extinctions have been adjusted to minimize errors in heating rates and flux divergences
relative to line-by-line (LBL) calculations for reference atmospheres [Anderson et al., 1986]
using GENLN3 [Edwards, 1992] combined with the radiative transfer solver DISORT2 [Stamnes
et al., 1988]. The coefficients and weights have the same properties as a k-distribution method
[Lacis and Oinas, 1991], but this parameterization is essentially an exponential sum fit (e.g.,
Wiscombe and Evans [1977]). LBL calculations are performed with the HITRAN 2000 line
database [Rothman et al., 2003] and the Clough, Kneizys, and Davies (CKD) model version
2.4.1 [Clough et al., 1989]. The Rayleigh scattering optical depths in the seven pseudo-spectral
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intervals have been changed for consistency with LBL calculations of the variation of water-vapor
absorption with wavelength. The updated parameterization increases the absorption of solar
radiation by water vapor relative to the treatment used in CCM and CAM since its introduction
by Briegleb [1992].

For some diagnostic purposes, such as estimating cloud radiative forcing [Kiehl and Ra-
manathan, 1990] a clear-sky absorbed solar flux is required. In CAM2, the clear-sky fluxes and
heating rates are computed using the same vertical grid as the all-sky fluxes. This replaces the
2-layer diagnostic grid used in CCM3.

4.6.3 Aerosol properties and optics
Introduction

The treatment of aerosols in CAM2 replaces the uniform background boundary-layer aerosol used
in previous versions of CAM2 and CCM. The new treatment introduces four chemical species
of aerosol, including sea salt, soil dust, black and organic carbonaceous aerosols, and sulfate.
The optics for the globally uniform aerosol were identical to the sulfate aerosols described by
Kiehl and Briegleb [1993]. In the visible, the uniform aerosol was essentially a conservative
scatterer. The new aerosols include two species, the soil dust and carbonaceous types, which
are strongly absorbing in visible wavelengths and hence increase the shortwave diabatic heating
of the atmosphere.

The three-dimensional time-dependent distributions of the four aerosol species and the op-
tics for each species are loaded into CAM2 during the initialization process. This provides
considerable flexibility to:

e Change the speciated aerosol climatology as aerosol modeling improves;
e Vary the aerosol distributions for climates different from present-day conditions;

e Examine the effects of individual aerosol species and arbitrary combinations of aerosol
species; and

e Change aerosol optical properties.

In its present configuration, CAM2 does not treat the radiative effects of aerosols on longwave
fluxes and heating rates. The standard version of the model only includes the direct and semi-
direct effects of aerosols on shortwave fluxes and heating rates. The first indirect effect, or
Twomey et al. [1984] effect, is not included in the standard version of CAM2.

Description of aerosol climatology

The annually-cyclic aerosol climatology consists of three-dimensional, monthly-mean distribu-
tions of aerosol mass for:

e sulfate from natural and anthropogenic sources;
e sea salt;

e black and organic carbon derived from natural and anthropogenic sources; and
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e soil dust

There are four size categories of dust spanning diameters from 0.01 to 10 ym, and the black and
organic carbon are represented by two tracers each for the hydrophobic (new) and hydrophilic
(aged) components. The climatology therefore contains ten types of aerosol: sea salt, four size
bins of soil dust, sulfate, new and aged black carbon, and hydrophobic and hydrophilic organic
carbon.

The climatology is produced using an aerosol assimilation system [Collins et al., 2001, 20025]
integrated for present-day conditions. The system consists of the Model for Atmospheric Chem-
istry and Transport (MATCH) [Rasch et al., 1997] and an assimilation of satellite retrievals
of aerosol optical depth. MATCH version 4 is integrated using the National Centers for Envi-
ronmental Prediction (NCEP) meteorological reanalysis at T63 triangular truncation [Kalnay
et al., 1996]. The satellite estimates of aerosol optical depth are from the NOAA Pathfinder 1T
data set [Stowe et al., 1997].

The formulation of the sulfur cycle is described in Barth et al. [2000] and Rasch et al. [2000].
The emissions inventory for SOy is from Smith et al. [2001]. The sources for mineral dust are
based upon the approach of Zender et al. [2003] and Mahowald et al. [2003]. The emissions of
carbonaceous aerosols include contributions from biomass burning [Liousse et al., 1996], fossil
fuel burning [Cooke et al., 1999], and a source of natural organic aerosols resulting from terpene
emissions. The vertical profiles of sea salt are computed from the 10m wind speed [Blanchard
and Woodcock, 1980].

The climatology is stored on the native spatial grid of the NCEP reanalysis'. The monthly-
mean mass path for each aerosol species in each layer is computed in units of kg/m?. During
the initialization of CAM2, the climatology is laterally interpolated onto the CAM2 horizontal
grid and temporally interpolated from monthly-mean to mid-month values. At each CAM2 time
step, the mid-month values bounding the current time step are vertically interpolated onto the
pressure grid of CAM2 and then time interpolated to the current time step. The interpolation
scheme in CAM?2 preserves the aerosol masses for each species to 1 part in 107 relative to the
climatology, and it is guaranteed to yield positive definite mass-mixing ratios for all aerosols.

Calculation of aerosol optical properties

The three intrinsic optical properties stored for each of the ten aerosol types are specific ex-
tinction, single scattering albedo, and asymmetry parameter. These properties are computed
on the band structure of CAM2 using Chandrasekhar weighting with spectral solar insolation.
The aerosol types affected by hygroscopic growth are sulfate, sea salt, and hydrophilic organic
carbon. In previous versions of CCM and CAM2, the relative humidity was held constant in
calculations of hygroscopic growth at 80%. In CAM2, the actual profiles of relative humidity
computed from the model state each radiation time step are used in the calculation.

The optics for black and organic carbon are identical to the optics for soot and water-soluble
aerosols in the Optical Properties of Aerosols and Clouds (OPAC) data set [Hess et al., 1998].
The optics for dust are derived from Mie calculations for the size distribution represented by
each each size bin [Zender et al., 2003]. The Mie calculations for sulfate assume that it is
comprised of ammonium sulfate with a log-normal size distribution. The dry size parameters

LUpdate if this is moved outside CAM.
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are XX and YY?2. The optical properties in the seven HoO pseudo-spectral intervals are averaged
consistently with LBL calculations of the variation of water-vapor absorption with wavelength.
This averaging technique preserves the cross correlations among the spectral variation of solar
insolation, water vapor absorption, and the aerosol optical properties.

The bulk formulae of Cess [1985] are used to combine the optical properties of the individ-
ual aerosol species into a single set of bulk aerosol extinctions, single-scattering albedos, and
asymmetry parameters for each layer.

Calculation of shortwave effects and radiative forcing

CAM2 includes a mechanism to scale the masses of each aerosol species by user-selectable
factors at runtime. This provides the flexibility to consider the climate effects of an arbitrary
combination of the aerosol species in the climatology. It also facilitates simulation of climates
different from present-day conditions for which the only information available is the ratio of
globally averaged aerosol emissions or atmospheric loadings.

CAM2 also includes a run-time option for computing a diagnostic set of shortwave fluxes
with an arbitrary combination of aerosols multiplied with a separate set of user-selectable scale
factors. This option can be used to compute, for example, the aerosol radiative forcing relative
to an atmosphere containing no aerosols.

The diagnostic fields produced the aerosol calculation include the column-integrated optical
depth and column-averaged single-scattering albedo, asymmetry parameter, and forward scat-
tering (in the J-Eddington approximation) for each aerosol species and spectral interval. These
fields are only computed for illuminated grid points, and for non-illuminated points the fields
are set to zero. The fraction of the time that a given grid point is illuminated is also recorded.
Time averages of, for example, the optical depth can be obtained by dividing the time-averaged
optical depths in the history files by the corresponding daylit fractions.

Globally uniform background sulfate aerosol

The option of introducing a globally uniform background sulfate aerosol is retained, although
by default the optical depth of this aerosol is set to zero. Its optical properties are computed
using the same sulfate optics as are used for the aerosol climatology. However, for consistency
with the uniform aerosol in previous versions of CAM2 and CCM3, the relative humidity used
to compute hygroscopic growth is set to 80%.

4.6.4 Cloud Optical Properties

Parameterization of effective radius

Observational studies have shown a distinct difference between maritime and continental effec-
tive cloud drop size, r., for warm clouds. For this reason, the CAM2 differentiates between the
cloud drop effective radius for clouds diagnosed over maritime and continental regimes [Kiehl
et al., 1994]. Over the ocean, the cloud drop effective radius for liquid water clouds, 7y, is

21l in details from David’s table
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specified to be 10um, as in the CCM2. Over land masses r¢, is determined using

5 pm —-10°C < T
Tee =4 5—5(5H2) pm —30°C <T < -10°C (4.179)
Tei -30°C > T

An ice particle effective radius, r.;, is also diagnosed by CCM3, which at the moment amounts
to a specification of ice radius as a function of normalized pressure

] high
rei p/ps > pr’
Tei = . , high , (4.180)
s)— high
ret = (g = rg) [7%?93_207” | pm p/py <ol

where 77 = 30um, 77" = 10um, p'*" = 0.4, and p{* = 0.0. The fraction of the total cloud

et (542
water in the form of ice particles is then determined using

0 -10°C < T
fice = ¢ —0.05 (T'+10) —30°C <T < -10°C (4.181)
1 —-30°C >T

Dependencies involving effective radius

For cloud scattering and absorption, the radiative parameterization of Slingo [1989] for liquid
water droplet clouds is employed. In this parameterization, the optical properties of the cloud
droplets are represented in terms of the prognosed cloud water path (CWP, in units of kg m™2)
and effective radius 7. = [ r3n(r)dr/ [ r?n(r)dr, where n(r) is the cloud drop size distribution
as a function of radius r.

Cloud radiative properties explicitly account for the phase of water. For shortwave radiation
we use the following generalization of the expression used by Slingo [1989] for liquid water
clouds. The cloud liquid optical properties (extinction optical depth, single scattering albedo,
asymmetry parameter and forward scattering parameter) for each spectral interval are defined
as

7

b
¢ = CWP [a} + —’] (1= fice) (4.182)
el
wf = 1—d —dirg (4.183)
9 = e+ fira (4.184)
o= g (4.185)

where superscript ¢ denotes spectral interval. The spectral intervals and coefficients for liquid
water are defined in Slingo [1989].
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The radiative properties of ice cloud are defined by

R
n = CWP {ai-Jrr—f] fice (4.186)
wf = 1—c —dir (4.187)
g = e+ fire (4.188)
ffo= (g (4.189)

where the subscript ¢ denotes ice radiative properties. The values for the coefficients a; — f; are
based on the results of Ebert and Curry [1992] for the four pseudo-spectral intervals (.25-.69 pm,
.69-1.19 ym, 1.19-2.38 pm, and 2.38-4.00 ym) employed in the CAM2 shortwave radiation model.
Note that when 0 < fi,e < 1, then the combination of these expressions in (4.196 - 4.199)
represent the radiative properties for a mixed phase cloud.

4.6.5 Cloud vertical overlap

The treatment of cloud vertical overlap follows Collins [2001]. The overlap parameterization is
designed to reproduce calculations based upon the independent column approximation (ICA).
The differences between the results from the new parameterization and ICA are governed by a
set of parameters in the shortwave code (Table 4.1 on page 110). The differences can be made
arbitrarily small with appropriate settings of these parameters. The current parameter settings
represent a compromise between computational cost and accuracy.

The new parameterizations can treat random, maximum, or an arbitrary combination of
maximum and random overlap between clouds. The type of overlap is specified with the same
two variables for the longwave and shortwave calculations. These variables are the number of
random-overlap interfaces between adjacent groups of maximally-overlapped layers and a vector
of the pressures at each of the interfaces. The specification of the overlap is completely separated
from the radiative calculations, and if necessary the type of overlap can change at each grid cell
or time step.

Conversion of cloud amounts to binary cloud profiles

The algorithm for cloud overlap first converts the vertical profile of partial cloudiness into an
equivalent collection of binary cloud configurations. Let C(7) be the fractional amount of cloud
in layer ¢ in a profile with K layers. The index 7 = 1 corresponds to the top of the model
atmosphere and ¢+ = K corresponds to the layer adjacent to the surface. Let N, be the number
of maximally-overlapped regions in the column separated by random-overlap boundaries. If the
entire column is maximally overlapped, then N,, = 1, and if the entire column is randomly
overlapped, then N, = K. Each region j includes all layers 7 between 7; i, and ¢ max. Within
each region, identify the n; unique, non-zero cloud amounts and sort them into a descending
list Cj,kj with 1 < k; < n;. Note than in CAM2, cloud amounts are not allowed to be identically
equal to 1. It is convenient to define C;o = 1 and C; ;11 = 0. By construction Cjx, 1 > Cj; for
1 S I{J]’ S n; + 1.

The binary cloud configurations are defined in terms of the sorted cloud amounts. The
number of unique cloud binary configurations in region j is n; + 1. The kjt-h binary cloud

105



configuration éj,kj in region j is given by

5 a1 i 4 min <4 <jmax and C(2) > Cjk, 1
Cia; (1) = { 0 otherwise ' (4.190)
with 1 < k; < mn; + 1. The fractional area of this configuration is
Ajr; = Cigs—1 = Ci, (4.191)

The binary cloud configurations for each maximum-overlap region can be combined into cloud
configurations for the entire column. Because of the random overlap boundaries between regions,
the number of column configurations is

Nm
Ne= ][]y +1) (4.192)
i'=1
Let C[ky, ..., ky, | represent the column configuration with (kal in region 1, C~2,k2 in region 2,

etc. The vertical profile of binary cloud elements is given by:

Clky,. .., kn, (3) = Zm:éjl,kj, (4) (4.193)

The area of this configuration is

Nm
Alky, k) =TT A, (4.194)
i'=1

Maximum-random overlap assumption

The cloud overlap for radiative calculations in CAM2 is maximum-random (M/R). Clouds in
adjacent layers are maximally overlapped, and groups of clouds separated by one or more clear
layers are randomly overlapped. The two overlap parameters input to the radiative calculations
are the number of random-overlap interfaces, which equals N,,, and a vector of pressures p
at each random-overlap interface. These parameters are determined for each grid cell at each
radiation time step. Suppose there are M > 0 groups of vertically contiguous clouds in a given
grid cell. The first parameter N,, = max(M,1). Let p; represent the pressure at the bottom
interface of each group of contiguous clouds, and let p; denote the surface pressure. Both j and
p; increase from the top of the model downward. Then

- [ps] it M <1
- : 4.195
P { [pl’ 7pM—17p5] ifM>2 ( )

Low, medium and high cloud overlap assumptions (diagnostics)

For diagnostic purposes, the CAM2 calculates three levels of cloud fraction assuming the same
maximum-random overlap as in the radiative calculations. These diagnostics, denoted as low,
middle, and high cloud, are bounded by the pressure levels p; to 700 mb, 700 mb to 400 mb,
and 400 mb to the model top.
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Computation of fluxes and heating rates with overlap

The solution for the shortwave fluxes is calculated by determining all possible arrangements of
binary clouds which are consistent with the vertical profile of partial cloudiness and the overlap
assumption. The shortwave radiation within each of these configurations is calculated using the
same ¢-Eddington solver introduced in CCM3 [Briegleb, 1992]. The all-sky fluxes and heating
rates for the original profile of partial cloudiness are calculated as weighted sums of the corre-
sponding quantities from each configuration. The weights are equal to the horizontal fractional
area occupied by each configuration. The number of configurations is given by eqn. (4.192), and
the area of each configuration is given by eqn. (4.194). There are two steps in the calculations:
first, the calculation of the cloud-free and overcast radiative properties for each layer, and sec-
ond the combination of these properties using the adding method to calculate fluxes. These two
processes are described below.

4.6.6 ¢-Eddington solution for a single layer

Details of the implementation are as follows. The CAM2 model atmosphere is divided into K +1
layers in the vertical; an extra top layer (with index 0, above the K layers specified by CAM?2)
is added. This extra layer prevents excessive heating in the top layer when the top pressure is
not very low; also, as the model does not specify absorber properties above its top layer, the
optical properties of the top layer must be used for the extra layer. In CAM2, clear-sky and
all-sky solar fluxes are calculated and output for the top of model (TOM) at layer 1 and the top
of atmosphere (TOA) corresponding to layer 0. The TOM fluxes are used to compute the model
energetic balance, and the TOA fluxes are output for diagnostic comparison against satellite
measurements. The provision of both sets of fluxes is new in CAM2. Layers are assumed to be
horizontally and vertically homogeneous for each model grid point and are bounded vertically
by layer interfaces. For each spectral band, upward and downward fluxes are computed on the
layer interfaces (which include the surface and top interface). The spectral fluxes are summed
and differenced across layers to evaluate the solar heating rate. The following discussion refers
to each of the spectral intervals.

In general, several constituents absorb and/or scatter in each homogeneous layer (e.g. cloud,
aerosol, gases...). Every constituent is defined in terms of a layer extinction optical depth T,
single scattering albedo w, asymmetry parameter g, and the forward scattering fraction f. To
define bulk layer properties, the combination formulas of Cess [1985] are used:

T = ZTZ', (4.196)

W = Zwmﬂ', (4197)

9= % (4.198)
Z-fzwm

where the sums are over all constituents.
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The §-Eddington solution for each layer requires scaled properties for 7, w, g, given by the
expressions:

™" =7(1 - wf), (4.200)

W=w f) (4.201)
c_9-1f

=1 (4.202)

The scaling accounts for the scattering effects of the strong forward peak in particle scattering.
The 4-Eddington nonconservative (w < 1) solutions for each layer for direct radiation at cosine
zenith angle pg are (following the notation of Coakley et al. [1983]:

R(po) = (@ — 7)Te ™ " 4+ (a+7)R — (a — ), (4.203)
T(po) = (a+ T + (@ —y)Re™™ /" — (a+y —1)e™" /o (4.204)
R=(u+1)(u—-1)(e} —e* )N 1, (4.205)
T =4uN"t, (4.206)
where
3 1
" 1— Mg 4.2
0 =300 (oot = ) (4.207)
1 14 3g*(1 — w*)pd
=W 4.2
7 =gw ( L : 08
N = (u+1)% — (u—1)%", 4.209

3
u= 5(1 —w*g*A),

A=/3(1—w)(1 - wy),

where R(po), T'(1o) are the layer reflectivity and transmissivity to direct radiation respectively,
and R, T are the layer reflectivity and transmissivity to diffuse radiation respectively. It should
be noted that in some cases of small but nonzero w, the diffuse reflectivity can be negative.
For these cases, R is set to 0, which produces negligible impact on fluxes and the heating rate.
Note that in the new overlap scheme, these properties are computed separately for the clear and
cloud-filled portions of each layer [Collins, 2001].

