
Community Atmosphere Model
National Center for Atmospheric Research, Boulder, CO

Interface to Column Physics and Chemistry Packages

B. Eaton & B. Boville

Draft version: 18 September 2002

Contents

1 Overview 1

2 Requirements 1

3 Physics Driver and Data Structures 2
3.1 Array dimensions . 2
3.2 Precision of real data . 3
3.3 Derived data types . 3

3.3.1 physics state . 3
3.3.2 physics tend . 4
3.3.3 physics ptend . 4
3.3.4 surface input . 5
3.3.5 surface output . 6

4 Utility Modules 6
4.1 Physical constants . 7
4.2 Output to history files . 7
4.3 Physics buffer . 9
4.4 Constituents . 10
4.5 Time manager . 12
4.6 Reference pressures . 12

5 Implementation of a Generic Interface 12
5.1 Input from namelist . 14

5.1.1 Template for input from namelist . 14
5.2 Public interface methods . 14

5.2.1 param XXXX register . 15
5.2.2 param XXXX init cnst . 15
5.2.3 param XXXX init . 16
5.2.4 param XXXX timestep init . 17
5.2.5 param XXXX timestep tend . 17

6 CAM Physics Package Interfaces 20
6.1 Vertical diffusion . 20
6.2 Gravity wave drag . 20
6.3 Dry adjustment . 20
6.4 Moist convection – deep . 20
6.5 Moist convection – shallow . 20
6.6 Cloud fraction . 20
6.7 Prognostic cloud water . 20
6.8 Sulfur cycle chemistry / wet deposition . 20
6.9 Convective transport . 20
6.10 Cloud properties . 20
6.11 Radiation . 20

i

7 Review Status 20

References 21

ii

1 Overview

This document describes the CAM interface for a column physics package. The term “physics
package” is used generically to refer to either a physics or a chemistry package. The purpose
of this document is to present the details necessary for a user to be able to test a new package
in CAM as efficiently as possible. In the simplest case a user may be able to run CAM with a
physics package that replaces a standard CAM package by writing a module that implements
the interface specified here. No modification to the CAM code would be required, just a
rebuild of CAM with the new interface module replacing the CAM interface module.

The interface comprises methods to initialize the package, and to run the package for a
model timestep. It is designed to be uniform regardless of the nature of the package’s internal
timestep, and to be as flexible as possible, without imposing significant computational or
memory overhead.

Writing the CAM interface for a physics package will be simplified if the package follows
the coding standards of Kalnay et al. [1] which have been updated for Fortran 90 by the
Common Modeling Infrastructure Working Group [2]. The basic philosophy behind the
package coding standards is that a physics package should only be responsible for doing a
calculation on the caller’s computational state. The responsibilities of I/O and parallelization
are left to the model infrastructure. In CAM the physics package interface is called below
the level where parallelization details are implemented. The I/O services are provided to the
physics package via use association of model utilities in the CAM interface methods.

The CAM physics driver is responsible for determining the sequence and the time or
process splitting of the individual physics packages. An overview of the physics driver is
presented since its design motivates many of the design decisions of the physics package
interface.

2 Requirements

The responsibility of each physics package is to perform a calculation on the current model
state, and to return a tendency representing how the process changes the state in a single
model timestep. Responsibility for updating the model state rests with the CAM physics
driver. This allows for a consistent method of controlling whether the physical processes
are treated in a time or process split manner. All packages must be able to record their
net forcing on the output history files. This is necessary for diagnostic purposes. It follows
that all packages must calculate a tendency, regardless of whether they use a forward or
backward step internally. These requirements, which are enforced by the interface design,
can be summarized:

• Physics packages must not change the model state.

• Physics packages must return tendencies for any model state variables that they wish
to change.

The following set of requirements are not enforced by the interface, but must instead be
enforced by the mathematical formulation and the algorithm design of each physics param-
eterization.

1

• All column physics packages are required to conserve the vertical integral of:

– the mass of each constituent (including sources and sinks)

– momentum (including boundary forces)

– total energy (including boundary fluxes)

– dry static energy (including boundary fluxes and kinetic energy dissipation)

The interface design requires that each column physics package which produces a mass,
momentum, or energy tendency must provide any boundary forces or fluxes associated with
those tendencies so that the appropriate balance can be checked in the physics module.

3 Physics Driver and Data Structures

The top level physics driver is physpkg. This subroutine manages the SMP parallelism of
the physics packages which are split into two groups, each having its own high level driver.
The first group, managed by the driver tphysbc, is called before the coupling with surface
processes, while the second group, managed by the driver tphysac, is called after the surface
processes.

The fundamental data structure used by the physics driver contains an arbitrary collection
of vertical columns, and is referred to as a “chunk.” There are no assumptions about the
horizonal location of the columns, e.g., they are not necessarily neighbors in the global grid.
The chunks are defined in the module phys grid which provides query functions that return
the latitude, longitude coordinates of the individual columns.

The state data is passed to physpkg as a collection of chunks. physpkg performs SMP
parallelism by assigning these chunks to the available threads. A single call to tphysbc or
tphysac passes a single chunk for the physics packages to operate on.

