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1 Overview

This document describes the requirements and design of the time manager module in the
Community Atmosphere Model (CAM). The time manager is built on top of the utilities
for time management available from the Earth System Modeling Framework (ESMF) [1]
libraries.

The time manager’s user interface is provided via namelist variables which may be set to
control simulation properties such as the timestep size, start date, and stop date. Dates are
specified using either a Gregorian or a 365-day calendar.

The time manager’s API provides the methods that are used to control the model’s time
loop, and provides date and time information to model procedures or modules that may need
it. The API also provides an alarm facility which is designed to be used by parameterizations
that need to carry out certain actions at specified times during the simulation. The alarms
are set up during the initialization process, and are queried each timestep for their on/off
status.

2 Terminology

As a model advances in discrete timesteps the time manager keeps track of the date and
time at each endpoint of the current timestep. We begin with this section on terminology
to clarify our use of common words like “date” and “time.”

date The term “date” is used to refer to an instant in time. It consists of year, month, day
of month, and time of day components. The time of day is expressed in UTC. A date
specification is incomplete without it’s associated calendar.

time The term “time” is used in the sense of “simulation time” and expresses an elapsed time
since a reference date. These time values follow the convention for time coordinates
supported by the COARDS [2] and CF [3] metadata conventions.

time of day Time of day refers to the elapsed time since midnight of the current day. We
express time of day in UTC unless explicitly stated otherwise. In common usage the
term “time” refers to “time of day.” In this document we will use “time of day”
explicitly when that is what we mean.

start date The start date of a simulation is the date assigned to the initial conditions.

reference date The reference date of a simulation is an arbitrary date that corresponds
to the origin of the time coordinate. Often this date corresponds to the start date.
But it may be different because providing a reference date that is common to a set
of simulations that may have different start dates allows them to use the same time
coordinate.

current date A simulation advances by timesteps. At any point during a simulation the
current date is taken to be the date at the end of the current timestep.
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start time The start time of a simulation is the elapsed time from the reference date to the
start date.

current time The current time of a simulation is the elapsed time from the reference date
to the current date.

calendar day The day number in the calendar year. January 1 is calendar day 1. Calendar
day may be expressed in a floating point format consisting of the integer day number
plus the time of day (UTC) represented as a fractional day. For example assuming a
Gregorian calendar:

Date Calendar day
10 January 2000, 6Z 10.25
31 December 2000, 18Z 366.75

restart date The restart date of a simulation is the date of the data in the restart files
from which the simulation is continuing.

3 Requirements

3.1 Date calculations

• Support Gregorian and “no-leap” calendars. A “no-leap” calendar is the same as a
Gregorian calendar with no leap years.

• Represent dates and times to a precision of 1 second.

• Date and time representations must have a range of at least 200,000 years.

3.2 Simulation control

• The time manager will be initialized by specifying the calendar type, timestep size,
start date and stop date. The user may optionally specify the reference date. By
default the reference date equals the start date.

• The timestep size must be chosen so that there are an integral number of steps in a
day.

• The stop date may optionally be specified by any of the following:

– a number of timesteps from the start date;

– a number of days from the start date;

– a number of timesteps from the restart date;

– a number of days from the restart date;

• The current date may be changed at any point during a simulation.

• Provide methods to query timestep size, start date, stop date, and reference date.
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• Provide methods to query the following:

– the start date, stop date, and reference date;

– current timestep number and size;

– current date, time, and calendar day;

– previous date, i.e., date at the beginning of the current timestep;

– perpetual date,

– if the current timestep is the final one of the day or month;

– if the current timestep is the first one of an initial or restart run;

– if the current timestep is the last one of the run;

• The methods that return the current date and calendar day should provide for an
optional offset to be specified. This provides easy access to the calendar calculations
required to find date or calendar day values that are offset from the end-point of the
current timestep.

• Provide an option to allow running the simulation in a “perpetual calendar” mode.
Under this option the time and dates are always available both as the usual simulation
time and date, and as a perpetual time and date. The simulation time and date are
written to the output history files and log files to track the simulation progress with
a monotonic time progression. The perpetual time and date are used to determine
the sun position and interpolate boundary datasets. The perpetual day (i.e., the year,
month, and day of month part of the date) may either be read from the initial file or
may be set to user specified values. When running in aqua-planet mode the perpetual
day is set to March 21 of year 0. The perpetual date and calendar day include a diurnal
cycle.

– A query method will be provided to determine if the time manager is using the
perpetual calendar mode.

– A query method will be provided that returns the current perpetual date which
is the perpetual year, month, and day of month, plus the time of day component
from the simulation’s current date. This forces the time of day written to the
history files to be consistent with the phase of the diurnal cycle that is used in
the solar calculations.