4.6.7 Combination of layers

To combine layers, it is assumed that radiation, once scattered, is diffuse and isotropic (including
from the surface). For an arbitrary layer 1 (or combination of layers with radiative properties
Ri(po), Ti(uo),R1,T1) overlaying layer 2 (or combination of layers with radiative properties
Ry(p0), To(po), and Ry, T5), the combination formulas for direct and diffuse radiation incident
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from above are:

T {(T1 (o) — e TI/H0) Ry + e~ /10 Ry (1) }

Riz(po) = Ri(po) + N ; (4.212)
— Lt 112
. T {(T — e Ti/Ho —Ti /b0 R R
Toa(po) = o T/MTy(ug) + L2 T1l0) = 11 %%e TR ()Y 9
- 1412
= = . TR, T,
. 1I-RiR, 4214
_ T.T
Ty = ——2_ (4.215)
1—-RiR,

Note that the transmissions for each layer (77(po),72(uo)) and for the combined layers
(T12(mo)) are total transmissions, containing both direct and diffuse transmission. Note also
that the two layers (or combination of layers), once combined, are no longer a homogeneous
system.

To combine the layers over the entire column, two passes are made through the layers,
one starting from the top and proceeding downward, the other starting from the surface and
proceeding upward. The result is that for every interface, the following combined reflectivities
and transmissivities are available:

e 7' /M0 = direct beam transmission from top-of-atmosphere to the
interface (7" is the scaled optical depth from top-of-atmosphere
to the interface),

R, (110) = reflectivity to direct solar radiation of entire atmosphere
below the interface,

Tun(140) = total transmission to direct solar radiation incident from above
to entire atmosphere above the interface,

R,, = reflectivity of atmosphere below the interface to diffuse
radiation from above,
Ry, = reflectivity of atmosphere above the interface to diffuse

radiation from below.

With these quantities, the upward and downward fluxes at every interface can be computed.
For example, the upward flux would be the directly transmitted flux (e~™/#0) times the reflec-
tion of the entire column below the interface to direct radiation (R,p,(u0)), plus the diffusely
transmitted radiation from above that reaches the interface (Ty,(uo) — e~"*/#) times the re-
flectivity of the entire atmosphere below the interface to diffuse radiation from above (R,,), all
times a factor that accounts for multiple reflections at the interface. A similar derivation of the

downward flux is straightforward. The resulting expressions for the upward and downward flux
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Table 4.1: Parameters for Decreasing Number of SW Calculations.

Parameter Symbol Definition Value in CAM2
cldmin Cmin Minimum cloud area 0.
cldeps Ceps Minimum cloud area difference 0.
areamin Anin Minimum configuration area 0.01
nconfgmax Nm.,x Maximum # of configurations 15.
are:
—T/mo R, Tun —e T /)R,
Fopy=" (o) + (Tan(tio) = €77 ) Rup. (4.216)
1- Ranup
. Tun — e T ko —T /R, Ran
Fon = e~ /o 4 Ttnlie) =77 7)o p(Ho) Ran. (4.217)
1- Ranup

Note that in the new overlap scheme, the calculation of the combined reflectivities, transmissions,
and fluxes at layer interfaces are computed for each binary cloud configuration, subject to
techniques for significantly accelerating these calculations (below) [Collins, 2001].

4.6.8 Acceleration of the adding method in all-sky calculations

If two or more configurations of binary clouds are identical between TOA and a particular inter-
face, then Ty, = e~ /H0 T, and Ry, are also identical at that interface. The adding method
is applied once and the three radiative quantities are copied to all the identical configurations.
This process is applied at each interface by constructing a binary tree of identical cloud config-
urations starting at TOA down to the surface. A similar method is used for Ry, and R,,, which
are calculated using the adding method starting the surface and continuing up to a particular
interface. The copying of identical radiative properties reduces the number of calculations of
Tuiry Tan, and Ry, by 62% and the number of calculations of R,, and R, by 21% in CAM2 with
M/R overlap.

4.6.9 Methods for reducing the number of binary cloud configura-
tions

The computational cost of the shortwave code has two components: a fixed cost for computing
the radiative properties of each layer under clear and overcast conditions, and a variable cost for
applying the adding method for each column configuration C [k1,...,kn,,]. The variable compo-
nent can be reduced by omitting configurations which contribute small terms in the shortwave
fluxes. Several mechanisms for selecting configurations for omission have been included in the
parameterization. The parameters that govern the selection process are described in Table 4.1.

Any combination of the selection conditions may be imposed. If the parameter Cpi, > 0,
cloud layers with C(i) < Cpi, are identified as cloud-free layers. The configurations including
these clouds are excluded from the flux calculations. If the parameter C.s, > 0, the cloud
amounts are discretized by

Cli) — [g(ﬂ Core (4.218)
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where [z] represents rounding to the nearest integer less than x. This reduces the number
of unique, non-zero cloud amounts n; in each maximum-overlap region j. For example, if
Ceps = 0.01, then two cloud amounts are distinguished only if they differ by more than 0.01.
If the parameter A, > 0, only configurations with A[kl, o ky, ] > A_. are retained in the
calculation. The fluxes and heating rates are normalized by the area of these configurations:

ni+1 nN,, +1

A=Y - Z Al k] 9( [kl,...,kNm]—flmin) (4.219)

ki1=1 k.

where 6 is the Heaviside function. In CAM2, Ay, = 0.01. Finally, if the number of configura-
tions N; > N, max, then only the N, ., configurations with the largest values of fl[kl, ooy k]
are retained. This is equivalent to setting Apin so that the largest N, max configurations are
selected. The fluxes and heating rates are normalized by Atot calculated with this value of A,
With the current cloud parameterizations in CAM2 and with fimin = 0.01, the mean and RMS
N, are approximately 5. N, max is set to 15, or 2 standard deviations above the mean N.. Only
5% of cloud configurations in CAM2 have N, > N, max. The errors of the solutions relative to
ICA are relatively insensitive to A [Collins, 2001].

4.6.10 Computation of shortwave fluxes and heating rates

The upward and downward spectral fluxes at each interface are summed to evaluate the spec-
trally integrated fluxes, then differenced to produce the solar heating rate,

Fn - Fu - Fn Fu
Quy = 9 Fan(pet1) p(Pet1) — Fan(pr) + Fup(Pr) (4.220)

Cp Pk+1 — Pk

which is added to the nonlinear term (@) in the thermodynamic equation.

4.7 Parameterization of Longwave Radiation

The method employed in the CAM2 to represent longwave radiative transfer is based on an
absorptivity /emissivity formulation [Ramanathan and Downey, 1986]

F(p) = B(pt)s(pt,p)+/a(p,p’)dB(p’) (4.221)
F'(p) = B(ps) - / a(p,p)dB(p) , (4.222)

p
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where B(p) = oT'(p)* is the Stefan-Boltzmann relation. The pressures p; and p; refer to the top
of the model and the surface, respectively. « and € are the absorptivity and emissivity

j 1dB,(p)/dT(p)} (1 = T.(p. ) dv
alpp) = dB(p)/dT (p) )
B, (p:)(1 — To(ps, p)) dv

e(p,p) = , 4.224

() Bl 2

where the integration is over wavenumber v. B,(p) = B,(T'(p)) is the Planck function, and 7,

is the atmospheric transmission. Thus, to solve for fluxes at each model layer we need solutions
to the following:

0%8

/ (1— To)F(B,)dv, (4.225)

where F'(B,) is the Planck function for the emissivity, or the derivative of the Planck function
with respect to temperature for the absorptivity.

The general method employed for the solution of (4.225) for a given gas is based on the broad
band model approach described by Kiehl and Briegleb [1991] and Kiehl and Ramanathan [1983].
This approach is based on the earlier work of Ramanathan [1976]. The broad band approach
assumes that the spectral range of absorption by a gas is limited to a relatively small range in
wavenumber v, and hence can be evaluated at the band center, i.e.

12] v2
/ (1= T.)F (B,) dv ~ F (By) / (1= To)dv = F(By) A, (4.226)
141 vi
where A is the band absorptance (or equivalent width) in units of cm™'. Note that A, in
general, is a function of the absorber amount, the local emitting temperature, and the pressure.
Thus, the broad band model is based on finding analytic expressions for the band absorptance.
Ramanathan [1976] proposed the following functional form for A:

u
A(u, T, P) =2ApIn< 1+ , 4.227
( ) =24 { \/4+u(1+1/,6)} (4.227)
where Aj is an empirical constant. u is the scaled dimensionless path length
S(T)
= 0z, 4.228
/ A1) (4.228)

where S(T) is the band strength, p is the mass mixing ratio of the absorber, and p, is the
density of air. 3 is a line width factor,

8= % / ~(T) ( ]Ijo ) du, (4.229)

where (T is the mean line halfwidth for the band, P is the atmospheric pressure, P, is a
reference pressure, and d is the mean line spacing for the band. The determination of v, d,
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S from spectroscopic line databases, such as the FASCODE database, is described in detail in
Kiehl and Ramanathan [1983]. Kiehl and Briegleb [1991] describe how (4.227) can be extended
to account for sub-bands within a spectral region. Essentially, the argument in the log function
is replaced by a summation over the sub-bands. This broad band formalism is employed for
COg4, O3, CH4, NoO and minor absorption bands of CO,, while for the CFCs we employ the
exponential transmission approximation discussed by Ramanathan et al. [1985]

T = exp [~ D (S(T)/Av) W], (4.230)

where Av is the band width, and W is the absorber path length

W:/ppadz, (4.231)

and D is a diffusivity factor. The final problem that must be incorporated into the broad band
method is the overlap of one or more absorbers within the same spectral region. Thus, for the
wavenumber range of interest, namely 500 to 1500 cm !, the radiative flux is determined in part
by the integral
1500
/ (1— To)F(B,)dv, (4.232)
500

which can be re-formulated for given sub intervals in wavenumber as

1500 750
/ (1-T,)F(B,)dv = / (1 = Teo, ThyoTa0) F(B,)dv
5

00 500
820 880
[ T T F(BI + [ (1= T Tuso) F(B)do
750 820
900 1000
+/880 (1- T(}chTHzO)F(Bu)dV + /900 (1- 7-C202TH207—C:')’F0117-CQF012)F(BU)dV
1120
+/1000 (1- 7?02753TH207—51FC117€7F012)F(Bu)dV
1170 1500
+/ (1 = TercrTmo Tr,o) F (B, )dv +/ (1 = Tem, Thyo Tra0) F(B,)dv - (4.233)
1120 1170

The sub-intervals, in turn, can be reformulated in terms of the absorptance for a given gas
and the “overlap” transmission factors that multiply this transmission. Note that in the broad
band formulation there is an explicit assumption that these two are uncorrelated (see Kiehl and
Ramanathan [1983]). The specific parameterizations for each of these sub-intervals depends on
spectroscopic data particular to a given gas and absorption band for that absorber.

4.7.1 Major absorbers

Details of the parameterization for the three major absorbers, H,O, COy and Ogs, are given
in Collins et al. [2002a], Kiehl and Briegleb [1991], and Ramanathan and Dickinson [1979],
respectively. Therefore, we only provide a brief description of how these gases are treated in the
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CAM2. Note that the original parameterization for H,O by Ramanathan and Downey [1986]
has been replaced a new formulation in CAM2.
For CO4

1 dBCOz

aco,(p,p') = 1oTo) dT’ () Aco, (V' p)- (4.234)

1

Beco, is evaluated for 7 = 667 cm ™', where Ao, (p',p) is the broad—band absorptance from

Kiehl and Briegleb [1991]. Similarly,

1
€co,(0,p) = MBC%(O)ACOQ (0,p). (4.235)
For ozone,
/ 1 dB / /
ao,(p,p) = 10T () dTOf’ (p') Ao, (', p), (4.236)
and
1
€05(0,p) = W(O)Boe’ (0)A0,(0,p), (4.237)

where Ap, is the ozone broad-band absorptance from Ramanathan and Dickinson [1979]. The
longwave absorptance formulation includes a Voigt line profile effects for COy and Os. For the
mid-to-upper stratosphere (p < 10mb), spectral absorption lines are no longer Lorentzian in
shape. To account for the transition to Voigt lines a method described in Kiehl and Briegleb
[1991] is employed. Essentially the pressure appearing in the mean line width parameter, -,

Y =" 1 (4.238)
Po

| T
£+5 _—
Po 250

where § = 5.0 x 1073 for CO, and § = 2.5 x 1073 for O3. These values insure agreement with
line-by-line cooling rate calculations up to p ~ 0.3 mb.

is replaced with

Y= , (4.239)

4.7.2 Water vapor

Water vapor cannot employ the broad—band absorptance method since H,O absorption extends
throughout the entire longwave region. Thus, we cannot factor out the Planck function depen-
dence as in (4.226). The method of Collins et al. [20024] is used for water—vapor absorptivities
and emissivities. This parameterization replaces the scheme developed by Ramanathan and
Downey [1986] used in previous versions of the model. The new formulation uses the line-by-line
radiative transfer model GENLN3 [Edwards, 1992] to generate the absorptivities and emissivi-
ties for HyO. In this version of GENLN3, the parameters for HyO lines have been obtained from
the HITRAN 2000 data base [Rothman et al., 2003], and the continuum is treated with the
Clough, Kneizys, and Davies (CKD) model version 2.4.1 [Clough et al., 1989]. To generate the
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absorptivity and emissivity, GENLN is used to calculate the transmission through homogeneous
atmospheres for H,O lines alone and for HyO lines and continuum. The calculation is done for
a five dimensional parameter space with coordinates equaling the emission temperature, path
temperature, precipitable water, effective relative humidity, and pressure. The limits for each
coordinate span the entire range of instantaneous values for the corresponding variable from a
1-year control integration of CAM2. The resulting tables of absorptivity and emissivity are then
read into the model for use in the longwave calculations. The overlap treatment between water
vapor and other gases is described in Ramanathan and Downey [1986].

The absorptivity and emissivity can be split into terms for the window and non-window
portions of the infrared spectrum. The window is defined as 800-1200 cm !, and the non-
window is the remainder of the spectrum between 20 to 2200 cm™'. Outside the mid-infrared
window (the so-called non-window region), the HyO continuum is dominated by the foreign
component [Clough et al., 1992]. The foreign continuum absorption has the same linear scaling
with water vapor path as line absorption, and thus in the non-window region the line and
continuum absorption are combined in a single expression. In the window region, where the
self-broadened component of the continuum is dominant, the line and continuum absorption
have different scalings with the amount of water vapor and must be treated separately. The
formalism is identical for the absorptivity and emissivity, and for brevity only the absorptivity
is discussed in detail. The absorptivity is decomposed into two terms:

A(pr,p2) = Aw(p1,p2) + Anw(p1, p2), (4.240)

where A, (p1,p2) is the window component and A, (p1,p2) is the non-window component for
the portion of the atmosphere bounded by pressures p; and p,.

Let A, (i) represent the total non-window absorption for a homogeneous atmosphere char-
acterized by a set of scaling parameters 7. Scaling theory is a relationship between an inhomo-
geneous path and an equivalent homogeneous path with nearly identical line absorption for the
spectral band under consideration [Goody and Yung, 1989]. Scaling theory is used to reduce the
parameter space of atmospheric conditions that have to be evaluated. The equivalent pressure,
temperature, and absorber amount are calculated using the standard Curtis-Godson scaling the-
ory for absorption lines [Curtis, 1952; Godson, 1953]. In addition, we retain explicit dependence
on the emission temperature of the radiation following Ramanathan and Downey [1986], and we
introduce dependence on an equivalent relative humidity. It follows from Curtis-Godson scaling
theory that

Anw(plap2) = ;{nw(lnw) (4241)

In the following expressions, a tilde denotes a parameter derived using scaling theory for the
equivalence between homogeneous and inhomogeneous atmospheres. The subscript b denotes
a parameter which depends upon the spectral band under consideration. The set of scaling
parameters that determine the total non-window absorption are labeled:

—~— —~—

lnw = [Unwa ina Tea ji,, ﬁ . (4'242)

Here (7;; is the pressure-weighted precipitable water, P;L; is the scaled atmospheric pressure, 7,
is the emission temperature of radiation, 7}, is the absorber weighted path temperature, and p is
the scaled relative humidity. The subscript (b =)nw indicates that the quantities are evaluated
for the non-window.
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The absorber-weighted path temperature is:

~ 1 P2
T

= T'(p) dW (p), (4.243)

where T'(p) is the thermodynamic temperature of the atmosphere at pressure p. The HoO path
or precipitable water is:

W= / “awp)  [g/em? (4.244)

P1

dW(p) = q(p)dp/y,

where ¢(p) is the specific humidity at pressure p and g is the acceleration of gravity. The HyO
path and pressure for a homogeneous atmosphere with equivalent line absorption are [Goody
and Yung, 1989

o= [ 2D ) (4.245)
n o (T)
Bo= = [0 o, (4.246)

Tl o (5)

where

$(T) = D Su(T) (4.247)

vo(T) = {Z[Sk(T)ak(T)]W} : (4.248)

The factor Si(T) is the line strength for each line £ in the spectral interval under consideration.
The characteristic width of each line at a reference pressure p, and specific humidity g is ax (7).
It is convenient to calculate the absorptance in terms of a pressure-weighted H,O path

P2 p
U= / P aw(p) (4.249)
1 pO

The equivalent pressure-weighted H,O path is simply

B
Uy=—W, (4.250)
Po

Although the relative humidity (or HoO vapor pressure) is not included in standard Curtis-
Godson scaling theory, it must be treated as an independent parameter since the vapor pressure
determines the self-broadening of lines and the strength of the self-continuum. The effective
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relative humidity p is defined in terms of an effective HoO specific humidity ¢ and saturation
specific humidity ¢, along the path:

5= 4

_ 4.251

p 7 (4.251)

- w

i= 2 (4.252)
b2 —D1

~ S T

G o= — <o) (4.253)
P—(1- G)GS(TZJ)

= po U

p = 2Z 4.254
7 (4.254)

where e4(T) is the saturation vapor pressure at temperature 7, P is an effective pressure, and
€ = 0.622 is the ratio of gas constants for air and water vapor.

