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Abstract

Based on CSM1 simulations (Boville and Gent, 1998; Weatherly et al., 1998), the CCSM Polar Cli-
mate Working Group (PCWG) recommended a number of improvements to the sea ice component. The
CCSM2 sea ice model satisfies all of those recommendations and includes additional parameterizations,
representing a major improvement over the previous version. The model consists of: elastic-viscous-
plastic (EVP) dynamics (Hunke and Dukowicz, 1997), which includes the effects of metric terms (Hunke
and Dukowicz, 2002), energy conserving thermodynamics with a resolved vertical temperature profile and
an explicit brine pocket parameterization (Maykut and Untersteiner, 1971; Bitz and Lipscomb, 1999),
Lagrangian ice thickness distribution (Thorndike et al., 1975; Bitz et al., 2001), linear remapping for
thickness space evolution (Lipscomb, 2001), mechanical redistribution due to rafting and ridging (Hi-
bler, 1980), ice strength computed from energetics (Rothrock, 1975), lateral and bottom melt processes
(McPhee, 1992), second order horizontal advection (Smolarkiewicz, 1984), and an albedo parameteri-
zation with implicit melt ponds. Five thickness categories adequately resolve newly formed, first year,
consolidated, multiyear and ridged ice. Flux exchange with the atmosphere and ocean is evaluated over
each thickness category and aggregated. The model uses 2D domain decomposition and time split ther-
modynamics and dynamics for efficient parallel performance. The code is written using standard MPI
and Fortran 90 constructs, and runs efficiently on several platforms. Fundamental equations, numerical
approximations/algorithms and output history fields are presented.
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1 Introduction

The Community Climate System Model (CCSM) is a coupled climate model consisting of atmosphere, ocean,
land, and sea ice components which exchange fluxes and states through a coupler. This model is making
important contributions to knowledge about past, present, and future climates.

The polar regions are important to the climate system, as they represent the heat sink for energy absorbed
in the tropics and transported through temperate latitudes. As such, they are as important in the overall
climate system as the more widespread heat source regions of the tropics. It is the dynamic balance of heat
source and sink in response to external forcing that determines both the basic climate state of the earth
system, as well as its response to changing forcing.

An important component of the polar regions is sea ice, which acts as an insulator between atmosphere
and ocean. Sea ice facilitates net heat lost to space at the poles and resulting cold air formation in the
atmosphere and deep water formation in the ocean. A realistic representation of sea ice processes is essential
for high quality global climate simulations.

The first version of the CCSM sea ice model (CSIM1) represented an initial step towards modeling of sea ice
processes. The CSIM1 model included one ice thickness category with the following dependent variables: ice
concentration, thickness, snow depth, surface temperature, ice temperature and velocity (Bettge et al., 1996).
The thermodynamics was based on (Semtner, 1976) and the dynamics on the cavitating fluid rheology of
(Flato and Hibler, 1992). Initial CSM1 coupled experiments resulted in some significant biases in Arctic ice
thickness (Boville and Gent, 1998; Weatherly et al., 1998). While there was concern in the CCSM community
over the biases in atmospheric and oceanic forcing in the coupled model, over the past two years the CCSM
PCWG has identified a number of areas of needed improvement in the sea ice model itself. In particular,
it was recommended that all of the following be implemented: (1) a plastic rheology with an elliptical yield
curve, (2) enhanced sea ice thermodynamics, (3) an ice thickness distribution, (4) elimination of spurious
polar convergence near the north pole, (5) an ice model on the same grid as the ocean model, (6) an efficient
parallel version of the model and (7) an active ice only framework for testing the sea ice model. The CCSM2
sea ice model meets all of these recommendations.

To meet recommendation (1), the EVP dynamics of Hunke and Dukowicz (1997) was implemented, which
adds to the basic viscous/plastic (VP) rheology of (Hibler, 1979) stress tensor equation an elastic term for
elastic wave regularization. In the limit of large viscosities, the EVP solutions asymptote to the VP solutions.
The similarity of simulations with EVP and VP dynamics for identical forcing has been demonstrated (Hunke
and Zhang, 1999; Arbetter et al., 1999). The present implementation also includes metric terms (Hunke and
Dukowicz, 2002). The momentum and stress tensor equations are solved simultaneously and explicitly in a
highly efficient parallel manner.

To meet recommendation (2), the energy conserving thermodynamics of Bitz and Lipscomb (1999) was
implemented. This thermodynamics model represents the effects of brine pockets explicitly through a tem-
perature and salinity-dependent energy of melting. The vertical temperature is calculated using a prescribed
and time-invariant salinity profile. Penetrating shortwave radiation is computed for two spectral bands.