– The method that returns the current calendar day will return the calendar day
corresponding to the current perpetual date when running in perpetual mode.

• The time manager must be able to ”restart”, i.e., it must be able to write its state to a
binary restart file, and reset its state after reading the restart file. The only attribute
of the time manager state that may be changed when initializing a restart run is the
stop date.
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3.3 Alarms

An alarm is used to signal that some event should take place during the current timestep.
Alarms are initialized by specifying a set of times when they should be turned on. The
time manager will turn an alarm on during the first timestep whose late end-point (i.e., the
current time) equals or exceeds the current alarm time. When an alarm is turned on the
alarm time is updated. Some specific requirements for alarm functionality are:

• Provide alarms that are turned on periodically and can be specified by a period and
an offset.

• Provide alarms that are turned on when year and month boundaries are crossed.

• Provide method to query whether an alarm is on or off.

• Provide methods to query the current alarm time and date. The current alarm time is
the time that the alarm is set to be turned on. If the alarm in currently on, then the
current alarm time is the next time that the alarm will be turned on since the time
manager updates the alarm time when it turns an alarm on.

4 Interface Design

The time manager is designed as a module which provides public data members for commu-
nicating with the user interface (i.e., Fortran namelist), and public methods which wrap the
ESMF library methods. The reasons for designing “wrapper” methods rather than making
direct use of the methods provided by the ESMF library’s Fortran 90 interface are:

• to provide a simpler, higher level CAM specific interface;

• to hide the handling of the ESMF error returns;

• to hide the interprocess communication necessary when running with MPI;

• to provide methods for CAM specific file I/O to support restarts;

• to provide CAM specific simulation control options.

The ESMF library has an object oriented design. In Fortran this implies a viewpoint
in which each variable declared as one of the derived types is thought of as an independent
object. Thus, for example, different objects (variables) of the ESMF defined type for repre-
senting a date could be based on different calendars, and there could be multiple instances
of the time manager. But in the context of a single atmospheric simulation there is only
one calendar being used, and only one time coordinate. Hence, only one time manager is
necessary. The CAM specific interface is then simplified, for example, by maintaining the
calendar type and the time manager ID as private module data which does not have to be
passed through the public method argument lists.

The ESMF library methods all provide an optional argument for error checking. The
CAM specific interface does not pass this argument, but the methods act as wrappers that
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carry out checking of all error codes and invoke a CAM (or CCSM) specific error handler as
appropriate.

The only CAM specific simulation control option currently implemented is to support
a “perpetual calendar” mode. This mode is described above in the requirements section.
The perpetual mode is currently used by the model’s “aqua-planet” mode which is a testing
configuration for the physical parameterizations.

4.1 User interface

The user interface is implemented via Fortran namelist variables. These variables are public
data in the time manager module.

4.1.1 calendar

Type character(len=*)
Default ’NO LEAP’
Use Calendar to use in date calculations. Supported calendars are ’NO LEAP’

(i.e., modern calendar, but without leap years) and ’GREGORIAN’ (modern
calendar).

4.1.2 dtime

Type integer
Default 1200 s (Eulerian dycore), 1800 s (Finite-volume dycore), 3600 s (SLD dycore)
Use Timestep size in seconds. dtime must evenly divide the number of seconds in

a day.

4.1.3 start ymd

Type integer
Default Read from the initial conditions input dataset
Use Year, month and day of the simulation start date. The values are encoded in

an integer as year*10000 + month*100 + day.

4.1.4 start tod

Type integer
Default 0 if start ymd is specified; otherwise it’s read from the initial conditions input

dataset
Use Time of day (UTC) of the simulation start date, in seconds.

4.1.5 stop ymd

Type integer
Default none
Use Year, month and day of the simulation stop date. The values are encoded

in an integer as year*10000 + month*100 + day. If this value is specified it
takes precedence over both nestep and nelapse.
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4.1.6 stop tod

Type integer
Default 0
Use Time of day (UTC) of the simulation stop date, in seconds.

4.1.7 nestep

Type integer
Default none
Use If nestep > 0 then nestep is the number of timesteps to advance the solution

past the start date. If nestep < 0 then the stop date is -nestep days past
the start date. nestep is ignored if stop ymd is set.

4.1.8 nelapse

Type integer
Default none
Use If nelapse > 0 then nelapse is the number of timesteps to advance the so-

lution past the start date (on an initial run) or past the restart date (on a
restart run). If nelapse < 0 then the stop date is -nelapse days past the
start or restart date (again depending on run type). nelapse is ignored if
either stop ymd or nestep is set.