The window term A, (pi1,p2) requires a special provision for the different path parameters
for the lines and continuum. Let

Ew (1) = absorptivity for path parameters i, lines and continuum (4.255)

Al (i) = absorptivity for path parameters i, lines only

The set of parameters for the line absorption in the window region are:

by =[O, Py T2, Ty 7] (4.256)
The set of scaling parameters that determine the continuum absorption in the window are:

Co = [U’,E,,,Te,ﬁ,,ﬁ] (4.257)

For the continuum, the pressure-weighted path length is calculated using:

= £ G Tes) (4.258)
q Cy(v,T,)

where T,..; = 296K is a reference temperature, ¥ is a suitably chosen wavenumber inside the
window, U, is the self-continuum path length, and C,(v,T) is the self continuum absorption
coefficient. The self-continuum path length may be approximated by

P2 =
qp Cyp,T)
U.= == ———dW 4.259

/pl € Do Cs(l/a Tref) (p) ( )

The lines-only absorptivity can be written in terms of a line transmission factor L(7) and an
asymptotic absorptivity A, in the limit of a black-body atmosphere. A, is a function only of
T. [Ramanathan and Downey, 1986]. The relationship is

Al (i) = Ag[L — L(4)] (4.260)
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Define an effective continuum transmission C(7) by setting
Ay (i) = Ax[l — L(E)C )] (4.261)
We approximate the window absorptivity by:
Ay(p1,p2) ~ Al — L(ly)C(cw)] (4.262)

This approximation for A, (p1,p2) can be cast entirely in terms of the absorptivities defined in
equation 4.255. From equations 4.260 and 4.261, the line and continuum transmission are:

L(l,) = 1—‘4'2“”) (4.263)
Clew) = —j""_iﬁ(c"’)
oo ;u(cw)

This completes the set of approximations used to calculate the absorptivity (and by extension
the emissivity).

4.7.3 'Trace gas parameterizations

Methane. The radiative effects of methane are represented by the last term in (4.233). We
re-write this in terms of the absorptivity due to methane as

1500
/ (1 — 7'CH4T]\3;2OTH20)F(B1/)dV = / (1 — THQO)F(B,,)dV +
1

170

/ACH4TH20F(BU)dV +/A§V207-CH4TH20F(BU)CZV (4264)

Note that this expression also incorporates the absorptance due to the 7.7 micron band of nitrous
oxide as well. The first term is due to the rotation band of water vapor and is already accounted
for in the CAM2 radiation model by the parameterization described in Ramanathan and Downey
[1986]. The second term in (4.264) accounts for the absorptance due to the 7.7 micron band of
methane. The spectroscopic parameters are from Donner and Ramanathan [1980]. In terms of
the broad band approximation we have,

/ACH4TH20F(Bu)dV ~ ACH4TH2OF(BI7) (4.265)

where according to (4.227),

U
A = 6.00444+/T,In < 1 + 4.266
CHy P { \/4+U,(1+]./B)} ( )
where T}, is a path weighted temperature,
J T(p)dp
T =+~ 4.267
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The dimensionless path length is,

D 8.60957 x 10*
u = a / Kot 4, (4.268)
g VT

and the mean line width factor is,

[+ (%) nondp

8 = 2.94449
f ﬁ/’I’CIﬂldp

(4.269)

where pcp, is the mass mixing ratio of methane, 7' is the local layer temperature in Kelvin and
P is the pressure in Pascals, and Py is 1 x 10° Pa. D is a diffusivity factor of 1.66. The water
vapor overlap factor for this spectral region is,

THgO = exp(—UHQO) (4270)
where,

P\ dp

and pp,o is the mass mixing ratio of water vapor.

Nitrous Oxide. For nitrous oxide there are three absorption bands of interest: 589, 1168
and 1285 cm~! bands. The radiative effects of the 1285 cm~! band is given by the last term in
(4.264),

/ A, o TenTnoF(B)dv ~ A% oTeu TuoF(By) (4.272)

The absorptance for the 1285 cm~' N,O band is given by

3 3
A% o = 2.35558,/T,In{ 1 + Yo + 4 (4.273)
. ’ { VIFuA+1/B) A+ ul(+1/8))

where u3, 35 account for the fundamental transition, while u3, 32 account for the first “hot”
band transition. These parameters are defined as

,0 d
ud = D 1.02346 x 10° “NT;?;]’ (4.274)
and,
53 =19.399 ﬁf 23 (4.275)
0
While the “hot” band parameters are defined as
WP = D 2.06646 x 10° [ —Le-saraer, AP (4.276)
1= : \/T HUN20 q :
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and,

[ 4 (&) dud
J dui
The overlap factors in (4.272) due to water vapor is the same factor defined by (4.270), while the

overlap due to methane is obtained by using the definition of the transmission factor in terms
of the equivalent width [Ramanathan, 1976].

B = 19.399 (4.277)

TC’H4 = €_A0H4/2A0 (4278)
Substitution of (4.266) into (4.272) leads to,

_ 1
Tow, = -
1+ O.OZW
where u and § are given by (4.268) and (4.269), respectively, and the 0.02 factor is an empirical
constant to match the overlap effect obtained from narrow band model benchmark calculations.
This factor can physically be justified as accounting for the fact that the entire methane band
does not overlap the NoO band.
The 1168 cm™* N,O band system is represented by the seventh term on the RHS of (4.233).
This term can be re-written as

(4.279)

1170

[ 0= TererTuoTo F(BIdr = [ (1= Taso) F(Bu)do +

1120
/ ApernsTioF (B)dv + / o T TinoF(By)dv (4.280)

where the last term accounts for the 1168 cm~* N,O band. For the broad band formulation this
expression becomes,

/A?V207gF012TH2OF(BV)dV ~ A?VQOTé'FC'IQTH20F(BI7) (4-281)

The band absorptance for the 1168 cm™ N,O band is given by

2
A2 = 9254034 /T, Ind 1 + Yo 4.282

where the fundamental band path length and mean line parameters can be simply expressed in
terms of the parameters defined for the 1285 cm ! band (eq. 4.274-4.275).

ui = 0.0333767uj (4.283)
and,

B = 0.982143453 (4.284)
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Note that the 1168 cm™! band does not include a “hot” band transition. The overlap by water
vapor includes the effects of water vapor rotation lines, the so called “e-type” and “p-type”
continua (e.g. Roberts et al. [1976]). The combined effect of these three absorption features is,

Tu,o = T,T.T, (4.285)
where the contribution by line absorption is modeled by a Malkmus model formulation,

T, = exp {—511_[ (\ [1+ (52% - 1) } (4.286)

where §; and s are coefficients that are obtained by fitting (4.286) to the averaged transmission
from a 10 cm™! narrow band Malkmus. The path length 1 is,

= dP
'El:Dq)/pw7

and,

(4.287)

-(3)6)

where ® and ¥ account for the temperature dependence of the spectroscopic parameters [Rodgers
and Walshaw, 1966]

T o @|T,~250| B|T, 250 (4.289)
i) efa'\Tp*250|*ﬁ,|TP7250|2 (4290)
The coefficients for various spectral

intervals are given in Table 4.2. The transmission due to
the e-type continuum is given by

T, = e %t (4.291)
where the path length is defined as
D 1_ 1

Uy = Frea e1800( 7 296)’(,(]121[20de (4.292)
The p-type continuum is represented by

T, = e %t (4.293)
where,

D 1 1
Uy = —= [ "7 %)y, o PdP (4.294)
9

The factors d;, 9, 03 and d4 are listed for specific spectral intervals in Table 4.3.
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Table 4.2: Coefficients for the Temperature Dependence Factors in (4.289) and (4.290).

Index v — Uy « B o B
1 750 - 820  2.9129e-2 -1.3139e-4 3.0857e-2 -1.3512e-4
2 820 - 880  2.4101e-2 -5.5688e-5b 2.3524e-2 -6.8320e-5
3 880 -900 1.9821e-2 -4.6380e-5 1.7310e-2 -3.2609e-5
4 900 - 1000 2.6904e-2 -8.0362e-b 2.6661le-2 -1.0228e-5
) 1000 - 1120 2.9458e-2 -1.0115e-4 2.8074e-2 -9.5743e-5
6 1120 - 1170 1.9892e-2 -8.8061e-5 2.2915e-2 -1.0304e-4

Table 4.3: Coefficients for the broad-band water vapor overlap transmission factors.

Index V1 — Uy o1 09 03 04
1 750 - 820  0.0468556 14.4832 26.1891 0.0261782
2 820 - 880  0.0397454 4.30242 18.4476 0.0369516
3 880 - 900 0.0407664 5.23523 15.3633 0.0307266
4 900 - 1000  0.0304380 3.25342 12.1927 0.0243854
5 1000 - 1120 0.0540398 0.698935 9.14992 0.0182932
6 1120 - 1170  0.0321962 16.5599 8.07092 0.0161418
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The final N,O band centered at 589 cm™! is represented by the first term on the RHS of
(4.233),

750
/ (1= Tdo, T o Tits0) F (B, )du =
500

/(1 ~ Teo,71,0)F(By)dv + /A}v207go2THzOF(Bu)dV (4.295)
where the last term in (4.295) represents the radiative effects of the 589 cm™' N,O band,
[ AvsoTeo, Two F(B)w ~ Ay, oTho, Tuo F(By) (4.296)

The absorptance for this band includes both the fundamental and hot band transitions,

1 1
Al — 965581 /T, Ind 1+ Yo T ] 4.297
0 g { VA+ui(1+1/8))  V4+ul(1+1/8]) (4297)

where the path lengths for this band can also be defined in terms of the 1285 cm ™! band path
length and mean lines parameters (4.274 - 4.277),

ug = 0.100090u; (4.298)
and,

By = 0.9642820; (4.299)
and,

uy = 0.09927463 (4.300)
and,

Bi = 0.9642824; (4.301)

The overlap effect of water vapor is given by the transmission factor for the 500 to 800 cm™!

spectral region defined by Ramanathan and Downey [1986] in their Table A2. This expression
is thus consistent with the transmission factor for this spectral region employed for the water
vapor formulation of the first term on the right hand side of (4.295). The overlap factor due to
the CO, bands near 589 cm™" is obtained from the formulation in Kiehl and Briegleb [1991],

1

2 00
+0 V4tuco, (141/Bco,)

Téo, = : (4.302)

where the functional form is obtained in the same manner as the transmission factor for CHy
was determined in (4.278). The 0.2 factor is empirically determined by comparing (4.302) with

results from 5 cm ! Malkmus narrow band calculations. The path length parameters are given
by

D 4.9411 x 10%(1 — ¢~960/T)3 dP
Uco, = ( ) e~ %60/ / Weo, — (4.303)
VT, g

123



and,

5.3228 | P T T
= ——< —+5 T — 4.304
Beo, T, {Po +5xe 550 300} ( )

CFCs. The effects of both CFC11 and CFC12 are included by using the approach of Ra-
manathan et al. [1985]. Thus, the band absorptance of the CFCs is given by

Acre = Av (1 _ e—’%ucw) (4.305)

where Av is the width of the CFC absorption band, S is the band strength, ucpc is the
abundance of CFC (g cm™?),

d
Uckc :/,U'CFC?p (4.306)

where pcpc is the mass mixing ratio of either CFC11 or CFC12. D is the diffusivity factor. In
the linear limit D = 2, since (4.305) deviates slightly from the pure linear limit we let D = 1.8.
We account for the radiative effects of four bands due to CFC11 and four bands due to CFC12.
The band parameters used in (4.305) for these eighth bands are given in Table 4.4.

The contribution by these CFC absorption bands is accounted for by the following terms in
(4.233).
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820
[ 0= Teren T FBydr = [ (1= Tuo) F(B)av
750
+ / AL o Trso F(By)dv (4.307)
880

/ (1~ Tron Tio)F(B,)dv = / (1~ Tiyo) F(B,)dv

820

+ /A%‘FCIITH20F(BI/)dV (4.308)
900

/ (1 = ThronTmo) F(B,)dv = / (1 = Tino) F(B,)dv

880

+ / Ao Ta,0F (By)dy (4.309)
1000

[ 0= To ToTewen Tre) FBI = [ (1= Tao) P(B)dr

900

+/A%F012TH20F(Bu)dV + /\‘A%FC’IITH207_(:'2F012F(BV)dV (4310)

+ /A%}'OQTH207—C:'))F0117-CQFCI2F(BV)dV
1120

/ (1- 72}02763TH207Z‘1F01173F012)F(BV)dV = /(1 — Tmy0)F(B,)dv

1000

+/AOSTH2OF(BV)dV + /AP&OQTOsTH207gF0117gF012F(Bu)dV
+/-A40F011TO3TH20F(BV)dV + /A%F012763TH20F(BV)dV (4.311)

For the 798 cm~! CFC11 band, the absorption effect is given by the second term on the right
hand side of (4.307),

/AE*FCHTHQOF(Bu)dV ~ AICFCHTHzOF(Bﬂ) (4.312)

where the band absorptance for the CFC is given by (4.305) and the overlap factor due to
water vapor is given by (4.285) using the index 1 factors from Tables 4.2 and 4.3. Similarly, the
846 cm~! CFC11 band is represented by the second term on the RHS of (4.308),

[ A TusoF (B % Ao T F (5 (4313)

where the HoO overlap factor is given by index 2 in Tables 4.2 and 4.3. The 933 cm~! CFC11
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Table 4.4: Band Parameters for the CFCs transmission factors.

Band Number Band Center  Av S/Av
(cm™1) (em™!) (cm? gm™!)

CFCl11

1! 798 a0 54.09

22 846 60 9130.03

3! 933 60 175.005

42 1085 100 1202.18
CFC12

1 389 45 1272.35

22 923 20 5786.73

3? 1102 80 2873.51

4? 1161 70 2085.59

1
2

Data are from Kagann et al. [1983].
Data are from Varanasi and Chudamani [1988].

band is given by the third term on the RHS of (4.310),

/A?(’,*FchHonchmF(Bu)dV ~ A%FCHTH2OT§'FC12F(BI7) (4.314)

where the H,O overlap factor is defined as index 4 in Tables 4.2 and 4.3, and the CFC12
transmission factor is obtained from (4.305). The final CFC11 band centered at 1085 cm ™! is
represented by the fourth term on the RHS of (4.311),

[ AbrenToTuoF (B % Al To,TasoF (Bo) (4:315)

where the transmission due to the 9.6 micron ozone band is defined similar to (4.302) for CO,

as
1

2 i
1+ %3
izzl \/4+u§,3(1+1/ﬂ’o3)

where the path lengths are defined in Ramanathan and Dickinson [1979]. The H,O overlap
factor is defined by index 5 in Tables 4.2 and 4.3.
For the 889 cm™' CFC12 band the absorption is defined by the second term in (4.309) as

To, =

(4.316)

/A}JFCRTHzoF(BU)dV ~ A}}FcuTHZOF(Bﬂ) (4.317)
where the H,O overlap factor is defined by index 3 of Tables 4.2 and 4.3, and the CFC ab-

sorptance is given by (4.305). The 923 cm™! CFC12 band is described by the second term in
(4.310),
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/A ro1oT,0F (By)dv = Al pc1yTu,0 F (Bp) (4.318)

where the H,O overlap is defined as index 4 in Tables 4.2 and 4.3. The 1102 cm ' CFC12 band
is represented by the last term on the RHS of (4.311),

/ Ao TosTiso F(B)dv ~ Ay ensToy T F(By) (4.319)

where the transmission by ozone is described by (4.316) and the H,O overlap factor is represented
by index 5 in Tables 4.2 and 4.3. The final CFC12 band at 1161 cm™! is represented by the
second term on the RHS of (4.280),

/AéF012TH2OF(Bu)dV ~ Aé’FClQTHzoF(BE) (4.320)

where the H,O overlap factor is defined as index 6 in Tables 4.2 and 4.3.

Minor CO, Bands. There are two minor bands of carbon dioxide that were added to the
CCM3 longwave model. These bands play a minor role in the present day radiative budget,
but are very important for high levels of COs, such as during the Archean. The first band we
consider is centered at 961 cm!. The radiative contribution of this band is represented by the
last term in (4.310),

/A%’OQTH2O7gFCIITgFCIZF(BV)dV ~ A%‘OQTHongFCHTg'FCIZF(B17) (4-321)

where the transmission factors for water vapor, CFC11 and CFC12 are defined in the previous
section for the 900 to 1000 cm ™! spectral interval. The absorptance due to CO, is given by

AZo, = 3.8443,/T,In{ 1 + (4.322)
o2 { Z\/4+uzl+1/5z)}
where the path length parameters are defined as
w, = 3.88984 x 1030(T,)we19976/T (4.323)
u, = 3.88984 x 103a/(T,)we 19976/T (4.324)
us = 6.50642 x 103(T,)we 298%7/T (4.325)
and the pressure parameter is,
P\ 1
= 297558 [ — ) —= 4.326
i (5) 5= (4.320)
P2 = P (4.327)
Bs = 24 (4.328)

and,
1 — o—1360.0/T; 3
a(T,) = (L-e ) (4.329)

VT,
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The CO, band centered at 1064 cm ™! is represented by the third term on the RHS of (4.311),
/A%’O27-03TH207Z’1F0117-C:')’F012F(BV)dV ~ A?éozTOsTHzOTéFchgFClQF(Bﬂ) (4-330)

where the transmission factors due to ozone, water vapor, CFC11 and CFC12 are defined in the
previous section. The absorptance due to the 1064 cm ! CO, band is given by

3
A3 —3.8443 /T, Ind1+ Ui 4331
ﬂn{ ;mwm/m} (1.331)

where the dimensionless path length is defined as

wy = 3.42217 x 103a(T}, ) we™ 1840 7/T 4.332
p

Uy = 6.02454 x 103(T)))we 27821/T (4.333)

us = 5.53143 x 103a(T},)we 37232/T (4.334)

where

1 — —1540.0/T3)3
a(T,) = ( ) (4.335)
VIp
The pressure factor, 31, for (4.331) is the same as defined in (4.326), while the other factors
are,

In the above expressions, w is the column mass abundance of CO,,
dP
w = / oo, = %AP (4.338)

where 0, is the mass mixing ratio of CO, (assumed constant).