3.1 Array dimensions

Array dimensions for chunks (pcols and pver) are from the module ppgrid. Array dimen-
sions for constituents (pcnst and ppcnst) are from the module constituents. Currently
the parameters pcols, pver, pcnst and ppcnst are set by the cpp macros PCOLS, PLEV,
PCNST and PNATS during the build process.

integer, parameter ::&

pcols = PCOLS, &! maximum number of columns in a chunk

pver = PLEV, &! number of vertical levels

pcnst = PCNST, &! number of advected constituents (including water vapor)

ppcnst= PCNST+PNATS ! number of constituents operated on by physics

Physics packages that initialize constituent values must access the dimensions used by
the dynamics grid. Those parameters are plon, plev and plat and are contained in module
pmgrid. The parameters are set by the cpp macros PLON, PLEV and PLAT during the build
process.

2

integer, parameter ::&

plon = PLON, &! number of longitudes in the global dynamics grid

plev = PLEV, &! number of levels in the global dynamics grid

plat = PLAT, &! number of latitudes in the global dynamics grid

Note that currently CAM uses the same number of vertical levels in both the dynamics
and physics grid. But the data structures allow the flexibility to change this in the future.

3.2 Precision of real data

The precision of real data passing through the interface is specified by the kind parame-
ter shr kind r8 in module shr kind mod. This value is set to give 8-byte floating point
representations.

3.3 Derived data types

The argument lists of the public interface methods are insulated from changes in the specific
fields that may need to be passed through them by encapsulating the fields in several derived
data types. The components of these types use the chunk data structure.

3.3.1 physics state

The physics driver represents the physics state using a global state structure (physics state)
which is defined in the physics types module. The physics state type stores the state
variables that are passed between the physics and dynamics.

Memory for the physics state is allocated in stepon, set in d p coupling, passed as
input (with intent(inout)) to the top level physics driver (physpkg), and may provide
return values for the dynamics p d coupling (time split case). The state variable passed to
physpkg is subsequently passed through the interface subroutines of the individual physics
packages. A package is not allowed to change the values of these fields. A package which is
designed to directly change the input state must use a local copy of the appropriate input
fields.

type physics_state

integer ::&

lchnk, &! chunk index

ncol ! Number of columns

real(r8) ::&

calday ! calendar day at end of current timestep

real(r8), dimension(pcols) ::&

lat, &! latitude (radians)

lon, &! longitude (radians)

ps, &! surface pressure (Pa)

phis ! surface geopotential

real(r8), dimension(pcols,pver) ::&

t, &! temperature (K)

3

u, &! zonal velocity (m/s)

v, &! meridional velocity (m/s)

dse, &! dry static energy (J/kg)

omega, &! vertical velocity (Pa/s)

pmid, &! pressure at midpoints (Pa)

pdel, &! pdel(k) = pint(k+1) - pint(k)

rpdel, &! 1./pdel(k)

lnpmid, &! ln(pmid)

zm, &! geopotential height above surface, at midpoint (m)

exner ! inverse exner func w.r.t. surface pressure (ps/p)^(R/cp)

real(r8), dimension(pcols,pver+1) ::&

pint, &! pressure at interface (Pa)

lnpint, &! ln(pint)

zi &! geopotential height above surface, at interface (m)

real(r8), dimension(pcols,pver,ppcnst) ::&

q ! constituent mixing ratio (kg/kg moist air)

end type physics_state

Dependent variables, such as zm, zi, T are determined from updated values of dse and
q.

3.3.2 physics tend

The physics driver represents the global tendencies of the physics state using a global
tendency structure (physics tend) which is defined in the physics types module. The
physics tend type stores the tendencies that are passed from the physics to the dynamics.

Memory for the physics tendency is allocated in stepon, set in the top level physics
driver (physpkg), and passed as input to the dynamics (p d coupling). The global tendency
structure is not passed to individual physics packages. It is set by a function that updates
the state structure and/or global tendency structure based on the flags in the local tendency
structure and global control variables. This allows process or time splitting of the physics
parameterizations.

type physics_tend

real(r8), dimension(pcols,pver) :: dtdt, dudt, dvdt

real(r8), dimension(pcols) :: flx_net

end type physics_tend

3.3.3 physics ptend

The physics ptend type stores tendencies and their associated boundary fluxes for a single
package. A variable of this type is allocated in each of tphysbc and tphysac, and is passed
to each physics package.

type physics_ptend

4

character*24 :: name ! name of parameterization which produced tendencies.

! flags specifying which tendencies are returned

logical ::&

ls, &! true if heating rate is returned

lu, &! true if u momentum tendency is returned

lv &! true if v momentum tendency is returned

logical, dimension(ppcnst) ::&

lq &! true if constituent mixing ratio tendency is returned

! tendencies

real(r8), dimension(pcols,pver) ::&

s, &! heating rate (dry static energy tendency) (J/kg/s)

u, &! u momentum tendency (m/s2)

v &! v momentum tendency (m/s2)

real(r8), dimension(pcols,pver,ppcnst) ::&

q ! constituent mixing ratio tendency (kg/kg/s, moist air basis)

! boundary fluxes

real(r8), dimension(pcols) ::&

hflux_srf, &! net heat flux at surface (W/m2)

hflux_top, &! net heat flux at top of model (W/m2)

taux_srf, &! net zonal stress at surface (Pa)

taux_top, &! net zonal stress at top of model (Pa)

tauy_srf, &! net meridional stress at surface (Pa)

tauy_top, &! net meridional stress at top of model (Pa)

real(r8), dimension(pcols,ppcnst) ::&

cflx_srf, &! constituent flux at surface (kg/m2/s)

cflx_top ! constituent flux top of model (kg/m2/s)

end type physics_ptend

The removal of water vapor from a column by a precipitation process would be recorded
using cflx srf for constituent 1.