4.1.9 ref ymd

Type integer
Default from year, month, and day components of the start date
Use Year, month and day of the time coordinate’s reference date. The values are

encoded in an integer as year*10000 + month*100 + day.

4.1.10 ref tod

Type integer
Default from the time of day component of the start date
Use Time of day (UTC) of the time coordinate’s reference date, in seconds.

4.1.11 perpetual run

Type logical
Default false
Use Set to .true. to specify that the run will use a perpetual calendar. If

perpetual ymd is not set then read the perpetual day from the initial file.
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4.1.12 perpetual ymd

Type integer
Default none
Use Perpetual date specified as year*1000 + month*100 + day. This date over-

rides the date from the initial file. If running in “aqua-planet” mode then
perpetual ymd is ignored and the perpetual date is set to 321.

4.2 Application programmer interface

This section provides an overview of the design and functionality of the API. The following
is a summary of the time manager’s public methods in UML notation. In UML a method
prototype has the syntax “method-name (argument-list) :return-type”, where each ar-
gument in the comma separated list is expressed as “intent arg-name:type”. The intent
of an argument is one of the keywords in, out, or inout. Optional arguments are enclosed
in brackets “[ ]”. For methods which don’t have a return value the “:return-type” is left
off.

The API does not currently implement any alarm functionality because it is not yet fully
functional in the ESMF library.

4.2.1 timemgr preset

subroutine timemgr_preset()

timemgr preset is used for run-time initialization of namelist variables. Most
namelist variables are statically initialized in the time manager module. This
method is currently used only for dtime whose default value depends on the
dycore. This method is provided because dtime is used before the time manager
is initialized (which happens after the header of the initial conditions file is read
to obtain the default start date).

4.2.2 timemgr init

subroutine timemgr_init()

timemgr init initializes the time manager module for an initial run. Before
timemgr init is called it is assumed that the namelist has been read, and the
date in the initial conditions file has been read.

4.2.3 timemgr restart

subroutine timemgr_restart()

timemgr restart initializes the time manager module for a restart run. Before
timemgr restart is called it is assumed that the namelist has been read, and the
restart data has been read from the restart file by a call to timemgr read restart.
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4.2.4 advance timestep

subroutine advance_timestep()

advance timestep advances the time manager by one timestep. This includes
updating the date and time information at the beginning and end of the new
timestep, and updating the alarms.

4.2.5 get step size

function get_step_size()

integer :: get_step_size

get step size returns the current timestep size in seconds.

4.2.6 get nstep

function get_nstep()

integer :: get_nstep

get nstep returns the current timestep number.

4.2.7 get curr date

subroutine get_curr_date(yr, mon, day, tod, offset)

integer, intent(out) :: yr, mon, day, tod

integer, optional, intent(in) :: offset

get curr date returns the components of the date corresponding to the end of
the current timestep. When the optional offset argument is specified the current
date is incremented by offset seconds (may be negative). The date components
are: year (yr); month (mon); day of month (day); and time of day in seconds
past 0Z (tod).

4.2.8 get prev date

subroutine get_prev_date(yr, mon, day, tod)

integer, intent(out) :: yr, mon, day, tod

get prev date returns the components of the date corresponding to the begin-
ning of the current timestep. The date components are: year (yr); month (mon);
day of month (day); and time of day in seconds past 0Z (tod).

4.2.9 get start date

subroutine get_start_date(yr, mon, day, tod)

integer, intent(out) :: yr, mon, day, tod

get start date returns the components of the date corresponding to the starting
date for the simulation. The date components are: year (yr); month (mon); day
of month (day); and time of day in seconds past 0Z (tod).
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4.2.10 get ref date

subroutine get_ref_date(yr, mon, day, tod)

integer, intent(out) :: yr, mon, day, tod

get ref date returns the components of the reference date part of the time
coordinate. The date components are: year (yr); month (mon); day of month
(day); and time of day in seconds past 0Z (tod).

4.2.11 get perp date

subroutine get_perp_date(yr, mon, day, tod)

integer, intent(out) :: yr, mon, day, tod

get perp date returns the components of the perpetual date corresponding to
the end of the current timestep. The date components are: year (yr); month
(mon); day of month (day); and time of day in seconds past 0Z (tod).

4.2.12 get curr time

subroutine get_curr_time(days, seconds)

integer, intent(out) :: days, seconds

get curr time returns the time at the end of the current timestep. days and
seconds contain the components of the time interval in units of days and seconds
respectively.