4.7.4 Mixing ratio of trace gases

The mixing ratios of methane, nitrous oxide, CFC11 and CFC12 are specified as zonally averaged
quantities. The stratospheric mixing ratios of these various gases do vary with latitude. This is
to mimic the effects of stratospheric circulation on these tracers. The exact latitude dependence
of the mixing ratio scale height was based on information from a two dimensional chemical
model (S. Solomon, personal communication). In the troposphere the gases are assumed to be
well mixed,

pem, = 0.55241lwep, (4.339)
1,0 = 1.51913wp,0 (4.340)
poepoy = 4.69548wercn (4.341)
Pepo, = 4.1430Twercrs (4.342)

128



where w denotes the volume mixing ratio of these gases. The CAM2 employs volume mixing
ratios for the year 1992 based on IPCC [1995], wem, = 1.714 ppmv, wy,o = 0.311 ppmo,
were1r = 0.280 ppbv and werciz = 0.503 ppbv. The pressure level (mb) of the tropopause is
defined as

Prrop = 250.0 — 150.0 cos® ¢ (4.343)
For p < pyop, the stratospheric mixing ratios are defined as
» XcoH,
pon = s, () (4.304)
ptrop
D Xny0
o = sho (1) (4345)
ptrop
D Xcrcn
HcFc11 = /»LOCFCH (—) (4346)
trop
» Xcrci2
porci2 = Popcis <—) (4.347)
trop

where the mixing ratio scale heights are defined as

Xemy, = 0.2353 )
Xn0 = 0.3478 4 0.00116 |¢|
Xercr = 0.7273 + 0.00606 | ¢|
Xcrciz = 0.4000 + 0.00222 |¢]

> || < 45 (4.348)

and,
Xen, = 0.2353+40.22549 |¢|)
Xn,0 = 0.4000 + 0.01333 ||
> .
Xeren = 10000 +0.01333 || (19129 (4.349)
Xcrciz = 0.5000 + 0.02444 |¢| |

where ¢ is latitude in degrees.

4.7.5 Cloud emissivity

The clouds in CAM2 are grey bodies with emissivities that depend on cloud phase, condensed
water path, and the effective radius of ice particles. The cloud emissivity is defined as

€aqa = 1 — g7 PravsCWP (4.350)

where D is a diffusivity factor set to 1.66, kg, is the longwave absorption coefficient (m?g~"),
and CWP is the cloud water path (gm~=2). The absorption coefficient is defined as

Kabs = K (1 - fice) + /fifice (4351)

where k; is the longwave absorption coefficient for liquid cloud water and has a value of 0.090361,
such that Dk; is 0.15. k; is the absorption coefficient for ice clouds and is based on a broad
band fit to the emissivity given by Ebert and Curry’s formulation,

1
ki = 0.005 + —. (4.352)

Tei
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4.7.6 Numerical algorithms and cloud overlap

The treatment of cloud overlap follows Collins [2001]. The new parameterizations can treat
random, maximum, or an arbitrary combination of maximum and random overlap between
clouds. This scheme replaces the treatment in CCM3, which was an exact treatment for random
overlap of plane-parallel infinitely-thin grey-body clouds. The new method is an exact treatment
for arbitrary overlap among the same type of clouds. It is therefore more accurate than the
original matrix method of Manabe and Strickler [1964] and improved variants of it [Raisanen,
1998; Li, 2000].

If longwave scattering is omitted, the upwelling and downwelling longwave fluxes are solu-
tions to uncoupled ordinary differential equations [Goody and Yung, 1989]. The emission from
clouds is calculated using the Stefan-Boltzmann law applied to the temperatures at the cloud
boundaries. The cloud boundaries correspond to the interfaces of the model layers. This ap-
proximation greatly simplifies the mathematical form of the flux solutions since the clouds can
be treated as boundary conditions for the differential equations. The approximation becomes
more accurate as the clouds become more optically thick.

The solutions are formulated in terms of the same conversion of vertical cloud distributions
to binary cloud profiles used for the shortwave calculations (p. 105). First consider the flux
boundary conditions for a maximum-overlap region j. The downward flux at the upper boundary
of the region is spatially heterogeneous and has terms contributed by all the binary configurations
above the region. Similarly, the upward flux at the lower boundary of the region has terms
contributed by all the binary configurations below the region. The fluxes within the region are
area-weighted sums of the fluxes calculated for all possible combinations of these boundary terms
and the cloud configurations within the region. Fortunately the arithmetic can be simplified
because the solutions to the longwave equations are linear in the boundary conditions. Therefore
the downward (upward) fluxes can be computed by summing the solutions for each configuration
in the region for a single boundary condition given by the area-averaged fluxes at the region
interfaces denoted by F¥(i;min) (F"(4jmax)). The mathematics is explained in Collins [2001].
In the absorptivity-emissivity method, the boundary conditions are included in the solution
using the emissivity array. In the standard formulation [Manabe and Moller, 1961; Ramanathan
and Downey, 1986] used in CAMZ2, this array is only defined for boundary conditions at the
top of the model domain for computational economy. It is not possible to treat arbitrary flux
boundary conditions inside the domain (e.g., F*(i;min)) using the emissivity array. However,
the flux boundary conditions F¥(ijmin) and FT(ij) are mathematically equivalent to the
fluxes from a single “pseudo” cloud deck above and below the region, respectively. The pseudo
clouds have unit area and occupy a single model layer. The vertical positions and emissivities
of these clouds are chosen so that the net area-mean fluxes incident on the top and bottom
of the region equal F i(ij,min) and F T(z'j,mx). With the introduction of the pseudo clouds, the
fluxes inside each maximum-overlap region can be calculated using the standard absorptivity-
emissivity formulation.

The total upward and downward mean fluxes at a layer ¢ within a maximum-overlap region
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j are given by:

Fi) = Z

P = 3 A

S &=
—_

(4.353)

where F[k;]"(i) and F[k;]*(i) are the upward and downwelling fluxes for the cloud configuration
Cjk;- The symbols required to write these fluxes are defined in Table 4.5.

Table 4.5: Definition of terms in fluxes.

Stefan-Boltzmann constant

pressure

pressure at top of layer ¢

pressure at bottom of layer i (py(7) > py(i))
temperature at pressure p

o T*(p)

layer containing pseudo cloud for F*(i; pi) b.c.

layer containing pseudo cloud for F (i} may) b.c.
emissivity of cloud in layer 7

emissivity of pseudo clouds at ¢ = i; ; and '1,

clear-sky emissivity from pressure p’ to P [Klehl et al., 1996]
downwelling clear-sky flux at layer i [Kiehl et al., 1996]
upwelling clear-sky flux at layer i [Kiehl et al., 1996]
weights for up/downwelling clear-sky flux at layer ¢

¢

weights for up/downwelling flux at layer ¢ from cloud at '

The downward and upward fluxes for each configuration can be derived by iterating the
longwave equations from TOA and the surface to the layer i. At each iteration, the solutions
are advanced between successive cloud layers. The final form of the fluxes in configuration C;,

is:

Flk;]"(0)

Flk;)* (i)
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The clear-sky and cloudy-sky weights are:
() = [T —&uw0] (4.356)
tin, @) = 1101 =&k O] (4.357)
Thy () = G () [T [1 = &, ) (4.358)

Tji,kj(iai’) = & (i) H [1— &k, ()] (4.359)

I=i'+1
6Cld(l)(:’;j,kj (l) if i] mln S l S ij,max
1
. €p.i (77 ) if | = z
e (1) = PRI 4.360
€k (1 ep,j(z';,j) ifl = z ( )
0 otherw1se

The longwave atmospheric heating rate is obtained from

Ouu(pn) = & U+ 1) = Pk 1) = F1(k) + F4(R)

Cp Pr+1 — Dk

(4.361)

which is added to the nonlinear term (@) in the thermodynamic equation.

The full calculation of longwave radiation (which includes heating rates as well as boundary
fluxes) is computationally expensive. Therefore, modifications to the longwave scheme were
developed to improve its efficiency for the diurnal framework. For illustration, consider the
clear-sky fluxes defined in (4.221) and (4.222). Well over 90% of the longwave computational
cost involves evaluating the absorptivity a and emissivity €. To reduce this computational
burden, o and e are computed at a user defined frequency that is set to every 12 model hours
in the standard configuration, while longwave heating rates are computed at the diurnal cycle
frequency of once every model hour.

Calculation of o and e with a period longer than the evaluation of the longwave heating
rates neglects the dependence of these quantities on variations in temperature, water vapor,
and ozone. However, variations in radiative fluxes due to changes in cloud amount are fully
accounted for at each radiation calculation, which is regarded to be the dominant effect on
diurnal time scales. The dominant effect on the heating rates of changes in temperature occurs
through the Planck function and is accounted for with this method.

The continuous equations for the longwave calculations require a sophisticated vertical finite—
differencing scheme due to the integral term [ adB in Equations (4.221)—(4.222). The reason
for the additional care in evaluating this integral arises from the nonlinear behavior of o across
a given model layer. For example, if the flux at interface pj is required, an integral of the form
f Pk o(p', pr)dB(p') must be evaluated. For the nearest layer to level py, the following terms will
arise:

/pk ol ) dB() = [ (pk—f—l;pk);‘ (P, Pr)] (B(p) — Bloess)], (4.36)

Pr+1
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Figure 4.2: Subdivision of model layers for radiation flux calculation

employing the trapezoidal rule. The problem arises with the second absorptivity a(pg, px), since
this term is zero. It is also known that « is nearly exponential in form within a layer. Thus, to
accurately account for the variation of a(p, p') across a layer, many more grid points are required
than are available in CAM2. The nearest layer must, therefore, be subdivided and a must be
evaluated across the subdivided layers. The algorithm that is employed in is to use a trapezoid
method for all layers except the nearest layer. For the nearest layer a subdivision, as illustrated
in Figure 4.2, is employed.
For the upward flux, the nearest layer contribution to the integral is evaluated from

/ jH adB(p) = as [BIY) — B(p*)] + aa [B(*) — B(})] . (4.363)

while for the downward flux, the integral is evaluated according to

/ jf adB(p') = an1 [B(p*) — B(py)] + a2 [BOE™) — B(0")] - (4.364)

The oy;, © = 1,2; j = 1,2, are absorptivities evaluated for the subdivided paths shown in
Figure 4.2. The path-length dependence for the absorptivities arises from the dependence on the
absorptance A(p,p) [e.g., Eq. (4.361)]. Temperatures are known at model levels. Temperatures
at layer interfaces are determined through linear interpolation in log p between layer midpoint
temperatures. Thus, B(px) = o7 can be evaluated at all required levels. The most involved
calculation arises from the evaluation of the fraction of layers shown in Figure 4.2. In general,
the absorptance of a layer can require the evaluation of the following path lengths:

§(pr, Prs1) = f(T)PAP, (4.365)
and

w(pr, er1) = 9(T)Ap, (4.366)
and

Bk, pry1) = W(T)p, (4.367)
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where f, g, and h are functions of temperature due to band parameters (see Kiehl and Ra-
manathan [1983], and T is an absorber mass—weighted mean temperature.

These path lengths are used extensively in the evaluation of Ap, [Ramanathan and Dickinson,
1979] and Aco, [Kiehl and Briegleb, 1991] and the trace gases. But path lengths dependent
on both p? (i.e., £) and p (i.e., u) are also needed in calculating the water—vapor absorptivity,
ap,o [Ramanathan and Downey, 1986]. To account for the subdivided layer, a fractional layer
amount must be multiplied by £ and u, e.g.,

&1 = E(ply") x UINPL(L, k), (4.368)

= u(ph, o) x WINPL(1, k), (4.369)
and

Bll = B(pHap]Ic{—i—l) X PINPL(lak)a (4370)

where UINPL, WINPL, and PINPL are factors to account for the fractional subdivided
layer amount. These quantities are derived for the case where the mixing ratio is assumed
to be constant within a given layer (CO, and H,0). For ozone, the mixing ratio is assumed
to interpolate linearly in physical thickness; thus, another fractional layer amount ZINPL is
required for evaluating Ao, (p,p’) across subdivided layers.

Consider the subdivided path for au; the total path length from p% to pf;
length will be

k+1 for the p? path

£l i) = P [Pl — P (4.371)
where py = M The total layer path length is, therefore, proportional to
1 2
£ i) & S (k)" — (05™))- (4.372)

The path length £ for gy requires the mean pressure

Dop & B {f +p1161+1 ) (4.373)

and the pressure difference

k k+1
P" + Py E+1

Therefore, the path &9 is
3 1 Pk + pk-l-l 9
622 ~ p22 Ap?? = 5 { (T (p];{—i—l) . (4375)
The fractional path length is obtained by normalizing this by &(p;, p%™),
P\
UINPL(2, k) = DAF3(k) § (=5 ) - (i) ¢, (4.376)
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where
1

2 k+1\2°
AN
Similar reasoning leads to the following expressions for the remaining fractional path lengths,
for o1,

DAF3(k) = (4.377)

UINPL(3,k) = DAF3(k) { <p ' ;plﬁf)Q - (p’;;l)Q} : (4.378)
for a1,

UINPL(1,k) = DAF3(k) {(p’;,)2 _ (pk J;p%)Q} , (4.379)
and for au,

UINPL(4,k) = DAF3(k) {(p’;,)2 - (%)2} . (4.380)

The UINPL are fractional layer amounts for path length that scale as p?, i.e., EU
For variables that scale linearly in p, e.g., uw;;, the following fractional layer amounts are
used:

plc _pk
WINPL(1,k) = DAF4(k) { 2 5 } : (4.381)

pk _ pk+1
WINPL(2,k) = DAFA(k) {TH} : (4.382)

Ph +p* k41
WINPL(3,k) = DAFA(k) | =5 ) =Pl ¢ (4.383)
WINPL(4,k) = DAFA(k) {p% — (0% +p*2)}, (4.384)
where
1
Py — Py

These fractional layer amounts are directly analogous to the UINPL, but since w is linear
in p, the squared terms are not present.
The variable 3;; requires a mean pressure for the subdivided layer. These are

PINPL(1,k) = % {pk “;plf’f +p’;1} , (4.386)
PINPL(2,k) = % {pk%}’?l + p’g“} : (4.387)
PINPL(3,k) = % {% + p’;{“} : (4.388)
PINPL(4,k) = % {kaFTp%H + p’}l} : (4.389)
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Finally, fractional layer amounts for ozone path lengths are needed, since ozone is interpolated
linearly in physical thickness. These are given by

k
ZINPL(L, k) = ln( ) (4.390)

i (i)

E ) (4.391)
ZINPL(3,k) = ZINPL(1, k) + 2ZINPL(2, k), (4.392)
ZINPL(4,k) = ZINPL(2, k) + 2ZINPL(1, k). (4.393)

mk‘
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4.8 Surface Exchange Formulations

The surface exchange of heat, moisture and momentum between the atmosphere and land,
ocean or ice surfaces are treated with a bulk exchange formulation. We present a description of
each surface exchange separately. Although the functional forms of the exchange relations are
identical, we present the descriptions of these components as developed and represented in the
various subroutines in CAM2. The differences in the exchange expressions are predominantly
in the definition of roughness lengths and exchange coefficients. The description of surface
exchange over ocean follows from Bryan et al. [1996], and the surface exchange over sea ice is
discussed in chapter 6. Over lakes, exchanges are computed by a lake model embedded in the
land surface model described in the following section.

4.8.1 Land

In CAM2, the NCAR Land Surface Model (LSM) [Bonan, 1996] has been replaced by the Com-
munity Land Model CLM2 [Bonan et al., 2002]. This new model includes components treating
hydrological and biogeochemical processes, dynamic vegetation, and biogeophysics. Because of
the increased complexity of this new model and since a complete description is available online,
users of CAM2 interested in CLM should consult this documentation at
http://www.cgd.ucar.edu/tss/clm/. A discussion is provided here only of the component
of CLM which controls surface exchange processes.

Land surface fluxes of momentum, sensible heat, and latent heat are calculated from Monin-
Obukhov similarity theory applied to the surface (i.e. constant flux) layer. The zonal 7, and
meridional 7, momentum fluxes (kg m s ?), sensible heat H (W m ?) and water vapor F

136



(kg m~2s71) fluxes between the surface and the lowest model level z; are:

Us — U
7o = —p(Ww') = —prui(u/Ve) = pr " - (4.394)
Vs — U
y=—pWw) =—pui(n/Va) = p—— (4.395)
6, — 0
H= pic(w'd) =—picyu.b. = picy . ! (4.396)
ah
_ TP} _ _ gs — 1
E= pi(w'¢) = —piu.q. =pn— (4.397)
Tam = V;L/Ui (4398)
Tan = (61 — 05) /u.0, (4.399)
Taw = (Q1 - QS)/U*Q* (4400)

where py, u1, v1, 61 and g; are the density (kg m~3), zonal wind (m s™!), meridional wind (m s™1),
air potential temperature (K), and specific humidity (kg kg™!) at the lowest model level. By
definition, the surface winds ug and v, equal zero. The symbol 6; represents temperature, and
¢:1 is specific humidity at surface. The terms 74, es, and 74, are the aerodynamic resistances
(s m™!) for momentum, sensible heat, and water vapor between the lowest model level at height,
z1 and the surface at height zom, + d [20n + d|. Here zom [20n] is the roughness length (m) for
momentum [scalar| fluxes, and d is the displacement height (m).

For the vegetated fraction of the grid, 0, = T,y and ¢; = q,f, where T, and ¢,s are the air
temperature and specific humidity within canopy space. For the non-vegetated fraction, 0, = T,
and ¢, = g4, where T, and g, are the air temperature and specific humidity at ground surface.
These terms are described by Dai et al. [2001].

Roughness lengths and zero-plane displacement

The aerodynamic roughness zy, is used for wind, while the thermal roughness zy, is used for
heat and water vapor. In general, 2y, is different from zg,, because the transfer of momentum
is affected by pressure fluctuations in the turbulent waves behind the roughness elements, while
for heat and water vapor transfer no such dynamical mechanism exists. Rather, heat and water
vapor must ultimately be transferred by molecular diffusion across the interfacial sublayer. Over
bare soil and snow cover, the simple relation from Zilitinkevich [1970] can be used [Zeng and
Dickinson, 1998]:

0.45
In 2™ = g (“*Zom) (4.401)
Z0h 14
a=0.13 (4.402)
v=15x10"m% ! (4.403)
Over canopy, the application of energy balance
R,—H—-L,E=0 (4.404)
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(where R, is the net radiation absorbed by the canopy) is equivalent to the use of different zy,,
versus 2o over bare soil, and hence thermal roughness is not needed over canopy [Zeng et al.,
1998].