3.3.4 surface input

Interaction between the atmosphere and surface models is managed by the surface interface
module. It contains two types, each of which has predefined components that use the chunk
data structure. The surface input type contains fields that are set by the atmosphere and
passed as input to the surface models.

type surface_input

5

real(r8), dimension(pcols) ::&

precsc, &! convective snow-fall rate (kg/m2/s)

precsl, &! large-scale snow-fall rate (kg/m2/s)

precc, &! convective precip rate (kg/m2/s)

precl, &! large-scale precip rate (kg/m2/s)

soll, &! direct beam solar radiation onto srf (W/m2)

sols, &! direct beam solar radiation onto srf (W/m2)

solld, &! diffuse solar radiation (lw) onto srf (W/m2)

solsd, &! diffuse solar radiation (sw) onto srf (W/m2)

flwds, &! downward longwave radiation at surface

srfrad ! surface net radiative flux

real(r8), dimension(pcols,plevmx) ::&

tssub ! cam surface/subsurface temperatures (K)

end type surface_input

3.3.5 surface output

The surface output type is part of the surface interface module and contains fields that
have been set by the surface models and are inputs to the atmosphere.

type surface_output

integer ::&

lchnk, &! chunk index

ncol ! number of active columns

real(r8), dimension(pcols) ::&

asdir, &! albedo: shortwave, direct

asdif, &! albedo: shortwave, diffuse

aldir, &! albedo: longwave, direct

aldif, &! albedo: longwave, diffuse

lwup, &! longwave up radiative flux

lhf, &! latent heat flux

shf, &! sensible heat flux

wsx, &! surface u-stress (N/m2)

wsy, &! surface v-stress (N/m2)

tref, &! ref height air temp (K)

ts ! sfc temp (merged w/ocean if coupled) (K)

real(r8), dimension(pcols,ppcnst) ::&

cflx ! constituent flux (kg/m2/s)

end type surface_output

4 Utility Modules

The physics interface design makes use of several utility modules which are described in this
section.

6

4.1 Physical constants

A common set of physical constants is made available to all packages by use association
of module physconst. The constants required by a package should be listed in the only

qualifier of the use statement. Most of these constants are set to values that are shared
by all CCSM components (the actual values are set from the shr const mod module rather
than being literal constants). Below is a summary of the currently defined values.

real(r8), parameter ::&

r_universal = 6.02214e26*1.38065e-23, &! Universal gas constant (J/K/kmol)

mwdry = 28.966, &! molecular weight dry air

mwco2 = 44., &! molecular weight co2

mwh2o = 18.016, &! molecular weight h2o

mwn2o = 44., &! molecular weight n2o

mwch4 = 16., &! molecular weight ch4

mwf11 = 136., &! molecular weight cfc11

mwf12 = 120., &! molecular weight cfc12

epsilo = mwh2o/mwdry, &

stebol = 5.67e-8, &! Stefan-Boltzmann’s constant (W/m2/K4)

gravit = 9.80616, &! Gravitational acceleration (m/s2)

rga = 1./gravit, &

rair = r_universal/mwdry, &! Gas constant for dry air (J/kg/K)

cpair = 1004.64, &! Specific heat of dry air (J/kg/K)

cappa = rair/cpair, &

pstd = 101325., &! Standard pressure (Pa)

tmelt = 273.16, &! Freezing point of water (K)

rhodair= pstd/(rair*tmelt), &! density of dry air at STP (kg/m3)

latvap = 2.501e6, &! Latent heat of vaporization (J/kg)

latice = 3.337e5, &! Latent heat of fusion (J/kg)

rhoh2o = 1.e3, &! Density of liquid water (STP) (kg/m3)

rh2o = r_universal/mwh2o, &! Gas constant for water vapor (J/kg/K)

cpwv = 1.81e3, &! Specific heat of water vapor (J/kg/K)

cpvir = cpwv/cpair - 1., &

zvir = rh2o/rair - 1., &! rh2o/rair - 1

karman = .4 ! VonKarman constant

4.2 Output to history files

CAM provides for output via use association of the history module. Fields to be output
are registered with the history module by calling the history methods (i.e., subroutines in
the history module) addfld and add default during initialization, and the writing of field
data is accomplished by calls to subroutine outfld.

Each package must be able to record its net forcing to the output history file. To facilitate
post-processing of model runs the forcings of particular processes have standard names which
are given in section 6. It is the responsibility of the user who is replacing a standard CAM

7

package to supply these quantities using the standard names. Any other diagnostic fields
may be output by using the appropriate calls to addfld, add default and outfld.