4.2.13 get curr calday

function get_curr_calday(offset)

real(r8) :: get_curr_calday

integer, optional, intent(in) :: offset

get curr calday returns the calendar day at the end of the current timestep. In
perpetual mode the get curr calday returns the perpetual calendar day. When
the optional offset argument is specified the current date (or perpetual date)
is incremented by offset seconds (may be negative) before converting the date
to a calendar day. The real kind, r8, specifies an 8-byte real value.

4.2.14 is first step

function is_first_step()

logical :: is_first_step

is first step returns true during the initialization phase of an initial run. This
phase lasts from the point at which the time manager is initialized until the
first call to advance timestep. In the CCM3 this phase was indicated by the
conditional if(nstep==0)...
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4.2.15 is first restart step

function is_first_restart_step()

logical :: is_first_restart_step

is first restart step returns true during the initialization phase of a restart
run. This phase lasts from the point at which the time manager is restart until
the next call to advance timestep. In the CCM3 this phase was indicated by
the conditional if(nstep==nrstrt)...

4.2.16 is last step

function is_last_step()

logical :: is_last_step

is last step returns true during the final timestep of a run.

4.2.17 is end curr day

function is_end_curr_day()

logical :: is_end_curr_day

is end curr day returns true during the final timestep of each day. The final
timestep of a day is the one whose ending date is equal to or later than 0Z of the
next day.

4.2.18 is end curr month

function is_end_curr_month()

logical :: is_end_curr_month

is end curr month returns true during the final timestep of each month. The
final timestep of a month is the one whose ending date is equal to or later than
0Z of the first day of the next month.

4.2.19 timemgr write restart

subroutine timemgr_write_restart(ftn_unit)

integer, intent(in) :: ftn_unit

timemgr write restart writes the state of the time manager to a binary file
attached to Fortran unit ftn unit. It is assumed that when running with MPI
this method is only called from the master process.
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4.2.20 timemgr read restart

subroutine timemgr_read_restart(ftn_unit)

integer, intent(in) :: ftn_unit

timemgr read restart reads the state of the time manager from a binary file
attached to Fortran unit ftn unit. It is assumed that when running with MPI
this method is only called from the master process.

5 Module design notes

In discussions of valid ranges below we assume that the default native integer is signed and
at least 4 bytes long.

5.1 Representation of dates

A date is represented by 2 integer values. One integer contains the calendar date (year,
month and day of month), and the other contains the time of day (seconds past 0Z).

The year, month, and day of month components are packed in an integer using the
expression year*1000 + month*100 + day. The range of valid dates is -2147480101 through
2147481231 which corresponds to a valid range of years from -214748 to 214748.

The time of day component of a date is represented as an integer number of seconds.
Thus the precision of a date is 1 second.

The ESMF time manager defines a date type which may be initialized with the 2 integer
values used by the CAM.

5.2 Representation of times

Time values are represented by 2 integer values. One integer contains the number of days
and the other contains the partial day in seconds.

The valid range of times (which are assumed to be positive) is 0 through 2,147,483,647
days + 86399 seconds, or about 5.9 million years.

The precision of a time is 1 second.
The ESMF time manager defines a time type which may be initialized with the 2 integer

values used by the CAM.

5.3 Counting timesteps

The underlying philosophy of the ESMF time manager design is that simulation control is
based on the simulation date and the elapsed time from some reference date. There is no
assumption that the timestep size is constant.

In the CCM3 the timestep size is fixed and the simulation control is based on counting
timesteps. The timestep number and size plus a reference date are sufficient to compute the
current date and time.
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The ability to query the timestep number is for backwards compatibility with the CCM3
and allows a staged implementation of the time manager into the CAM. The alarm facilities
in the time manager will eventually replace the logic that depends on the timestep number
(which implicitly assumes a constant step size).

The timestep number in CAM2 is a native signed integer (usually 4 bytes) which implies
that only 231 steps may be counted. At the nominal timestep size of 1200 seconds this
imposes a valid range of 81,000 years on the time manager.

5.4 Setting the stop date

The ESMF time manager determines if the current step is the last step of a simulation
by testing whether the current date is equal to or later than the stop date. To support
the options provided by positive values of the nestep and nelapse namelist variables, i.e.,
stopping the simulation a specified number of timesteps past either the start or current dates,
the values must be converted to a corresponding stop date. This is done by incrementing
the appropriate date by a time interval that is calculated using the current value of the
timestep size multiplied by the specified number of timesteps. This implementation assumes
a constant timestep size.

5.5 Status

• The ESMF time manager has support for resetting the current date at an arbitrary
point in the simulation. This feature has not yet been incorporated into the CAM time
manager.

• The ESMF time manager has not fully implemented the alarm functionality.
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