The roughness zy,, is proportional to canopy height, and is also affected by fractional vegeta-
tion cover, leaf area index, and leaf shapes. The roughness is derived from the simple relationship
Zom = 0.07 h., where h. is the canopy height. Similarly, the zero-plane displacement height d
is proportional to canopy height, and is also affected by fractional vegetation cover, leaf area
index, and leaf shapes. The simple relationship d/h. = 2/3 is used to obtain the height.

Monin-Obukhov similarity theory

(1) Turbulence scaling parameters
A length scale (the Monin-Obukhov length) L is defined by

_ 6l
kgl
where k£ is the von Karman constant, and ¢ is the gravitational acceleration. L > 0 indicates

stable conditions, L < 0 indicates unstable conditions, and L = oo applies to neutral conditions.
The virtual potential temperature 6, is defined by

(4.405)

R/cp
0, = 0,(1+0.61q)) = T, (%) (1+0.61¢;) (4.406)
1

where 77 and ¢; are the air temperature and specific humidity at height z; respectively, 6, is
the atmospheric potential temperature, p; is the atmospheric pressure, and p, is the surface
pressure. The surface friction velocity u, is defined by

u? = [’ + vw’)? (4.407)

The temperature scale 6, and 6,, and a humidity scale ¢, are defined by

0, = —w'0 [u, (4.408)
g = —w'q [u, (4.409)
O = —w'0, /u,
~ —(w'0’ + 0.610w'q) /u, (4.410)
=0, + 0.616q.

(where the mean temperature f serves as a reference temperature in this linearized form of 6, ).
The stability parameter is defined as

Z1 — d
= 4.411
AL (@411)
with the restriction that —100 < ¢ < 2. The scalar wind speed is defined as

Ve =ui+of + U7 (4.412)

0.1 ms™! , if ¢ > 0 (stable)
U.= 1/3 4.413
Bw, = B (Zi%&,*u*) , if ¢ < 0 (unstable) . ( )
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Here w, is the convective velocity scale, z; is the convective boundary layer height, and g = 1.
The value of z; is taken as 1000 m
(2) Flux-gradient relations [Zeng et al., 1998]

The flux-gradient relations are given by:

k(z — d) 00
(219* )& = 1 (<) (4.414)
k(z —d) 0
Mo D%y (4.415)
Pn = &g (4.416)
[ (1—166)"Y% forc <0
Om() = { 1+ 5¢ for0<¢<1 (4.417)
_f (1—166)"Y2 forc <0
onls) = { 1+ 5¢ for0<¢<1 (4.418)

Under very unstable conditions, the flux-gradient relations are taken from Kader and Yaglom
[1990):

b = 0.7k*3(—)!/? (4.419)

dn = 0.9k3(—¢)~1/3 (4.420)

To ensure the functions ¢,,(s) and ¢p(s) are continuous, the simplest approach (i.e., without

considering any transition regions) is to match the above equations at ¢, = —1.574 for ¢,,(s)

and ¢, = —0.465 for ¢ (<) -
Under very stable conditions (i.e., ¢ > 1), the relations are taken from Holtslag et al. [1990]:

Pm = Ph =5+ (4.421)

(3) Integral forms of the flux-gradient relations
Integration of the wind profile yields:

= %fM(g) (4.422)
fu(s) = { [111 (Zgj) — Y (gm)} + 1.14[(—¢)"/® - (—gm)l/?’]} L ¢ < Gn=—1574 (4.422a)
[ ( . ) Um(S) + Vm ('Z"Tm)] ; Sm<s<0 (4.422b)

[l < o ) + 5<] : 0<¢<1 (4.422¢)

{[ (zom> ] [51n(¢) +¢— 1]} ; ¢>1 (4.422d)
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Integration of the potential temperature profile yields:

0, — 0, = (Z () (4.423)
{ [ (Zf) ¢h(gh)] +0.8[(—n)"1/3 — (—g)—1/3]} ¢ <o =—0465 (4.423a)

- [111( - ) Un(<) + Ui ('ZO")] , Gh<c<0 (4.423b)
[ ( - ) + 5§] , 0<g<1 (4.423¢)

fr(s) = { [ln <Zf—h> + 5] +[51n(s) +¢ — 1]} : ¢>1 (4.423d)

The expressions for the specific humidity profiles are the same as those for potential temper-
ature except that (6; — 6, ), 6. and zp, are replaced by (¢; — ¢s ), ¢- and zp, respectively. The
stability functions for ¢ < 0 are

1 142
Um —21n< ;X>+ln< +2X>—2tan_1x+g (4.424)
1 2
Yp =1y =2In ( J;X ) (4.425)
where
x = (1 —16¢)'/* (4.426)

Note that the CLM code contains extra terms involving zo, /<, zon/s, and zy,/< for com-
pleteness. These terms are very small most of the time and hence are omitted in Eqs. 4.422 and
4.423.

In addition to the momentum, sensible heat, and latent heat fluxes, land surface albedos
and upward longwave radiation are needed for the atmospheric radiation calculations. Surface
albedos depend on the solar zenith angle, the amount of leaf and stem material present, their
optical properties, and the optical properties of snow and soil. The upward longwave radiation
is the difference between the incident and absorbed fluxes. These and other aspects of the land
surface fluxes have been described by Dai et al. [2001].

4.8.2 Ocean

The bulk formulas used to determine the turbulent fluxes of momentum (stress), water (evapo-
ration, or latent heat), and sensible heat into the atmosphere over ocean surfaces are

(7, E,H) = pa|Av| (CpAv,CpAq,C,CrAb), (4.427)

where p, is atmospheric surface density and C, is the specific heat. Since CAM2 does not
allow for motion of the ocean surface, the velocity difference between surface and atmosphere
is Av = wv,, the velocity of the lowest model level. The potential temperature difference
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is A = 04 — T,, where T, is the surface temperature. The specific humidity difference is
A q = qa—qs(Ts), where ¢,(T) is the saturation specific humidity at the sea-surface temperature.

In (4.427), the transfer coefficients between the ocean surface and the atmosphere are com-
puted at a height Z4 and are functions of the stability, (:

Z - z -
Cip,pm) =K [ln (—A> - iﬁm] [ln < 4 ) — 1/1(m,3,5)] (4.428)
ZO’ITL ZO(m,e,h)

where k = 0.4 is von Kdrmdn’s constant and Zyy e ) is the roughness length for momentum,
evaporation, or heat, respectively. The integrated flux profiles, v, for momentum and ), for
scalars, under stable conditions (¢ > 0) are

Y (C) = 15(¢) = =5¢. (4.429)

For unstable conditions (¢ < 0), the flux profiles are
¥m(¢) =2In[0.5(1 + X)] + In[0.5(1 + X?)]

—2tan ' X + 0.57, (4.430)
¥,(¢) =21In[0.5(1 + X?)], (4.431)
X =(1 - 16¢)4. (4.432)
The stability parameter used in (4.429)-(4.432) is
kKqgZa (0 Q*
_ v _ 4.433
¢ u*? <0,, + (e 1+ qA)) ’ ( )

where the virtual potential temperature is 6, = 04(1 + €g4); g4 and 64 are the lowest level
atmospheric humidity and potential temperature, respectively; and ¢ = 0.606. The turbulent
velocity scales in (4.433) are

ut =C*|Av|,
Av

Over oceans, Zy, = 9.5 x 107° m under all conditions and Zy, = 2.2 x 107° m for ¢ > 0,
Zo, = 4.9 x 107 m for ¢ < 0, which are given in Large and Pond [1982]. The momentum
roughness length depends on the wind speed evaluated at 10 m as

-1
Zom = 10 exp —K<&+C5+06U10) )
Uro
-1
cCN._ (Z
Upp=Us|1+Y—In (1—6‘ - %)] , (4.435)
K

where ¢; = 0.0027 m s !, ¢5 = 0.000142, ¢ = 0.0000764 m ! s, and the required drag coefficient
at 10-m height and neutral stability is C{g = c4U1_01 + ¢5 + cUsp as given by Large et al. [1994].

The transfer coefficients in (4.427) and (4.428) depend on the stability following (4.429)-
(4.432), which itself depends on the surface fluxes (4.433) and (4.434). The transfer coefficients
also depend on the momentum roughness, which itself varies with the surface fluxes over oceans
(4.435). The above system of equations is solved by iteration.
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4.8.3 Sea Ice

The fluxes between the atmosphere and sea ice are described in detail in chapter 6.

4.9 Vertical Diffusion and Boundary Layer Processes

The vertical diffusion parameterization in CAM2 provides the interface to the turbulence pa-
rameterization, computes the molecular diffusivities (if necessary) and finally computes the
tendencies of the input variables. The diffusion equations are actually solved implicitly, so the
tendencies are computed from the difference between the final and initial profiles.

In the near future, the gravity wave parameterization will also be called from within the
vertical diffusion. This will allow the turbulent and, especially, the molecular diffusivity to be
passed to the gravity wave parameterization to damp vertically propagating waves. The gravity
wave parameterization may return additional diffusivities and tendencies to be applied before
the actual diffusion is applied.

As in CCM2 and CCM3, the turbulence parameterization in CAM2 includes computation of
diffusivities for the free atmosphere, based on the gradient Richardson number, and an explicit,
non-local Atmospheric Boundary Layer (ABL) parameterization. The ABL parameterization
includes a determination of the boundary layer depth. In practice, the free atmosphere diffu-
sivities are calculated first at all levels. The ABL scheme then determines the ABL depth and
diffusivities and replaces the free atmosphere values for all levels within the ABL, returning both
the updated diffusivities and the non-local transport terms. The implementation of the ABL
parameterization in CCM2 is discussed in [Holtslag and Boville, 1993], while the formalism only
is discussed here. Following the ABL scheme, molecular diffusivities are computed if the model
top extends above ~90 km (0.1 Pa).

As described in Boville and Bretherton [2003], a general vertical diffusion parameterization
can be written in terms of the divergence of diffusive fluxes:

0 10

a(uavvq) - _;&(FuaFvan) (4436)
0 10
75 = ——oFg+D 4.4
a° 0z "+ (4.437)

where s = ¢, T+ gz is the dry static energy, z is the geopotential height above the local surface
(does not include the surface elevation) and D is the heating rate due to the dissipation of
resolved kinetic energy in the diffusion process. The diffusive fluxes are defined as:

0
F,,. = —pK,—=— 4.4
v = Kz (u,0), (4.438)

0
Foug = —qu,Ha(q,s)—l—pK;’H’yq,H. (4.439)

The viscosity K, and diffusivities K, i are the sums of: turbulent components Kfn,q, > Which
dominate below the mesopause; and molecular components K, , i, which dominate above 120
km. The turbulent diffusivities are the sum of two components, free atmosphere and boundary
layer diffusivities, defined below. In the future, these terms also may include effective diffusivities
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from the gravity wave parameterization. The non-local transport terms v,z are given by the
ABL parameterization. Note that Fy, as defined in (4.439) and implemented in CAM2, does not
include the term which causes diffusive separation of constituents of differing molecular weights.
The molecular diffusion in CAM2 is currently incomplete and should be used with caution.
The molecular viscosity and diffusivities are all currently defined as 3.55 x 1077723 /p. A more
complete form, allowing separation of constituents, will be implemented later.

The kinetic energy dissipation term D in (4.437) is determined by forming the equation for
total energy from (4.436-4.437):

oOF ou ov 0s
— = U= — 4+ = 4.440
o ~ "ot Ve T w (4.440)
1( 0F, 0F, O0Fy
= — D 4.441
p(uaz+vﬁz+82)+ ( )
1 (0Fkxr OFn
= — — . 4.442
p ( 0z T 0z ( )
The diffusive kinetic energy flux in (4.442) is
and the kinetic energy dissipation is
1 ou ov
D=——\|F,—+F,—|. 4.444
p ( 0z - 8z> ( )
To show that D is positive definite, we use (4.438) to expand for F, and F):
ou\? v\’
D= (K +K™ — — > 0. 4.445
(1, + m)[(az) +(az)]_ (4.445)

We show that energy is conserved in the column by integrating (4.442) in the vertical, from
the surface (z = 0), to the top of the model (z = z40p):

" aEd F Fg)|° 4.446
| o5ede = (Fee + . (4.446)
Therefore, the vertically integrated energy will only change because of the boundary fluxes of
energy, of which only the surface heat flux, Fy(z = 0), is usually nonzero. It is typically assumed
that the surface wind vanishes, even over oceans and sea ice, giving Fxg(z = 0) = 0. Then, the
surface stress F, ,(z = 0) does not change the total energy in the column, but does result in
kinetic energy dissipation and heating near the surface (see below) For coupled models, nonzero
surface velocities can be accommodated by including Fx g on both sides of the surface interface.

4.9.1 Free atmosphere turbulent diffusivities

The free atmospheric turbulent diffusivities are typically taken as functions of length scales ¢,
and local vertical gradients of wind and virtual potential temperature, e.g.,

K, =1t>SF,(Ri). (4.447)

143



Here S is the local shear, defined by

ov
= |— 4.448
el (4.448)
and the mixing length ¢, is generally given by
1 1 1
== 4.449
L ke (4.449)

where £ is the Von Karman constant, and A, is the so-called asymptotic length scale, taken to
be 30 m above the ABL. Since the lowest model level is always greater than 30 m in depth, /.
is simply set to 30 m in CAM2. Furthermore, F.(Ri:) denotes a functional dependence of K, on
the gradient Richardson number:

g 00,/0z
0, S22

where 6, is the virtual potential temperature,

0, =0 [1 + (% - 1) q] : (4.451)

Ri

(4.450)

For simplicity, in the free atmosphere, we specify the same stability functions F, for all c.
For unstable conditions (Ri < 0) we choose

F.(Ri) = (1 — 18Ri)"?, (4.452)

and for stable conditions (Ri > 0) we use.

1
F.(Ri) = , _ 4.453
(Ri) = oRi (1+ 8Ri) (4.453)

This means that no distinction is made between turbulent vertical diffusion of heat, scalars and
momentum outside the boundary layer. However, separate coefficient arrays are maintained and
other parameterizations (such as gravity wave drag) may provide distinct diffusivities. We also
note the the turbulent diffusivity is the same for all constituents, even within the ABL. However,
the molecular diffusivities differ for each constituent since they depend on it’s molecular weight.

4.9.2 “Non-local” atmospheric boundary layer scheme

The free atmosphere turbulent diffusivities, described above, are an example of the local diffusion
approach. In such an approach, the turbulent flux of a quantity is proportional to the local
gradient of that quantity (e.g., (4.438)—(4.439)). In addition, the eddy diffusivity depends on
local gradients of mean wind and mean virtual temperature (see (4.447)). These are reasonable
assumptions when the length scale of the largest turbulent eddies is smaller than the size of the
domain over which the turbulence extends. In the Atmospheric Boundary Layer (ABL) this is
typically true for neutral and stable conditions only. For unstable and convective conditions,
however, the largest transporting eddies may have a size similar to the boundary layer height
itself, and the flux can be counter to the local gradient [Deardorff, 1972; Holtslag and Moeng,
1991]. In such conditions a local diffusion approach is no longer appropriate, and the eddy
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diffusivity is better represented with turbulent properties characteristic of the ABL. We will
refer to such an approach as non-local diffusion.

To account for “non-local” transport by convective turbulence in the ABL, the local diffusion
term for constituent c¢ is modified as in (4.439):

w'C'= —-K, (aa—f — ’yc> , (4.454)
where K, is the non-local eddy diffusivity for the quantity of interest. The term 7, is a “non-
local” transport term and reflects non-local transport due to dry convection. Eq. (4.454) applies
to static energy, water vapor, and passive scalars. No countergradient term is applied to the
wind components, so (4.438) does not contain these terms. For stable and neutral conditions
the non-local term is not relevant for any of the quantities. The eddy diffusivity formalism is,
however, modified for all conditions.
In the non-local diffusion scheme the eddy diffusivity is given by

K.=k w2 (1 . %)2 , (4.455)

where w; is a turbulent velocity scale and h is the boundary layer height. Equation (4.455)
applies for heat, water vapor and passive scalars. The eddy diffusivity of momentum K,,, is also
defined as (4.455) but with w; replaced by another velocity scale w,,. With proper formulation
of wy (or wy,) and h, it can be shown that equation (4.455) behaves well from very stable to very
unstable conditions in horizontally homogeneous and quasi-stationary conditions. For unstable
conditions w; and w,, are proportional to the so-called convective velocity scale w,, while for
neutral and stable conditions w; and w,, are proportional to the friction velocity wu..

The major advantage of the present approach over the local eddy diffusivity approach is that
large eddy transport in the ABL is accounted for and entrainment effects are treated implicitly.
Above the ABL, v, = 0 so (4.454) reduces to a local form with K, given by (4.447). Near the
top of the ABL we use the maximum of the values by (4.447) and (4.455), although (4.455)
almost always gives the larger value in practice.

The non-local transport term in (4.454), ~y., represents non-local influences on the mixing by
turbulence [Deardorff, 1972]. As such, this term is small in stable conditions, and is therefore
neglected under these conditions. For unstable conditions, however, most heat and moisture
transport is achieved by turbulent eddies with sizes on the order of the depth h of the ABL. In
such cases, a formulation for +, consistent with the eddy formulation of (4.454) is given by

w, (w'C"),
a4 wy2h
where a is a constant and (w'C’), is the surface flux (in kinematic units) of the transported
scalar. The form of (4.456) is similar to the one proposed in Holtslag and Moeng [1991]. The
non-local correction vanishes under neutral conditions, for which w, = 0.

The formulations of the eddy-diffusivity and the non-local terms are dependent on the bound-
ary layer height h. The CCM2 configuration of this non-local scheme made use of a traditional
approach to estimating the boundary layer depth by assuming a constant value for the bulk
Richardson number across the boundary layer depth so that A was iteratively determined using

_ Rie {u(h)? +v(h)*}

"= /) 0. 0 457

Ve = (4.456)
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where Ri,, is a critical bulk Richardson number for the ABL; u(h) and v(h) are the horizontal
velocity components at h; g/0; is the buoyancy parameter and 6, (h) is the virtual temperature at
h. The quantity 6, is a measure of the surface air temperature, which under unstable conditions
was given by

10!
0, =0, (z) + b (200 (4.458)

Wm

where b is a constant, (@), is the virtual heat flux at the surface, 6, (z,) is a virtual tempera-
ture in the atmospheric surface layer (nominally 10 m), b (w'’),/w,, represents a temperature
excess (a measure of the strength of convective thermals in the lower part of the ABL) and
unstable conditions are determined by (w'6)s > 0. The quantity 6, (zs) was calculated from the
temperature and moisture of the first model level and of the surface by applying the procedure in
Geleyn [1988]. The value of the critical bulk Richardson number Ri,, in (4.457), which generally
depends on the vertical resolution of the model, was chosen as Ri.. = 0.5 for the CCM2.