To register a field with the history module the first step is to call subroutine addfld

which has the following interface:

subroutine addfld (fname, units, numlev, avgflag, long_name, &

type)

character(len=*), intent(in) :: &

fname, &! field name (8 char max)

units, &! field units (8 char max)

long_name ! long name of field

character(len=1), intent(in) :: &

avgflag ! averaging flag: ’A’ for average, ’I’ for instantaneous,

! ’X’ for maximum, ’M’ for minimum

integer, intent(in) :: &

numlev, &! number of vertical levels

type ! decomposition type

end subroutine addfld

The decomposition type specifies the type of data structure passed to outfld. Parameters
used to specify the decomposition types are public data members of the history module.
The parameter physics decomp should be used to indicate that outfld calls will pass data
using the “chunked” data structure. A call to addfld will add the field to the “master field
list”, but the field will not automatically appear in output history files unless it is declared
as a default field on one of the files. (The field will appear on an output history file even if
it is not a default field for that file if it is specified in one of the namelist variables fincl1,
..., fincl6.) The add default subroutine is used to declare the field as a default field on
one of the history files. Its interface is:

subroutine add_default (name, tindex, flag)

character(len=*), intent(in) :: name ! field name

character(len=1), intent(in) :: flag ! averaging flag

integer, intent(in) :: tindex ! history file index (1 - 6)

end subroutine add_default

The averaging flag is specified in this call because a field can have different values in
different history files. For example a temperature field can have time averaged values in
history file 1 and instantaneous values at a different output frequency in file 2.

The output of field values is accomplished by calling subroutine outfld whose interface
is:

subroutine outfld (fname, field, j)

character(len=*), intent(in) :: fname ! Field name

real(r8), dimension(...), intent(in) :: field ! field values

integer, intent(in) :: j ! chunk or block index

end subroutine outfld

outfld is a generic function that takes either one or two-dimension input arrays. Exam-
ples of the use of these procedures are given in section 5.2.

8

4.3 Physics buffer

The module phys buffer manages the physics buffer which stores fields that must be avail-
able across timesteps or that must be shared between physics packages during a single
timestep. Fields that persist across timesteps must be written out to the restart files. The
physics buffer module performs this task without any intervention from the implementor of
a physics package.

To use the physics buffer a package only has to register the required fields, and then access
the fields through pointers that are contained in the buffer. The buffer is implemented as
an array of a derived type, and the derived type contains a pointer to the field data.

To register a field the pbuf add method is used. It’s interface is:

subroutine pbuf_add(name, scope, fdim, mdim, ldim, index)

character(len=*), intent(in) :: name ! field name

character(len=*), intent(in) :: scope ! ’global’ or ’physpkg’

integer, intent(in) :: fdim ! first generic field dimension

integer, intent(in) :: mdim ! middle generic field dimension

integer, intent(in) :: ldim ! last generic field dimension

integer, intent(out) :: index ! index in the physics buffer

A field that must persist across timesteps should specify the scope as ’global’. These
fields will be written to the restart file by the physics buffer module. Fields that only need
to persist while physpkg is active should specify a scope of ’physpkg’. These fields are
dynamically allocated and deallocated at the beginning and end of physpkg respectively.

The generic dimensions fdim, mdim, and ldim refer to the following generic field declara-
tion which is used in the phys grid methods that are responsible for gathering and scattering
data between chunks and global fields.

field(fdim,pcols,mdim,begchunk:endchunk,ldim)

To register a 2D field fdim, mdim, and ldim would all be set to 1. To register a 3D field
set fdim and ldim to 1 and set mdim to pvers.

A package that stores a field for the purpose of computing time tendencies must save more
that one time level if the dynamics package uses a multiple level time integration scheme. To
register a field with time levels that depend on the dynamics package the ldim argument is
set to pbuf times which is public data of the phys buffer module. The variable pbuf times

is set to 2 for the eulerian dycore, and to 1 for the finite volume and semi-Lagrangian dycores.
The output argument index is the index into the buffer array that is used to access the

pointer to the field data. Typically a package that is registering a field in the buffer will save
this index as module data so that it is readily available. The phys buffer module also has
a query method to obtain the index given the name that was used to register the field. This
is how a package that needs fields from another package gains access to them. The interface
to the query method pbuf get fld idx is:

function pbuf_get_fld_idx(name)

character(len=*), intent(in) :: name ! field name

integer :: pbuf_get_fld_idx

9

pbuf get fld idx will issue an error message and call endrun if the name is not found
in the buffer. The following code illustrates how to access a chunk of a 3D field from the
buffer.

subroutine xxx(state, pbuf)

use physics_types, only: physics_state

use phys_buffer, only: pbuf_size_max, pbuf_fld, pbuf_get_fld_idx

type(physics_state), intent(in) :: state ! state

type(pbuf_fld), intent(inout), dimension(pbuf_size_max) :: pbuf ! buffer

integer :: lchnk ! local chunk index

integer :: fld_idx ! index of field in physics buffer

real(r8), pointer, dimension(:,:) :: fld ! pointer to field data

lchnk = state%lchnk

fld_idx = pbuf_get_fld_idx(’fld_name’)

fld => pbuf(fld_idx)%fld_ptr(1,1:pcols,1:pver,lchnk,1)

The pointer fld can be used just like an array that has been dimensioned (pcols,pver).
The physics buffer also has some methods to facilitate treating the last dimension as a

circular buffer when it has been dimensioned with the module variable pbuf times. The
oldest time level is returned by the method pbuf old tim idx. Successively newer time
indices in the circular buffer can be obtained by successive calls to pbuf next tim idx which
takes an index as an input argument and returns the index which corresponds to the next
newer time level.

4.4 Constituents

The constituents module is responsible for managing the names and physical properties of
all trace constituents in a model run. It assigns the index values in the constituent arrays,
and keeps track of whether or not the initial values of each constituent are to be read from
the initial file. The packages that implement constituents (e.g., chemistry packages) are re-
sponsible for registering the names and properties of the constituents with the constituents
module, which can then make these values known to other packages that require them. The
water vapor constituent (Q), which is present in all runs, always corresponds to constituent
index 1 in the constituent arrays.

Two classes of transported constituent are supported: advected and non-advected. Both
classes undergo the subgrid-scale transports by the column physics parameterizations. Only
the advected class undergoes the advective transport forced by the large-scale wind fields.
Constituents with very short lifetimes, whose concentrations are determined by chemical
equilibrium considerations rather than transport, should not be included in the constituent
arrays. This type of constituent should be maintained as private data of the chemistry
module and may be stored in the physics buffer if it needs to persist across timesteps.

The model arrays that contain constituent data are organized so that the advected con-
stituents come first, followed by the non-advected constituents. The indices for the advected
constituents are 1 through pcnst and the non-advected constituent indices are pcnst+1

through pcnst+pnats.

10

The array dimension for constituents ppcnst (=pcnst+pnats), along with the parameters
pcnst and pnats are public data in the module constituents. Currently the parameters
pcnst and pnats are set by the cpp macros PCNST and PNATS during the build process.

The interface for the constituent registration routine is:

subroutine cnst_add(name, type, mw, cp, qmin, ind, longname, readic)

character(len=*), intent(in) ::&

name ! constituent name (8 character max)

integer, intent(in) ::&

type ! flag indicating advected or non-advected constituent

real(r8), intent(in) ::&

mw, &! molecular weight (g/mol)

cp, &! isobaric specific heat (J/kg/K)

qmin ! global minimum constituent mixing ratio (kg/kg)

integer, intent(out) ::&

ind ! global constituent index (in q array)

character(len=*), intent(in), optional :: &

longname ! value for long_name attribute in netcdf output

! (128 char max, defaults to name)

logical, intent(in), optional :: &

readic ! true => read initial values from initial file

! (default: true)

The constituents module provides two parameters, advected and nonadvec, for the
type flag values that indicate advected and non-advected constituents respectively. Consec-
utive calls to cnst add for the same constituent type are guaranteed to assign consecutive
global indices. The cnst add method must be invoked before the model reads the initial con-
ditions file so that the constituent names are available at that time. A physics package that
adds constituents may determine whether or not initial values for those constituents should
be read from the initial file by an appropriate setting of the readic argument of cnst add.
If this determination is to be made at run time via the setting of namelist variables, the
physics package is responsible for managing the namelist variables. This is described in
detail in section 5.1.1.

The constituents module provides the constituent names and properties via public data
members:

character(len=16), dimension(ppcnst) :: cnst_name ! constituent names

real(r8), dimension(ppcnst) :: &

cnst_mw, &! molecular weight (g/mol)

cnst_cp, &! specific heat at constant pressure (J/kg/K)

cnst_cv, &! specific heat at constant volume (J/kg/K)

cnst_rgas, &! specific gas constant (J/kg/K)

qmin ! global minimum constituent mixing ratio (kg/kg)

Physics packages that need to access particular constituent mixing ratios or other prop-
erties must be able to determine the appropriate constituent indices. The constituents

11

module provides a query method cnst get ind that returns the global constituent index
corresponding to a specified name. If the name is not found then the error handler endrun

is called. The interface for cnst get ind is:

subroutine cnst_get_ind (name, ind)

character(len=*), intent(in) :: name ! constituent name

integer, intent(out) :: cnst_get_ind ! global constituent index

4.5 Time manager

The physics state structure contains the calendar day representative of the end of the cur-
rent timestep. Additional information about the time and date of the current model timestep,
or methods for performing simple date calculations are obtained from the time manager

module. The time manager also provides an alarm facility (not yet implemented) which may
be used by a package to signal that certain actions should be performed at certain timesteps.
The alarms are set up during the initialization process, and are queried each timestep. The
time manager module is fully described in [3].

4.6 Reference pressures

Reference pressures at the midpoints and interfaces of the model’s vertical layers are available
as public data members of module pressure. These members are:

real(r8), dimension(pver) ::&

prefm, &! reference pressures at midpoints

prefd ! reference pressure layer thickness

real(r8), dimension(pver+1) ::&

prefi ! reference pressures at interfaces

5 Implementation of a Generic Interface

This section describes the CAM interface module for a generic physics package. We assume
that the physics package is implemented in a module, and that the CAM specific interfaces are
implemented in a separate module. To obtain maximum benefit from the data encapsulation
capability provided by Fortran 90 modules we recommend that the default access of the
interface module be set to private via use of the private statement. Use of the only qualifier
in all use statements is also recommended. This prevents a used module from introducing
unwanted names into a scope, and also provides documentation of where variables and
procedures come from.