Vogelezang and Holtslag [1996] have recently studied the suitability of this formulation in
the context of field observations, large-eddy simulations [Moeng and Sullivan, 1994], and an
E — € turbulence closure model [Duynkerke, 1988]. They propose a revised formulation which
combines shear production in the outer region of the boundary layer with surface friction, where
the Richardson number estimate is based on the differences in wind and virtual temperature
between the top of the ABL and a lower height that is well outside the surface layer (i.e.,
20 m - 80 m). In addition to providing more realistic estimates of boundary layer depth, the
revised formulation provides a smoother transition between stable and neutral boundary layers.
Consequently, CAM2 employs the Vogelezang and Holtslag [1996] formulation for estimating
the atmospheric boundary layer height, which can be written as

Ricr {(u(h’) - uSL)Q + (U(h) - USL)2 + Buz}
(9/0s1) (05(h) — Os1) '

The quantities ugr, vsr,, and Oy, represent the horizontal wind components and virtual potential
temperature just above the surface layer (nominally 0.14). In practice, the lowest model level
values for these quantities are used to iteratively determine h for all stability conditions, where
the critical Richardson number, Ri.., is assumed to be 0.3. The disposable parameter B has
been experimentally determined to be equal to 100 (see Vogelezang and Holtslag [1996]). The
computation starts by calculating the bulk Richardson number Ri between the level of fs;, and
subsequent higher levels of the model. Once Ri exceeds the critical value, the value of h is
derived by linear interpolation between the level with R: > Ri.. and the level below.

Using the calculated value for h and the surface fluxes, we calculate the velocity scales,
the eddy diffusivities with (4.455), and the countergradient terms with (4.456), for each of the
transported constituents. Subsequently, the new profiles for 6, ¢, u, and v are calculated using
an implicit diffusion formulation.

The turbulent velocity scale of (4.455) depends primarily on the relative height z/h (h is
boundary layer height), and the stability within the ABL. Here stability is defined with respect
to the surface virtual heat flux (w'6"),. Secondly, the velocity scales are also generally dependent
on the specific quantity of interest. We will assume that the velocity scales for mixing of passive
scalars and specific humidity are equal to the one for heat, denoted by w;. For the wind
components, the velocity scale is different and denoted by w,,. The specification of w, and wy,,

h=z+ (4.459)
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is given in detail by Troen and Mahrt [1986]. Holtslag et al. [1990] have rewritten the velocity
scale, in terms of the more widely accepted profile functions of Dyer [1974], and have given a
new formulation for very stable conditions. Below we follow the latter approach.

For stable ((w'#!), < 0) and neutral surface conditions ((w'f), = 0), the velocity scale for
scalar transport is

Uy
wy = — 4.460
e (4.460)
where u, is the friction velocity defined by
u, = [(Ww')? + (U’w’)§]1/4. (4.461)

Furthermore, ¢, is the dimensionless vertical temperature gradient given by Dyer [1974],

dn =1+ 5% , (4.462)

for 0 < z/L < 1. Here L is the Obukhov length, defined by

3

—Uu
L= r (4.463)
k(g/00)(w'8})o
For z/L > 1,
=5+, (4.464)

which matches (4.462) for z/L = 1. Equation (4.464) is a simple means to prevent ¢, from
becoming too large (and K, too small) in very stable conditions. In stable conditions, the
exchange coefficients for heat and momentum are often found to be similar. Therefore we may
use Wy, =w.

For unstable conditions (w'@!), > 0, we have that w; and w,, differ in the surface layer
(z/h < 0.1) and in the outer layer of the ABL (z/h > 0.1). For the surface layer, w; is given by
(4.460) with

—1/2
by = (1 . 15%) . (4.465)
Similarly, w,, is written as
Ux
wn= 2" (4.466)

where ¢,, is the dimensionless wind gradient given by
-1/3
O = (1 - 15%) . (4.467)

In the surface layer, the scalar flux is normally given by

(w'c)o = —kzhz (%) : (4.468)

Comparison with (4.454) and (4.455) shows that, in the surface layer, we should have ¢ = 0 in
(4.456) for consistency.
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For the outer layer, w; and w,, are given by

wy = Wy, /Pr (4.469)
where
W, = (Ul + c1w?) 13 : (4.470)
and
— . \1/3
w. = ((9/600) (w'8;)oh) (4.471)

is the convective velocity scale. Furthermore, Pr is the turbulent Prandtl number and c; is a
constant. The latter is obtained by evaluating the dimensionless vertical wind gradient ¢,, by
(4.467) at the top of the surface layer, as discussed by Troen and Mahrt [1986]. This results in
¢; = 0.6. For very unstable conditions (h > —L or w,/u, > 0), it can be shown with (4.469)
that w,, is proportional to 0.85 w,, while for the neutral case w,, = u,. The turbulent Prandtl
number Pr (= K,/ K}, = wy,/w;) of (4.469) is evaluated from

b (2 Z W,
Pr=t (L) taky (4.472)
for z = 0.1h. Equation (4.472) arises from matching (4.454), (4.455), (4.456), and (4.468) at the
top of the surface layer. As in Troen and Mahrt we assume that Pr is independent of height
in the unstable outer layer. Its value decreases from Pr =1 for the neutral case (z/L = 0 and
w, = 0), to Pr = 0.6 for w,/u, ~ 10 in very unstable conditions.

In very unstable conditions, the countergradient term of (4.456) approaches

U)C()
c = d )
7 wyh

(4.473)

where d ~ a/0.852, because for very unstable conditions we obtain w,, ~ 0.85w,. Since typically
d ~ 10 Troen and Mahrt [1986], we have a = 7.2. Similarly, the temperature excess of (4.458)
reads in this limit as d(w'!)o/w,. This leads to b (= 0.85 d) = 8.5 in (4.458).

Finally, using the velocity scales described above, the flux equation (4.454) is continuous in
relative height (z/h) and in the boundary layer stability parameter (h/L or w,/u.).

4.9.3 Discretization of the vertical diffusion equations

In CAM2, as in previous version of the CCM, (4.436-4.439) are cast in pressure coordinates,
using
dp = —pgdz, (4.474)

and discretized in a time-split form using an FEuler backward time step. Before describing the
numerical solution of the diffusion equations, we define a compact notation for the discrete
equations. For an arbitrary variable 1), let a subscript denote a discrete time level, with current
step ¥, and next step ¥,,1. The model has L layers in the vertical, with indexes running from
top to bottom. Let 1* denote a layer midpoint quantity and let 1*~ denote the value on the
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upper interface of layer k while ¥ denotes the value on the lower interface. The relevant
quantities, used below, are then:

P = R+ 2, ke (1,2,3,..,L—1)

o= (WP 4 y)/2, ke (2,3,4.,L)
5k¢ — wk—k _ wk—,
5k+w — wk-i—l . wk,
o = Pt -, (4.475)
wn—k = (wn + 77bn+1)/2,
6’ﬂ¢ = wn—H - wn:

ot = tn+1 — tn,
AR = 1 k=1
— 0, k1.

Like the continuous equations, the discrete equations are required to conserve momentum,
total energy and constituents. The discrete forms of (4.436-4.437) are:

5”(U,U,Q)k 5kFuvq
—_— = — 4.476
ot 0kp ( )
=g + D", 4.477
ot okp ( )
For interior interfaces, 1 < k < L — 1,
k+

k+ k+ O (uav)n—l—l

Fuj = (QPZKm)n W (4.478)
k+ (5k+(ua U)n—|—1

+ (pK! gyem) " (4.479)

Surface fluxes FUL’;L,q’H are provided explicitly at time n by separate surface models for land,
ocean, and sea ice while the top boundary fluxes are usually Ful,;,q, g = 0. The turbulent
diffusion coefficients Kfmq, y and non-local transport terms vy, y are calculated for time n by
the turbulence model described above, which is identical to CCM3. The molecular diffusion
coefficients, described earlier, are only included if the model top is above ~ 90 km, in which
case nonzero top boundary fluxes may be included for heat and some constituents.

The free atmosphere turbulent diffusivities K**, given by (4.447-4.453), are discretized as
Kit =Kk F.(RFT) > 0.01. (4.480)
The stability function is:

1/ (1 +10R;|1 + 8R for R; > 0 (stable),
iy < | Y/ 0+ ORISR for Ry >0 (stable) sy

V1 —18R; for R; < 0 (unstable),
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The neutral Ky is calculated by

" 2 " 2 1/2
\ , [((5 +un) + ((5 +vn) ]
+_
Ky =14 55 s , (4.482)
with £ = 30 m. The Richardson number in the free atmosphere is calculated from
K+, sk+
R+ =7 O 20770, (4.483)

X
o )+ (0 o)

o = oF (1.0 + <% - 1) qij) : (4.484)

Similarly to the continuous form (4.444), D¥ is determined by separating the kinetic energy
change over a time step into the kinetic energy flux divergence and the kinetic energy dissipation.
The discrete system is required to conserve energy exactly:

I

where

[(UZH)Q + (Uﬁ+1)2 + 32-1—1] 5kp = (4.485)

> [@h) + () + s3] 0% + SU(Fi™ + Fy),
k=1
where we have assumed zero boundary fluxes for kinetic energy. This leads to

DF = 5 5k 2 (d" 4 dE 4 dk) (4.486)
dit = M (u,v)ps Frt, 1<k<L-1 (4.487)
dyt = =2(u,v)y Frf (4.488)

According to (4.486), the internal dissipation of kinetic energy in each layer D* is the average
of the dissipation on the bounding interfaces dj%, given by (4.487) and (4.488). Expanding
(4.487) using (4.478) and recalling that u,, = (un+1 + uy,)/2,

9 k+
it _ (9p"Km) k+ 2 k+
for 1 <k < L —1 and similarly for d**. The discrete kinetic energy dissipation is not positive
definite, because the last term in (4.489) is the product of the vertical difference of momentum
at two time levels. Although d** will almost always be > 0, values < 0 may occur occasionally.
The kinetic energy dissipation at the surface is

dyt == [(u,v)ry + (u,0)] Fr. (4.490)

Since the surface stress is opposed to the bottom level wind, the surface layer is heated by the
frictional dissipation. However, dL“L is not guaranteed to be positive, since it involves the bottom
level wind at two time levels.

Note that it has been assumed that the pressure does not change within the vertical diffusion,
even though there are boundary fluxes of constituents, including water. This assumption has
been made in all versions of the CCM and is still made in CAM2. This assumption will be
removed in a future version of CAM2, since the implied horizontal fluxes of dry air, to compensate
for the boundary flux of water, cause implied fluxes of other constituents.

Ftu, |, (4.489)

Un+1
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4.9.4 Solution of the vertical diffusion equations

A series of time-split operators is actually defined by (4.476-4.479) and (4.486-4.488). Once
the diffusivities (K,,,z) and the non-local transport terms (v, ) have been determined, the
solution of (4.476-4.479), proceeds in several steps.

—_

. update the ¢ and s profiles using v, u;

[\)

. update the bottom level values of u, v, ¢ and s using the surface fluxes;

w

invert (4.476) and (4.478) for u, v,11;
4. compute D and use to update the s profile;
5. invert (4.476,4.477) and (4.479) for s, and g,41;

Note that since all parameterizations in CAM2 return tendencies rather than modified pro-
files, the actual quantities returned by the vertical diffusion are 6, (u, v, s, q)/dt.

The non-local transport terms, 7, g, given by (4.456), cannot be treated implicitly because
they depend on the surface flux, the boundary layer depth and the velocity scale, but not explic-
itly on the profile of the transported quantity. Therefore, application of v, is not guaranteed to
give a positive value for ¢ and negative values may not be removed by the subsequent implicit
diffusion step. This problem is not strictly numerical; it arises under highly non-stationary
conditions for which the ABL formulation is not strictly applicable. In practice, we evaluate

got
and check the g,. profile for negative values (actually for ¢*, < gmuin, Where g, may be > 0).
If any negative values are found, we set ¢,. = ¢, for that constituent profile (but not for other
constituents at the same point).
Equations (4.476-4.479) constitute a set of four tridiagonal systems of the form
— ARt + BRy, — CMni = U, (4.492)
where v, indicates u, v, ¢, or s after updating from time n values with the nonlocal and

boundary fluxes. The super-diagonal (A*), diagonal (B*) and sub-diagonal (C*) elements of
(4.492) are:

AF = 5%051?—; (9°0°K)E, (4.493)
B¥ = 1+ 4%+ C*, (4.494)
ck = 5%;(55—; (°0°K)". (4.495)
The solution of (4.492) has the form
K = ERi + Y (4.496)
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or,
YEtl = EFtigl 4+ PR (4.497)

Substituting (4.497) into (4.492),
ko Clc 1 'f:LI+Aka+1
ntl ™ Bk _ AkEpk+17ntl T DR Ak RE+1T
Comparing (4.496) and (4.498), we find

(4.498)

Ck
k k k+1
k nt + AYF

The terms E* and F* can be determined upward from k& = L, using the boundary conditions
Bt = P = Al =0, (4.501)
Finally, (4.498) can be solved downward for ¢, using the boundary condition
C'=0=E'=0. (4.502)

CCM1-3 used the same solution method, but with the order of the solution reversed, which
merely requires writing (4.497) for ¢f | instead of ¢fT{. The order used here is particularly
convenient because the turbulent diffusivities for heat and all constituents are the same but
their molecular diffusivities are not. Since the terms in (4.499-4.500) are determined from
the bottom upward, it is only necessary to recalculate A*, C* E* and 1/(B* — A¥E*+1) for
each constituent within the region where molecular diffusion is important. Note that including
the diffusive separation term for constituents (which will be in the next version of CAM2) adds
additional terms to the definitions of A*, B¥. and C}, but does not otherwise change the solution
method.

4.9.5 Discrete equations for s, T, and z

The dry static energy at step n and level k is

sy = coTr + g2*, (4.503)

n —

which can be calculated from 7;, by integrating the hydrostatic equation using the perfect gas
law. "
gz =P =9, +/ RTdInyp', (4.504)
Ps
where @ is the geopotential, ®, is the geopotential at the Earth’s surface and p; is the surface
pressure. A fairly arbitrary discretization of (4.504) can be represented using a triangular
hydrostatic matrix H*,

k
F = ®,+ ) RHMT (4.505)

=L
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Note that (4.505) is often written in terms of the virtual temperature 7, = TR/R? The
apparent gas constant R includes the effect of water vapor and is defined as

R=R*+ (R" — RYyq, (4.506)

where R? is the apparent gas constant for dry air and RY is the gas constant for water vapor.
Using (4.505) in (4.503), we have

k
st o= TP+ RHMT], (4.507)
=L
= (+R'H")T) + ofF. (4.508)

The interface geopotential in (4.508) is defined as

k+1
o* = " RFHMT, (4.509)

=L

and RF is evaluated from (4.506), using ¢*. Although the correct boundary condition on (4.509)
is &, = ®,, within the parameterization suite it is usually sufficient to take &, = 0.

The definition of the hydrostatic matrix H depends on the numerical method used in the
dynamics and is subject to constraints from energy and mass conservation. The definitions of
H for the three dynamical methods used in CAM2 are given in the dynamics descriptions.

After s, is modified by diabatic heating in a time split process, the new s,,; = s, + Q,0t
can be converted into 7,41 and ®,; using (4.508):

Spn = (G + REH™) T + 0, (4.510)
-1
Tr = (sh— @) (¢ + RFH™) (4.511)

with R* evaluated from using ¢%,,. Once H is defined, (4.509) and (4.511) can be solved for
Tn+1 and @, 41 from the bottom up. Since the latter must normally recalculated if T is modified,

calculating T and ® from s involves the same amount of computation as calculating ® and s
from T.
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Chapter 5
Slab Ocean Model

In current release of CAM2, the Slab Ocean and Thermodynamic Sea ice Model (SOM) is not
supported. The NCAR Climate Modeling Section will release a new version of SOM ported to
CAM2 in the near future. When SOM is re-introduced, this chapter from Kiehl et al. [1996] will
be updated as well.
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Chapter 6

Sea Ice Thermodynamics

This chapter describe the physics of the sea ice formulation beginning with basic assumptions and
followed by a description of the fundamental equations, various parameterization, and numerical
approximations. The philosophy behind the design of the sea ice formulation of CAM2 is to use
the same physics, where possible, as in the sea ice model within CCSM, which is known as CSIM
for community sea ice model. In the absence of an ocean model, uncoupled simulations with
CAM2 require sea ice thickness and concentration to be specified. Hence the primary function
of the sea ice formulation in CAM2 is to compute surface fluxes. The new sea ice formulation
in CAM2 uses parameterizations from CSIM for predicting snow depth, brine pockets, internal
shortwave radiative transfer, surface albedo, ice-atmosphere drag, and surface exchange fluxes.
The full CSIM is described in detail in an NCAR technical note by Briegleb et al. [2002]. The
pieces of CSIM that are also used in uncoupled simulations with CAM2 are described here.

6.1 Basic assumptions

In the absence of an ocean model, uncoupled simulations with CAM2 require sea ice thickness
and concentration to be specified. Sea ice concentration are known with reasonable accuracy
owing to satellite microwave instruments and ship observations. However, no adequate mea-
surements of thickness exist to produce a comprehensive dataset. Instead the ice thickness for
the ice covered portion of the grid cell is fixed in space and time at 2 m in the Northern Hemi-
sphere and 0.5 m in the Southern Hemisphere. Further details about the specifications of sea
ice concentration were given in the chapter preamble.

Snow depth on sea ice is prognostic as snow accumulates when precipitation is diagnosed
to be snowfall and it melts when allowed by the surface energy balance. The maximum snow
depth is fixed at 0.5 m. Rain has no effect on sea ice or snow on sea ice in the model.

6.2 Fundamental Equations

The method for computing the surface turbulent heat and radiative exchange, evaporative flux,
and surface drag is integrally coupled with the formulation of heat transfer through the sea ice
and snow. The equation governing vertical heat transfer in the ice and snow, which allows for
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internal absorption of penetrating solar radiation, is

8T_<8 oT

Peor = glﬂ?a + QSW) (6.1)

where p is the density, c is the heat capacity, T is the temperature, k is the thermal conductivity,
Qsw is shortwave radiative heating, z is the vertical coordinate, and ¢ is time. Note that p, c,
and k differ for snow and sea ice, and also the latter two depend on temperature and salinity
within the sea ice to account for the behavior of brine pockets.

The boundary condition for the heat equation at the surface is

Frop(Ts) = Fsw — Isw + Frw + Fsg + Frg + kfi—f (6.2)
where T} is the surface temperature, Fsy is the absorbed shortwave flux, Iy is the shortwave
flux that penetrates into the ice interior, Fpy is the net longwave flux, Fspy is the sensible heat
flux, and Fp g is the latent heat flux. All fluxes are taken as positive down. If Frop(Ts = 0) > 0,
then the surface is assumed to be melting and a temperature boundary conditions (i.e., Ts = 0)
is used for the upper boundary with Eq. 6.1. However if Frop(Ts = 0) < 0 in Eq. 6.2, then the
surface is assumed to be freezing and a flux boundary condition is used for Eq. 6.1, and Egs.
6.1 and 6.2 are solved simultaneously with Frop(T;) = 0 in the latter.

Snow melt and accumulation is computed from
dhs  —Frop Fru

Ps ot I, o L.+L, svw (6.3)

where h; is the snow depth, p, is the snow density, L; and L, are the latent heats of fusion and
vaporization, and Fsyw is the snowfall rate (see Table 6.1 for values of constants).

Before describing the numerical solution to Eqs. 6.1 and 6.3, parameterizations of albedo,
surface fluxes, brine pockets, and shortwave radiative transfer within the sea ice are given.

6.3 Snow and Ice Albedo

The albedo depends upon spectral band, snow thickness, ice thickness and surface temperature.
Snow and ice spectral albedos (visible = vs, wavelengths < 0.7um and near-infrared = ni,
wavelengths > 0.7um) are distinguished, as both snow and ice spectral reflectivities are signifi-
cantly higher in the vs band than in the n: band. This two-band separation represents the basic
spectral dependence. The near-infrared spectral structure, with generally decreasing reflectivity
with increasing wavelength [Ebert and Curry, 1993] is ignored. The zenith angle dependence
of snow and ice is ignored [Ebert and Curry, 1993; Grenfell et al., 1994], and hence there is
no distinction between downwelling direct and diffuse shortwave radiation. The approximations
made for the albedo are further described by Briegleb et al. [2002].

Here we ignore the dependence of snow albedo on age, but retain the melting/non-melting
distinction and thickness dependence. Dry snow spectral albedos are:

Qysar (dry) =0.98

. 6.4
ozfndf(dry) =0.70 (64)
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Table 6.1: List of Physical Constants

Symbol | Description Value

s Density of snow 330 kg m

i Density of ice 917 kg m 3

Cp Specific heat of atmosphere dry 1005 J kg ' K1
Cpuww Specific heat of atmosphere water 1810 J kg7t K7t
Cs Specific heat of snow 0J kg™t K

Co Specific heat of fresh ice 2054 J kg~ K1

2 Aerodynamic roughness of ice 5.0x10™* m

Zref Reference height for bulk fluxes 10 m

¢1(ice) | saturation specific humidity constant | 11637800

g2(ice) | saturation specific humidity constant | 5897.8

ks Thermal conductivity of snow 0.31 Wm™t K-}
ko Thermal conductivity of fresh ice 2.0340 Wm ! K!
B Thermal conductivity ice constant 0.1172 Wm ! ppt !
L; Latent heat of fusion of ice 3.340x10° J kg~ !
L, Latent heat of vaporization 2.501x10% J kg™!
Toneit Melting temperature of top surface 0°C

1 Ocean freezing temperature constant | 0.054 °C ppt~!

Osh Stefan-Boltzmann constant 5.67x1078 Wm—2 K~
€ Ice emissivity 0.95

Kos Ice SW visible extinction coefficient | 1.4 m~!

Kni Ice SW near-ir extinction coefficient | 17.6 m™!

NOTE: CSIM in CAM2 does not use the shared constants defined in Appendix B.

To represent melting snow albedos, the surface temperature is used. Springtime warming pro-
duces a rapid transition from sub-zero to melting temperatures, while late fall values transition
more slowly to sub-zero conditions. This is approximated by a temperature dependence out to

—1°C. If TS > —IOC’ then
AT, =T, +1.0
af}sdf (melt) :af}sdf (dry) — 010AT5 .
afn'df(melt) :Offndf(dry) — 0.15AT;

(6.5)

For bare non-melting sea ice thicker than 0.5 m, as is the case for all sea ice prescribed in
CAM2, the albedos are
Qusap (dry) =0.78

Qnigr (dry) =0.36

For bare melting sea ice, melt ponds can significantly lower the area averaged albedo. This effect
is crudely approximated by the following temperature dependence:

(6.6)

Qysar (Melt) =ousqp (dry) — 0.075AT

6.7
Qnigr (Melt) =ouiqr (dry) — 0.075AT; (6.7)

157



for T, > —1°C.
The horizontal fraction of surface covered with snow is assumed to be

hs

fs = he +0.02°

(6.8)

Finally, combining ice and snow albedos by averaging over the horizontal coverage results in

Qysdf :avsdf(l - fs) + fsaqusdf

vl (6.9)
Qnidf =Cnigf (1 — fs) + fsqr

The same equations applies for direct albedos.

6.4 Ice to Atmosphere Flux Exchange

Atmospheric states and downwelling fluxes, along with surface states and properties, are used to
compute atmosphere-ice shortwave and longwave fluxes, stress, sensible and latent heat fluxes.
Surface states are temperature T and albedos cuysar, Qusdf, Qnidr, Omiar (See section 6.3), while
surface properties are longwave emissivity ¢ and aerodynamic roughness z; (note that these
properties in general vary with ice thickness, but are here assumed constant). Additionally,
certain flux temperature derivatives required for the ice temperature calculation are computed,
as well as a reference diagnostic surface air temperature.
The following formulas are for the absorbed shortwave fluxes and upwelling longwave flux:

FSWUS :FSstdr(l - a’usdr) + FSstdf(l - avsdf)
Fswni =Fswhiar(1 — oiar) + Fswniar (1 — Qniar) (6.10)
FSW :FSstn + FSWm'n -

Frwup =—coTi + (1 —¢)Fowpn

for T in Kelvin and oy, denotes the Stefan-Boltzmann constant. The downwelling shortwave
flux and albedos distinguish between visible (vs, A\ < 0.7um), near-infrared (ni, A > 0.7um),
direct (dr) and diffuse (df) radiation for each category. Note that the upwelling longwave flux
has a reflected component from the downwelling longwave whenever ¢ < 1.

For stress components 7,, and 7,, and sensible and latent heat fluxes the following bulk
formulas are used [Bryan et al., 1996]:

Taz =PaTmU Uq
Tay =PaTml Vg
Fsg =pacarnu” (0o — Ts)
Frg =pa(Li + Ly)reu” (¢ — T°) -

(6.11)

The quantities from the lowest layer of the atmosphere include wind components u, and v,,
the density of air p,, the potential temperature 6,, and the specific humidity ¢,. The surface
saturation specific humidity is

7 = (q1/pa)e ®/" (6.12)
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where the values of ¢; and ¢, were kindly supplied by Xubin Zeng of the University of Arizona.
The specific heat of the air in the lowest layer is evaluated from

ca =Cp(1 + Cpuirq")

6.13
vair :(prv/op) -1 ( )

where specific heat of dry air and water vapor are C, and Cj,,, respectively. Values for the
exchange coefficients for momentum, sensible and latent heat 7., ;. and the friction velocity u*
require further consideration.

The bulk formulas are based on Monin-Obukhov similarity theory. Among boundary layer
scalings, this is the most well tested [Large, 1998]. It is based on the assumption that in the
surface layer (typically the lowest tenth of the atmospheric boundary layer), but away from the
surface roughness elements, only the distance from the boundary and the surface kinematic fluxes
are important in the turbulent exchange. The fundamental turbulence scales that are formed
from these quantities are the friction velocity u*, the temperature and moisture fluctuations 6*
and ¢* respectively, and the Monin-Obukhov length scale L:

*
U =T Vinag

0* :rh(ﬁa - TS)

6.14
¢ =re(qa —7")) ( )
L =u*/(xkF)
with
Vinag = max(1.0, v/u2 + v2), (6.15)

to prevent zero or small fluxes under quiescent wind conditions, x is von Karman’s constant
(0.4), and F is the buoyancy flux, defined as:

F=—|—+——— 6.16
[9,, + zyt+ qa] ( )

with g the gravitational acceleration and the virtual potential temperature 6, = 6,(1 + z,q,)
where z, = pyy/pa — 1.

Similarity theory holds that the vertical gradients of mean horizontal wind, potential tem-
perature and specific humidity are universal functions of stability parameter ¢ = z/L, where z
is height above the surface (C is positive for a stable surface layer and negative for an unstable
surface layer). These universal similarity functions are determined from observations in the at-
mospheric boundary layer [Hogstrom, 1988] though no single form is widely accepted. Integrals
of the vertical gradient relations result in the familiar logarithmic mean profiles, from which the
exchange coefficients can be defined, where ( = z,/L:

T'm =To {1 + %0 In(2q/2ref) — Xm(g)]}l
Th =T {1 + %O In(za/2ref) — Xh(g)]}_l (6.17)
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with the neutral coefficient .

h In(zref/2i)
The flux profile functions (integrals of the similarity functions mentioned above) for momentum
m and heat/moisture h are:

To (618)

Xm(€) = xn(¢) = =5¢ (6.19)
for stable conditions (¢ > 0). For unstable conditions (¢ < 0):
Xm(¢) = In{(1 + X (2+ X))(1 4+ X?)/8} — 2tan (X)) + 0.57 (6.20)
xn(¢) = 2In{(1 + X*)/2} (6.21)
with
X = {max((1 — 16¢)"/?),1}'/*. (6.22)

The stability parameter ¢ is a function of the turbulent scales and thus the fluxes, so an
iterative solution is necessary. The coefficients are initialized with their neutral value rq, from
which the turbulent scales, stability, and then flux profile functions can be evaluated. This order
is repeated for five iterations to ensure convergence to an acceptable solution.

The surface temperature derivatives required by the ice temperature calculation are evaluated

as:
dF(’ZV,S UP — _4eoy Tt (6.23)
dg;:[ = —PaCqrpu* (6.24)
dj;f = aLsreu*dq;gf) (6.25)

where the small temperature dependencies of ¢,, the exchange coefficients r, and r, and velocity
scale u* are ignored.

For diagnostic purposes, an air temperature (Trpr) at the reference height of 2,5, = 2m
is computed, making use of the stability and momentum /sensible heat exchange coefficients.
Defining b,, = /7, and b, = k/rp, we have:

In,, =In{(1 + 29y /2,) (e’ — 1
Inj, = 1n§1 : zzmjzaige”m—bh z}1)}. (6.26)
For stable conditions (¢ > 0)

fint = (Ing, — (291 /2a) (b, — b)) /ba (6.27)
and for unstable conditions (¢ < 0)

fint = (Ing, —1np,) /by, (6.28)

where f;,: is bounded by 0 and 1. The resulting reference temperature is:

Tref =Ts + (T — T) fint- (6.29)
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6.5 Brine pockets

Shortwave radiative heating within the sea ice and conduction warms the sea ice and opens
brine pockets, melting the ice internally and storing latent heat. This storage of latent heat
is accounted for explicitly by using a heat capacity and thermal conductivity that depend on
temperature and salinity following the work of Maykut and Untersteiner [1971] and Bitz and
Lipscomb [1999]. The equation for the heat capacity for sea ice ¢ was first postulated by
Untersteiner [1961] and then later derived from first principles by Ono [1967]:

o(T, S) = co + LT—”QS (6.30)
where ¢, is the heat capacity for pure water ice, S is the sea ice salinity, 7" is the temperature,
and p is an empirical constant relating the freezing temperature of sea water linearly to its
salinity. The thermal conductivity for sea ice k is

BS

k(S, T) == ko + ? (631)

where k, and [ are empirical constants from Untersteiner [1961].
The vertical salinity profile is prescribed based on the work of Maykut and Untersteiner
[1971] to be

S(w) =16 [1 = cos (rwr#s ) | (6.32)

with the normalized coordinate w = z/h. This results in a profile that varies from 0 ppt at ice
surface increasing to 3.2 ppt at ice base. Snow is assumed fresh.
Shortwave radiative heating within the sea ice QQsy is equal to the vertical gradient of the
radiative transfer within the sea ice:
d

Qsw = —%{Imse—”“z + Ionie "%} (6.33)

where Iy,s and Iy,;, the visible and near infrared radiation fluxes that penetrate the surface,
are reduced according to Beer’s law with the sea ice spectral extinction coefficients k,; and &,
respectively. For simplicity no shortwave radiation is allowed to penetrate through snow and all
of the near-infrared radiation and 30% of the visible radiation is assumed to be absorbed at the
surface of sea ice (Gary Maykut, personal communication):

IOvs = 070F5W1,5n(1 - fs) (634)
Toni = 0.0 (6.35)

where fs is the horizontal fraction of surface covered by snow (see Eq. 6.8).

6.6 Numerics

The heat content change within the sea ice over the time interval ¢ to t' corresponding to
temperatures T and 7", respectively, allowing for temperature dependent heat capacity, thermal
conduction and internal absorption of penetrating solar radiation, is given by:

T L;uS Yo or
.cdT = pico(T' — : = —k— w | dt .
/T picdl = pico(T" —T) (1 + coT’T) /t (82 % + Qs ) (6.36)
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Figure 6.1: Vertical grid of the sea ice (a) when snow is present and (b) when the ice is snow
free; Ah is the thickness of an ice layer and h, is the thickness of the snow layer. The surface
temperature in either case is T;. Modified from Bitz and Lipscomb [1999].

The heat equation is discretized using a backwards-Euler, space-centered scheme. Using the
staggered grid with 7} representing the layer temperature and k; representing conductivity at
the layer interfaces, for interior layers we have

) Tm+1 Tm—|—1 Tm—|—1 Tm+1
L;pS, )_ At (kl+1 I+1 L pmil [ +Ilm),

preot+t =177 (14

I T ) AR Ahm Apm

(6.37)

where AR™ = h™ /L, the conductivity is

S+ S ITM+1
k= k 1+ L L (6.38)
2 2
and the absorbed solar radiation is

Ilm — Iovs(e_mslAhm . e—nvs(H—l)Ahm) + Iom(e—nmlAhm . e—nm(l+1)Ahm)_ (6.39)

See Figure 6.1 for a diagram on the vertical level structure.

For a purely implicit backward scheme, k£ should be evaluated at the m + 1 time level.
However, when £k is evaluated at time level m, experiments show that the solution is stable and
converges to the same solution one gets when evaluating £ at m + 1.

The discrete heat equation for the surface layers is modified slightly from Eq. 6.37 to maintain
second-order accuracy for 07'/0z. The equation for the bottom layer (I = L) is

L;uS
pico (T — Ty <1 + #> =

eI
At (o Th— o1 o T e o Tt — 1t o (6.40)
Apm \ 7T Apm 3 T Apm L™ Apm
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where the L + 1 interface in contact with the underlying ocean is assumed to be at temperature
Ty, = —1.8°C, and where the conductivity is simply k7,1 = k(Ss, Ty). The equations for the top
surface depend on the surface conditions, of which there are four possibilities, as outlined in
Table 6.2.

Table 6.2: Top Surface Boundary Cases
snow accumulated melting

case [ yes no
case II no no
case III yes yes
case IV no yes

6.6.1 Case I: Snow accumulated with no melting

The discrete heat equation for the uppermost layer (i.e, the snow layer) is

At Tm+1 _ Tm+1 Tm+1 _ Tm+l Tm+1 _ Tm+1
Tm+1 _ Tm I — m ~1 0 _ 0 s _ 1 s ) 41
preally )= g [ Ak e T T (641)

8§ S

The heat equation solver is formulated for the general case where the heat capacity of snow c;
may be specified, although it is taken to be 0. The parameters o and § are defined to give
second-order accurate spatial differencing for 97/0z across the changing layer spacing at the
snow/ice boundary;
BT+ AR™)2 2 ym

hm /2 h™ + Apm *

—hT/2 2 pm
hm + Ahm/2 hm + Apm
The conductivity at the snow-ice interface is found by equating conductive fluxes above and
below the interface;

(6.42)
b=

. 2ksk (S, TT) hr + AR™
© hmE(Sy, T 4+ ARk 2
Because T is below melting, a flux boundary condition is used, and an additional equation is
required in the coupled set:

km (6.43)

Tm+1 _ pm+l Tm+l _ pmal
Fo(T;n+1)+aksOh—ms+/8ks - Bm :

S

=0, (6.44)

where F,(T™*") is the sum of all terms on the right-hand side of Eq. 6.2 except k0T /0z. The
net surface flux F,(T™%!) is approximated as linear in 7™*!; thus

oF,

E,(T™Y) ~ Fy(T™
(T ~ BT + 5|

S

(T — ™). (6.45)

S
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with

oF, 0Fsy OFLy

_ OFLwup

6.46
0T | s |pm s |rm T |rm (6.46)
To simplify our set of equations, we define
L;uS
~m+1 1
g = P (Co + W) 5 (647)
where the hat implies that éf”“ depends on 7" as well as on Tlm+1, and
At 1
mtl = — A4
l ARm é;n-i—l (6 8)
Also, let
km
k= ——. 4
LT ARm (6.49)
for [ > 2 and
ks
ko = @ (6.50)
km
ki = 1 6.51
"7 (Ahm + ) /2 (6.51)
and suppress the index m for I”, so that for interior layers (I = 1...L — 1),
T =1 = [ (TE =T = k(T = T2 + 1 (6.52)
and at the bottom layer
1
TP — T = X0t 3k (T, — T — gkb(Tb — T/
— k(T =T + 1
(6.53)
where ky = kr11/AR™. The equation describing the snow layer is written
pscs(Tg ™ =T5") = hm [kl(Tl =T = ako (T = T = Bho (T = T, HH . (6.54)
Finally, the flux boundary condition becomes
m aFD m—+1 m m—+1 m+1 m+1 m—+1
FO(TS ) + oT (Ts - Ts ) = _akO(TO - Ts ) - ﬂkO(Tl - Ts ) (655)
slTm

The complete set of coupled equations for case I can be written with all of the terms that
explicitly depend on temperature at the m + 1 time step gathered on the right-hand side:
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oF, oF,
-F m 4 m _ pm+l o _ _
O(Ts )+ aTS o Ts Ts (8Ts - akO Bko)
+ T kg + T Bkg

At
psCs T = TSerl (—h—m) (aky + Bko)

8§

hm

S

At
+ Tyt (pscs + — (ko + kl))

1 A (6.56)
+ 17 +1h_m(,3k0 — k)
S
Ty™ + XM = T (= k)
+ Tlm+1(1 + X;nﬂkl + X;n+1kl+1)
+ T (= )
8 1
T 4+ x4, + gXZH—lkab =17 (_gX;:nﬂkb - X;:nﬂkL)
+ T L+ 3XT ke + X7 k).
These equations are subsequently related to the following abbreviated form
rs =T, + T e, + T d,
ro =T ag + Tg" by + T o
r =Ty ay + Ty + T3 ey (6.57)

1 1
TL:TF__E G,L+T£n+ br.