The public methods of the CAM interface are summarized here, and described in detail
below. The prefix param XXXX is used to indicate a generic parameterization. Section 6
provides the specific names used for the CAM parameterizations.

param XXXX register This method is for registering fields that are managed by the physics
buffer module, and for registering constituents in the constituent arrays.

12

param XXXX init cnst A package that manages constituents is responsible for initializing
the constituent mixing ratios (by default they will be initialized to zero). This may
be done by reading values from the initial file (set the namelist variable readtrace to
.true., or by providing this method.

param XXXX init This method is for package specific initialization including setting time-
invariant constants, specifying fields to be included in the history files, and opening
datasets.

param XXXX timestep init This method is for per timestep initialization, for example time
interpolation on fields from a boundary dataset.

param XXXX timestep tend This method calls the package run method which computes the
one step tendencies.

This interface breaks the package initialization into several parts and is closely tied to
CAM’s initialization. We expect that a redesign of CAM’s initialization will allow a simpler
interface for the package initialization. But as that task is yet to be accomplished, we present
a flexible interface that works with the current (as of CAM-2.0.1) CAM code.

The calling sequence of these methods is as follows. Implications of this sequence will be
discussed in the sections that detail the method interfaces.

cam2

parse_namelist

register

param_XXXX_register

inital

! dynamics and physics grids initialized

read_inidat

param_XXXX_init_cnst

inti

param_XXXX_init

stepon

physpkg

advnce

param_XXXX_timestep_init

tphysbc

! moist physics, chemistry, and radiation packages

param_XXXX_timestep_tend

! surface processes

tphysac

! PBL, turbulence, gravity wave drag

param_XXXX_timestep_tend

13

5.1 Input from namelist

The only input facility currently available is Fortran’s namelist. A package gains access to
namelist input via public data in the interface module. The module variables are placed in
the namelist, which is declared in procedure parse namelist, and are made available via use
association. This technique requires code modifications in parse namelist unless the user
is replacing a standard CAM package and can make use of the namelist variables already in
place (these are detailed in section 6 on the specific CAM interfaces).

5.1.1 Template for input from namelist

This template illustrates how a package would obtain namelist input for the variable var in.
The default value of the namelist variable is set with an initialization statement in the
module; not in an executable statement in parse namelist. A separate namelist statement
is used for the variables used by each package. The namelist group is ccmexp for all namelist
statements.

module param_XXXX

! Public data for namelist input

integer, public ::&

var_in = 0 ! set default values with initialization statements

end module param_XXXX

subroutine parse_namelist

use param_XXXX, only: var_in

namelist /ccmexp/ ...

namelist /ccmexp/ var_in ! input for param_XXXX

read (5,ccmexp,iostat=ierr)

end subroutine parse_namelist

When the model runs in a distributed memory mode there is one extra step that must
be taken. Since the namelist is only read on the master processor, subroutine distnl must
be modified as follows to communicate var in to the other MPI tasks:

subroutine distnl

use param_XXXX, only: var_in

call mpibcast(var_in, 1, mpiint, 0, mpicom)

end subroutine distnl

5.2 Public interface methods

This section provides detailed examples of each of the public interface methods. These
methods provide the CAM specific interface, and contain the calls to the physics package’s
public methods. We assume that the physics package is contained in its own module and
that its public methods are the only means by which the it communicates with the interface
module, as required by the column physics interchange standards [1] [2].

14

The examples will assume that the interface is implemented in a module called param XXXX,
and that the physics package is implemented in a module called pkg XXXX. The public inter-
face methods will be presented with only the relevent declarations of the containing module.

5.2.1 param XXXX register

The param XXXX register procedure is provided by packages to register constituent names
and the corresponding physical properties, or to register the names and shapes of fields to be
maintained across timesteps by the physics buffer. The registration method is separate from
the initialization method because the constituent names must be known prior to reading
initial condition data, and the package initialization procedure isn’t called until after the
initial file has been read. The registering of fields in the physics buffer must also happen
early in the initialization process because the buffer must be allocated before the restart file
is read during a restart run.

This routine is called from the CAM routine register which is called after parse namelist.
The following sample code registers an advected constituent and space for both a global field
and a field which is local to physpkg in the physics buffer.

module param_XXXX

use shr_kind_mod, only: r8=>shr_kind_r8

private

public :: param_XXXX_register()

! Local variables

integer :: &

ixcnst1, &! global constituent index

ixbuffld1, &! physics buffer index for BUFFLD1

ixbuffld2 ! physics buffer index for BUFFLD2

contains

subroutine param_XXXX_register()

use constituents, only: cnst_add, advected

use phys_buffer, only: pbuf_add

use ppgrid, only: pver

implicit none

! request space in constituent array

call cnst_add(’CNST1’, advected, 44., 666., 0., ixcnst1)

! request space in phys buffer for fields that persist across timesteps

call pbuf_add(’BUFFLD1’, ’global’, 1,1,1, .false., ixbuffld1)

! Request phys buffer space for fields that are local to physpkg.

call pbuf_add(’BUFFLD2’, ’physpkg’, 1,pver,1, .false., ixbuffld2)

end subroutine param_XXXX_register

end module param_XXXX

5.2.2 param XXXX init cnst

CAM initializes constituents in subroutine read inidat. To make efficient use of memory
only a single global constituent array is allocated and this array is subsequently scattered

15

to the individual MPI processes when running in SPMD mode. read inidat contains a
loop over constituents and depending on the value of the namelist parameter readtrace

either reads values from the initial file or calls the param XXXX init cnst subroutines. Since
read inidat does not know which physics package is responsible for initializing each con-
stituent it calls all the initializing subroutines with the name of the constituent as an argu-
ment and it is the responsibility of each param XXXX init cnst subroutine to check whether
or not it can intialize the requested constituent, and to return a global constituent array
when appropriate.