The first two rows can be combined to eliminate the coefficient on T;"** in the first row, allowing
the set to be written in tridiagonal form:

rsCo — Tods bsco — apds csco — bods Tm+l
T a b C Tm+!
= 0 A= 0 ‘ b, T=| i | (658)

r ai &1

Because the matrix A depends on ¥, which in turn depends on 7/**!, the system of equations
l ! Y q

is solved iteratively. An initial guess is used for the temperature dependence of x}**', and then
X;n“ is updated successively after each iteration. Under most conditions the method approaches
a solution in less than four iterations with a maximum error tolerance of AT,,, for T; with an

initial guess of T;"*! = T,

6.6.2 Case II: Snow free with no melting

Nearly the same method applies when the ice is snow free, except one less equation is needed
to describe the evolution of the temperature profile. The equation for the uppermost ice layer
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is written

L:
petr 1) (145 )

T
At Tm+1 Tm—|—1 Tm+1 Tm+1 Tm+1 Tm+1 (659)
- - m m Im
N (kQ R v )

where k7" = k(S1, T{™). After the definitions from Eqgs. 6.47-6.49 are applied, Eq. 6.59 becomes

1
T+ — T = [k2(T;"+1 = T = 3k (T = T) + < (T = T + Ilm} '

(6.60)
The flux boundary condition follows after linearizing F,,(T/) in T/t
m 8F m+1 m m+1 m+1 1 m+1 m+1
F,(T;") + 5T (T =T") = =3k (T = T,") + glﬁ(Tz —T"). (6.61)
S Tm

The complete set of coupled equation includes Egs. 6.56 for layers 2 to L with the following two
equations for the surface and upper ice layer:

OF, OF 8
—F,(T™ T =Tm [ =2 — k- T3k, + T (—k, /3
T ), =T (aTST 13>+1 L T (R /3)
8
Tm + X1 +1[m T;"H (_len+1k1 g) (6.62)

+ TP (1 + X kg + 3X T k)
1
TP (= R = X ),
which can be written
re =Ty by + T ey + Ty

6.63
= Tsm+1a1 + T1m+1b1 + T2m+161 ( )

These two equations can be combined to eliminate the coefficient on 75"**, allowing the set to
be written in tridiagonal form:

rscy — r1ds bsei — ards csc1 — bid, Tm+l
T1 aq b1 C1 Tlm—'—l
r= o A= as bg Cs T= sz—f—l . (664)

As for case I, this system of equations must be solved iteratively.

6.6.3 Case III: Snow accumulated with melting

Case III describes melting conditions in the presence of a snow layer at the surface. Here a
temperature boundary condition is used, which simplifies the solution because the first row in
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Eqgs. 6.56 is not needed and T; = T,,,; = 0°C in the second row. Hence the complete set of
coupled equations is identical to Eqs. 6.56 for layers 1 to L, with the addition of an equation
for the snow layer,

At At At
pscsT(’)m + Tmelth_(a’ + 5)k0 = T(;n—H PsCs + h_(kl + Oéko) - T1m+1h_(k1 - /BkO) (665)

This set of equations can be written in tridiagonal form, without the need to eliminate any
terms, as was required in cases I and II. However, the solution must still be iterated.

6.6.4 Case IV: No snow with melting

Like case III, case IV describes melting conditions, but here the sea ice is snow free. Hence,
the first two rows of Eqs. 6.56 are not needed, and Ty = T,,.; for [l = 1. The set of coupled
equations comprises those from Eqs. 6.56 for layers 2 to L and the following equation for layer
1:

1
gXTHkl) .

(6.66)
As in case III, this set of equations can immediately be written in the tridiagonal form and
solved iteratively.

8
T{”+XT+II{”+TmeuXT“k1§ =T/ (14 X7 ks + 3XT k) + T3 <—x§”“kz —

6.6.5 Snow depth

Snow depth is predicted from
B2 = B™ 4 (Fsyw — Frop/Li + Fru/(Li + Ly)) At/ ps. (6.67)

If the snow depth is too small, numerical solutions are unreliable, and hence the insulating
effects of snow are ignored for depths below lcm.
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Chapter 7

Initial and Boundary Data

7.1 Initial Data

In this section, we describe how the time integration is started from data consistent with the
spectral truncation. The land surface model requires its own initial data, as described by Bonan
[1996]. The basic initial data for the model consist of values of u,v,T,q,1I, and ®; on the
Gaussian grid at time ¢ = 0. From these, U, V,T", and II are computed on the grid using (3.11),
and (3.49). The Fourier coefficients of these variables U™, V™ T'™ TI"™, and ®7 are determined
via an FFT subroutine (3.138), and the spherical harmonic coefficients T, TI", and (®,)," are
determined by Gaussian quadrature (3.139). The relative vorticity ¢ and divergence ¢ spherical
harmonic coefficients are determined directly from the Fourier coefficients U™ and V™ using the
relations,

1 oV 10U
a(l—p?) OX  adp’
1 oUu 10V
al— ) ox aop

(= (7.1)

5= (7.2)

The relative vorticity and divergence coefficients are obtained by Gaussian quadrature directly,
using (3.143) for the A-derivative terms and (3.146) for the p—derivatives.

Once the spectral coefficients of the prognostic variables are available, the grid—point values
of ¢,6,T',TI, and ®, may be calculated from (3.165), the gradient VII from (3.168) and (3.169),
and U and V from (3.174) and (3.175). The absolute vorticity 7 is determined from the relative
vorticity ¢ by adding the appropriate associated Legendre function for f (3.117). This process
gives grid-point fields for all variables, including the surface geopotential, that are consistent
with the spectral truncation even if the original grid-point data were not. These grid-—point
values are then convectively adjusted (including the mass and negative moisture corrections).

The first time step of the model is forward semi—implicit rather than centered semi—-implicit,
so only variables at ¢ = 0 are needed. The model performs this forward step by setting the
variables at time ¢t = —At equal to those at ¢ = 0 and by temporarily dividing 2At by 2 for this
time step only. This is done so that formally the code and the centered prognostic equations of
chapter 3 also describe this first forward step and no additional code is needed for this special
step. The model loops through as indicated sequentially in chapter 3. The time step 2At is set
to its original value before beginning the second time step.
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7.2 Boundary Data

In addition to the initial grid—point values described in the previous section, the model also
requires lower boundary conditions. The required data are surface temperature (75) at each
ocean point, the surface geopotential at each point, and a flag at each point to indicate whether
the point is land, ocean, or sea ice. The land surface model requires its own boundary data, as
described by Bonan [1996]. A surface temperature and three subsurface temperatures must also
be provided at non-ocean points.

For the uncoupled configuration of the model, a seasonally varying sea—surface tempera-
ture, and sea—ice concentration dataset is used to prescribe the time evolution of these surface
quantities. This dataset prescribes analyzed monthly mid-point mean values of SST and ice
concentration for the period 1950 through 2001. The dataset is a blended product, using the
global HadISST OI dataset prior to 1981 and the Smith/Reynolds EOF dataset post-1981 (see
Hurrell, 2002). In addition to the analyzed time series, a composite of the annual cycle for the
period 1981-2001 is also available in the form of a mean “climatological” dataset. The sea—
surface temperature and sea ice concentrations are updated every time step by the model at
each grid point using linear interpolation in time. The mid-month values have been evaluated
in such a way that this linear time interpolation reproduces the mid-month values.

Earlier versions of the global atmospheric model (the CCM series) included a simple land-
ocean-sea ice mask to define the underlying surface of the model. It is well known that fluxes of
fresh water, heat, and momentum between the atmosphere and underlying surface are strongly
affected by surface type. The CAM2 provides a much more accurate representation of flux
exchanges from coastal boundaries, island regions, and ice edges by including a fractional spec-
ification for land, ice, and ocean. That is, the area occupied by these surface types is described
as a fractional portion of the atmospheric grid box. This fractional specification provides a
mechanism to account for flux differences due to sub-grid inhomogeneity of surface types.

In CAM2 each atmospheric grid box is partitioned into three surface types: land, sea ice, and
ocean. Land fraction is assigned at model initialization and is considered fixed throughout the
model run. Ice concentration data is provided by the external time varying dataset described
above, with new values determined by linear interpolation at the beginning of every time-step.
Any remaining fraction of a grid box not already partitioned into land or ice is regarded as
ocean.

Surface fluxes are then calculated separately for each surface type, weighted by the appro-
priate fractional area, and then summed to provide a mean value for a grid box:

F’/)T = a; F,pz.—{-ao Fwo-i-al le 5 (73)

where F' denotes the surface flux of the arbitrary scalar quantity v, a denotes fractional area,
and the subscripts 7T, ¢,0, and [ respectively denote the total, ice, ocean, and land components
of the fluxes. For each time-step the aggregated grid box fluxes are passed to the atmosphere
and all flux arrays which have been used for the accumulations are reset to zero in preparation
for the next time-step. The fractional land values for CAM2 were calculated from Navy 10-Min
Global Elevation Data. An area preserving binning algorithm was used to interpolate from the
high-resolution Navy dataset to standard model resolutions.

The radiation parameterization requires monthly mean ozone volume mixing ratios to be
specified as a function of the latitude grid, 23 vertical pressure levels, and time. The ozone path
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lengths are evaluated from the mixing-ratio data. The path lengths are interpolated to the model
n-layer interfaces for use in the radiation calculation. As with the sea—surface temperatures, the
seasonal version assigns the monthly averages to the mid-month date and updates them every
12 hours via linear interpolation. The actual mixing ratios used in the standard version were
derived by Chervin [1986] from analyses of Diitsch [1986].

The sub-grid scale standard deviation of surface orography was specified in the following
manner. The variance is first evaluated from the global Navy 10’ topographic height data
over 2° x 2° grid for T42 and lower resolutions, 1.67° x 1.67° for T63, and 1.0° x 1.0° for T106
resolution, and is assumed to be isotropic. Once computed on the appropriate grid, the standard
deviations are binned to the CCM2 Gaussian grid (i.e., all values whose latitude and longitude
centers fall within each Gaussian grid box are averaged together). Finally, the standard deviation
is smoothed twice with a 1-2—1 spatial filter. Values over ocean are set to zero.
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Appendix A

Terms in Equations

The terms of (3.131) are

Vo= C+nH" (A1)
V, = 2Atnl, A2
V, = 2Atn}. A.3)
The terms of (3.132) are
D = &, Ad)
D, = 2Atnl, A.5)
D, = 2Atny, A.6)

Dy = 2At [ﬁ” 13,1+ RH’“7_J"}
+ At [RH’" ((z’)"‘1 - 2(1')”) + RO+ ) (" = zn”)] . (A7)

The terms of (3.133) are

l— — (Zl)n—l +2At£n — AtD" [én—l —QQn} ’
T, = 2AUT)", (A.9)
T, = 2M¢(VT)". (A.10)

The nonlinear term in (3.134) is
Ps =T —2atL (") (&p") + (V") VIT'z"AB|
- at((ap)" L v - 207] (A.11)

The spectral transformation of the terms in the vorticity equation (3.149) is given by

J

Ve = Z_; [Mm(uj)Pﬁ(uj) + imﬂ(uj)% + yy(uj)%] w;. (A.12)
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The spectral transformation of the explicit terms in the divergence equation (3.150) is
DS™ = Z Dm (n+1)Dm( ) Pm( )
==n N’J a2 Lol n \Kj
: P (uy) H (1)
U=y B e [ (4:19)

The spectral transformation of the explicit term of the thermodynamic equation (3.151) is

Is) = [ w (115) — E(Nj)%% +ﬂ(ﬂj)%:| w;. (A.14)

The spectral transformation of the explicit terms of the surface pressure tendency equation
(3.152) is

n

PS7 =" PS™(11) P (1) w; (A.15)

Jj=1
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Appendix B

Physical Constants

Following the American Meteorological Society convention, the model uses the International
System of Units (SI) (see August 1974 Bulletin of the American Meteorological Society, Vol.
55, No. 8, pp. 926-930).

a = 6.37122 x 10° m Radius of earth

g 9.80616 ms—2 Acceleration due to gravity

s 3.14159265358979323846  Pi

ts 86164.0 s Earth’s sidereal day

Q 2x7/ty [s7!] Earth’s angular velocity

og = 5.67x107% Wm2K™* Stefan — Boltzmann constant

k = 1.38065 x 1072 JK-! Boltzmann constant

N = 6.02214 x 10% Avogadro’s number

R* = kN [JK7| Universal gas constant

Meir = 28.966 kg Molecular weight of dry air

R = R'/mar [Jkg'K™ Gas constant for dry air

m, = 18.016 kg Molecular weight of water vapor

R, = R'/m, [Jkg!'K!] Gas constant for water vapor

Cp = 1.00464 x 10> Jkg ' K™! Specific heat of dry air at constant pressure

K = 2/5 Von Karman constant

Zoir = Ry/R—1 Ratio of gas constants for water vapor and dry air
L, = 2501x10% Jkg! Latent heat of vaporization

L; = 3337x10° Jkg! Latent heat of fusion

pa,o = 1.0x10® kgm™ Density of liquid water

cp = 1.81x10° Jkg'K™! Specific heat of water vapor at constant pressure
Ther = 273.16 °K Melting point of ice

psta = 1.01325 x 10° Pa Standard pressure

Pair = Psta)(RTmer) [kgm 3] Density of dry air at standard pressure/temperature

The model code defines these constants to the stated accuracy. We do not mean to imply that
these constants are known to this accuracy nor that the low-order digits are significant to the
physical approximations employed.
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Appendix C

Constants for Slab Ocean Model

In the current release of CAM2, the Slab Ocean and Thermodynamic Sea ice Model (SOM) is
not supported. The NCAR Climate Modeling Section will release a new version of SOM ported
to CAM2 in the near future. When SOM is re-introduced, this appendix from Kiehl et al. [1996]
will be updated as well.
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Appendix D

Statistics Calculations for Eulerian
Dynamical Core

At each time step, selected global average statistics are computed for diagnostic purposes when
the model is integrated with the Eulerian dynamical core. Let f3 denote a global and vertical
average and f2 a horizontal global average. For an arbitrary variable 1, these are defined by

/3¢dV = iii%jk“ﬁ (%) /21, (D.1)

k=1 j=1 i=1
and

J oI
2 j=1 i=1
where recall that

iwj =2. (D.3)

The quantities monitored are:

- 1/2
global xms (C+1)(7) = | [(¢"+ f>2dv} , (D.4)
| J3
- 1/2
global rms §(s~) = / (5”)2dV] , (D.5)
/3
- 1/2
global rms T' (K) = / (T" + T’”)Zdv} : (D.6)
/3
global average mass times g (Pa) = / m"dA, (D.7)
2
global average mass of moisture (kg m_z) = /W"q”/ng. (D.8)
3
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Appendix E

Acronyms
ABL Atmospheric Boundary Layer
AMIP Atmospheric Model Intercomparison Project
AMWG Atmospheric Model Working Group
BATS Biosphere-Atmosphere Transfer Scheme
CAM Community Atmosphere Model
CAPE Convectively Available Potential Energy
CCM Community Climate Model
CCN Cloud Condensation Nucleus
CCSM Community Climate System Model
CFC Chloro-Fluoro Carbon
CFL Courant-Friedrichs-Levy Condition
CGD NCAR Climate and Global Dynamics Division
CGS Centimeters/grams/seconds
CKD Clough-Kneizys-Davies
CLM Community Land Model
CMS (NCAR) Climate Modeling Section
CSIM Community Sea-Ice Model
CWP Condensed Water Path
DAO (NASA Goddard) Data Assimilation Office
DAS Data Assimilation System

DISORT DIScrete-Ordinate method Radiative Transfer
ECMWF  European Centre for Medium Range Forecasts

EOF Empirical Orthogonal Function
FASCODE FASt atmosphere Signature Code

FFSL Flux-Form Semi-Lagrangian Transport
FFT Fast Fourier Transform

FV/tv Finite Volume

GCM General Circulation Model

GENLN General Line-by-line Atmospheric Transmittance and Radiance Model
GEOS Goddard Earth Observing System
GFDL Geophysical Fluid Dynamics Laboratory
GSFC Goddard Space Flight Center

GMT Greenwich Mean Time
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HadISST
HITRAN
ICA
IPCC
KNMI
LBL
LCL
LSM
MATCH
M/R
NASA
NCAR
NCEP
NOAA
NWP

ol
OPAC
PBL
PCMDI
PPM
RHS
RMS
SCMO
SI
SOM
SST
TOA
TOM
UCAR
WKB

Hadley Centre for Climate Prediction and Research SST
High-resolution Transmission Molecular Absorption Database
Independent Column Approximation

International Panel on Climate Change

Royal Netherlands Meteorological Institute

Line by line

Lifting condensation level

Land Surface Model

Model for Atmospheric Transport and Chemistry
Maximum/Random overlap

National Space Administration

National Center for Atmospheric Research

National Center for Environmental Prediction

National Oceanographic and Atmospheric Administration
Numerical Weather Prediction

Optimal Interpolation

Optical Properties of Aerosols and Clouds

Planetary Boundary Layer

Program for Climate Model Diagnosis and Intercomparison
Piece-wise Parabolic Method

Right Hand Side

Root-mean Square

Sufficient Condition for Monotonicity

International System of Units

Slab Ocean Model

Sea-surface temperature

Top Of Atmosphere

Top Of Model

University Corporation for Atmospheric Research
Wentzel-Kramer-Brillouin approximation
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