The following sample code calls the physics package constituent initializer pkg XXXX init cnst

when the constituent that it knows how to initialize (CNST1) is requested. Note that the
fld argument of param XXXX init cnst has intent inout because the input values must be
preserved when it is not known how to initialize the requested constituent.

module param_XXXX

use shr_kind_mod, only: r8=>shr_kind_r8

private

public :: param_XXXX_init_cnst

contains

subroutine param_XXXX_init_cnst(cnst_name, fld)

use pmgrid, only: plon, plev, plat

use pkg_XXXX, only: pkg_XXXX_init_cnst

implicit none

character(len=*), intent(in) :: cnst_name

real(r8), dimension(plon,plev,plat), intent(inout) :: fld

if (cnst_name == ’CNST1’) then

call pkg_XXXX_init_cnst(fld)

end if

end subroutine param_XXXX_init_cnst

end module param_XXXX

5.2.3 param XXXX init

The param XXXX init procedure is intended to perform time independent initializations.
This procedure is called from subroutine inti after the initial data has been read and the
model’s prognostic variables have been initialized. Typically param XXXX init calls the
physics package’s initialization routine and registers the names of its output fields with the
history module.

The following sample code calls the physics package initializer pkg XXXX init which does
package specific initializations and sets the values of some physical constants. We assume
that this package will produce tendencies for the dry static energy and all the constituents.
It must therefore record those tendencies on the output history file. The names given to
those tendencies in this example are arbitrary. However, if the tendencies have standard
names (section 6), those names should be used to aid the post-processing of the output files.
In the example we have also called add default for each field to add the field to the default
list for the primary history file.

16

module param_XXXX

use ppgrid, only: ppcnst

private

public :: param_XXXX_init

! Local variables

character(len=32) :: htendnam, qtendnam(ppcnst) ! tendency names

contains

subroutine param_XXXX_init()

use physconst, only: cpair, cpwv, gravit, rair

use history, only: addfld, physics_decomp, add_default

use constituents, only: cnst_name

use pkg_XXXX, only: pkg_XXXX_init

implicit none

call pkg_XXXX_init(cpair, cpwv, gravit, rair)

! Register output fields with the history module.

htendnam = ’H_DTphys’

do i = 1, ppcnst

qtendnam(i) = cnst_name(i)//’_DTphys’

end do

call addfld(htendnam, ’J/kg/s’, pver, ’A’, &

’heating rate due to phys’, physics_decomp)

call add_default(htendnam, 1, ’ ’)

do i = 1, ppcnst

call addfld(qtendnam(i), ’kg/kg/s’, pver, ’A’, &

cnst_name(i)//’ tendency due to phys’, physics_decomp)

call add_default(qtendnam(i), 1, ’ ’)

end do

end subroutine param_XXXX_init

end module param_XXXX

5.2.4 param XXXX timestep init

Subroutine param XXXX timestep init is called at the top of the physics driver from subrou-
tine advnce on each timestep. The reason this subroutine is separated from param XXXX timestep tend

is to provide an opportunity in a section of code that is not threaded for a package to perform
per timestep tasks, such as interpolation of boundary data. This may involve reading data
from files which only happens on the master MPI process, and communicating results to all
MPI processes. This type of communication must occur in a non-threaded code region.

5.2.5 param XXXX timestep tend

The param XXXX timestep tend procedure provides the interface to the package’s run pro-
cedure. It is called each timestep from either tphysbc or tphysac. The called package is

17

expected to return tendencies of the model state for one model timestep. It is possible that
the package subdivides the model timestep, or does nothing during a given timestep.

We illustrate wrapping the following generic run procedure for a package that returns
tendencies for the dry static energy and constituent fields.

module pkg_XXXX

private

public :: pkg_XXXX_run

contains

subroutine pkg_XXXX_run(dt, pcol, ncol, plev, ppcnst, &

dse, q, dhdt, dqdt)

implicit none

real(rkind), intent(in) ::&

dt ! timestep in seconds

integer, intent(in) ::&

pcol, &! column dimension

ncol, &! number of columns

plev, &! level dimension

ppcnst ! constituent dimension

real(rkind), dimension(pcol,plev), intent(in) ::&

t ! temperature (K)

real(rkind), dimension(pcol,plev,ppcnst), intent(in) ::&

q ! constituent mixing ratio (kg/kg moist air)

real(rkind), dimension(pcol,plev), intent(out) ::&

dhdt ! heating rate (J/kg/s)

real(rkind), dimension(pcol,plev,ppcnst), intent(out) ::&

dqdt ! constituent tendency (kg/kg moist air/s)

:

end subroutine pkg_XXXX_run

end module pkg_XXXX

The physics package real kind can be set using the kind parameter from the shr kind mod

module. This is not necessary if rkind has been independently set to ensure 8–byte real
values.

The interface routine translates between the CAM derived types and the primitive types
passed through the physics package run procedure.

module param_XXXX

use shr_kind_mod, only: r8=>shr_kind_r8

use ppgrid, only: pcols, pver, ppcnst

private

public :: param_XXXX_timestep_tend

! Local variables

character(len=32) :: htendnam, qtendnam(ppcnst) ! tendency names

contains

subroutine param_XXXX_timestep_tend(state, ptend, dt, pbuf)

18

use physics_types, only: physics_state, physics_ptend, physics_ptend_reset

use phys_buffer, only: pbuf_size_max, pbuf_fld

use history, only: outfld

use pkg_XXXX, only: pkg_XXXX_run

implicit none

! Arguments

type(physics_state), intent(in) :: state ! state variables

type(physics_ptend), intent(out) :: ptend ! package tendencies

real(r8), intent(in) :: dt ! timestep

type(pbuf_fld), intent(inout), dimension(pbuf_size_max) :: pbuf ! physics buffer

! Local variables

integer :: lchnk ! chunk identifier

integer :: ncol ! number of atmospheric columns in chunk

real(r8), pointer, dimension(:) :: buffld1 ! physics buffer field1

real(r8), pointer, dimension(:,:) :: buffld2 ! physics buffer field2

! Initialize output tendency structure

call physics_ptend_reset(ptend)

ptend%name = ’param_XXXX’

ptend%ls = .true.

ptend%lq = .true.

! Initialize chunk id and size

lchnk = state%lchnk

ncol = state%ncol

! associate local pointers with fields in the physics buffer

buffld1 => pbuf(ixbuffld1)%fld_ptr(1,1:pcols,1, lchnk,1)

buffld2 => pbuf(ixbuffld2)%fld_ptr(1,1:pcols,1:pver,lchnk,1)

! set up and call physics package driver

call pkg_XXXX_run(dt, pcols, ncol, pver, ppcnst, &

state%t, state%q, ptend%dhdt, ptend%dqdt, &

buffld1, buffld2)

! write tendencies to history file

call outfld(htendnam, ptend%dhdt, lchnk)

do i = 1, ppcnst

call outfld(qtendnam(i), ptend%dqdt(1,1,i), lchnk)

end do

! update boundary quantities

ptend%hflx_srf = 0.

ptend%hflx_top = 0.

ptend%cflx_srf = 0.

ptend%cflx_top = 0.

end subroutine param_XXXX_timestep_tend

end module param_XXXX

The logical flags of the physics ptend type are set to indicate which tendencies are

19

returned by the physics package. The physics package’s run routine is called with actual
arguments from the CAM modules that specify array dimensions, and from the components
of the CAM’s derived types. On return from pkg XXXX run the outfld calls are made to
put the package’s forcings onto the output history file.

6 CAM Physics Package Interfaces

This section documents the public interfaces of the standard CAM physics packages. If one
of the standard packages is to be replaced, then providing exactly the interface described
here allows swapping in a new package without any code modifications to the CAM.

6.1 Vertical diffusion

6.2 Gravity wave drag

6.3 Dry adjustment

6.4 Moist convection – deep

6.5 Moist convection – shallow

6.6 Cloud fraction

6.7 Prognostic cloud water

6.8 Sulfur cycle chemistry / wet deposition

6.9 Convective transport

6.10 Cloud properties

6.11 Radiation

7 Review Status

Review Date: ¡Date¿

Reviewers: ¡Reviewer¿ ¡Institution¿
¡Reviewer¿ ¡Institution¿
¡Reviewer¿ ¡Institution¿

References

[1] Kalnay, E., M. Kanamitsu, J. Pfaendtner, J. Sela, M. Suarez, J. stackpole, J. Tuccillo,
L. Umscheid, and D. Williamson, 1989: Rules for Interchange of Physics Parameteriza-
tions. Bull. Am. Met. Soc., 70(6), 620-622.

20

[2] “Report on Column Physics Standards”, Prepared by the Common Modeling Infras-
tructure Working Group. February 1999.
http://nsipp.gsfc.nasa.gov/infra/index.html

[3] “Time Manager Module: Requirements and Design”, November 2001. Linked to the
CAM home page:
http://www.ccsm.ucar.edu/models/atm-cam/

21

	Overview
	Requirements
	Physics Driver and Data Structures
	Array dimensions
	Precision of real data
	Derived data types
	physics_state
	physics_tend
	physics_ptend
	surface_input
	surface_output

	Utility Modules
	Physical constants
	Output to history files
	Physics buffer
	Constituents
	Time manager
	Reference pressures

	Implementation of a Generic Interface
	Input from namelist
	Template for input from namelist

	Public interface methods
	param_XXXX_register
	param_XXXX_init_cnst
	param_XXXX_init
	param_XXXX_timestep_init
	param_XXXX_timestep_tend

	CAM Physics Package Interfaces
	Vertical diffusion
	Gravity wave drag
	Dry adjustment
	Moist convection -- deep
	Moist convection -- shallow
	Cloud fraction
	Prognostic cloud water
	Sulfur cycle chemistry / wet deposition
	Convective transport
	Cloud properties
	Radiation

	Review Status
	References