To meet recommendation (3), the ice-thickness distribution of Thorndike et al. (1975) was implemented
in a Lagrangian thickness-space form (Bitz, 2000; Bitz et al., 2001). The Lagrangian representation of ice
thickness within fixed category limits causes minimal diffusion. Resolving thin ice categories allows for



more realistic ocean/atmosphere heat and momentum exchange, compared to a single ice thickness category.
Rafting and ridging due to dynamic convergence are represented using Hibler (1980), which also allows
explicit calculation of ice strength used in the dynamics (Rothrock, 1975). Improved lateral and bottom
heat exchange was also implemented (McPhee, 1992).

The sea ice model uses the same displaced pole grid as the ocean component to meet recommendations (4)
and (5). This removes the singularity of the pole from the computational grid. To meet recommendation (6),
the parallel code of Hunke and Lipscomb (2002) was implemented. This code uses a 2D (two dimensional)
domain decomposition, effectively dividing the global computational domain into a number of rectangular
subdomains, each of which is run on a separate processor. In addition, the thermodynamics and dynamics
are time split resulting in further performance enhancement.

To meet recommendation (7), a simple mixed layer ocean model was developed to be used with an active
ice model within the coupler framework. The active ice only framework (AIO), with prescribed atmosphere
and deep ocean forcing, allows for efficient studies with the sea ice model in uncoupled mode.

In addition to meeting the particular recommendations just listed, the CCSM2 sea ice model has also
improved horizontal transport, thickness-space evolution, and surface albedo parameterization. The CSIM1
model horizontal transport was first-order accurate upwind differencing, which is known to be highly diffusive.
This results in spurious regional smoothing, especially at coarse resolution (e.g. greater than 1°) near ice edge.
In version 2, the second order accurate transport scheme of Smolarkiewicz (1984) was implemented. While
the Lagrangian thickness distribution adequately treats ice within each category, it suffers from a tendency to
underpopulate categories: a dominant single ice thickness moves through the categories during the seasonal
cycle of thickening and thinning, crossing thickness categories in the process. A more accurate way of
representing thickness space transport was described by Lipscomb (2001) and was implemented. The method
uses incremental linear remapping, resulting in a much smoother thickness distribution. The improvement
in the albedo parameterization involved adjusting parameterization values to give better agreement with
SHEBA observations (Curry et al., 2001).

The purpose of this document is to describe the basic assumptions, fundamental equations, numerical ap-
proximations, exchanged fields with the coupler and output history fields for the CCSM2 sea ice model. The
present model is designated CSIM4.

The present document is organized as follows. Section 2 gives an overview of CSIM4. It presents the
state variables, fundamental equations and boundary conditions, and summarizes the model physics without
numerical and implementation details. Section 3 discusses the time and space discretizations. Section 4 is the
largest and most detailed, presenting the specifics on pameterizations and numerical approximations. Where
possible, summaries of relevant physical and numerical approximations are given for motivation. Every
attempt is made to draw out the important relations between the subcomponents of the sea ice model in
order to emphasize its unifying features. The final three sections outline numerical ordering of code, special
capabilities, diagnostic output and summarizes CSIM4. Tables of physical constants, a list of acronyms and
references are included.

In addition to the supported default physics of CSIM4, there are alternative physics options available. These
are conviently summarized in the Appendix. These options include those used in the developmental versions
of the model, as well as those which are possible candidates for future versions.

This document describes the physics of CSIM4, but gives some brief discussion on aspects of the model useful
in running and in diagnosing its output. For further information on how to obtain and run CSIM4, see the
CSIM User’s Guide Version 4 (Schramm, 2002). For details on source code structure and its modification,
see the CSIM Code Reference Manual Version 4 (Briegleb, 2002).



2 Overview of Sea Ice Model

In this section, an introductory overview of the sea ice model is given. Details on references and numerical
approximations can be found in the two sections that follow.

2.1 State Variables

The state variables for the sea ice model are listed in Table 1. They are the time dependent or prognostic
variables of the sea ice model. Where possible, we use conserved quantities as state variables. The subscript
n, {n =0,1,2...N} refers to the n'”" ice thickness category, where N is the total number of categories. For
each category, ice thickness lies within the category thickness limits, as described in the following subsection.

Table 1: State Variables (subscript n refers to nt" category)
Symbol Description

A, Sea ice area (fraction from 0 to 1)

Vo Sea ice volume (m® m~2)

E, Sea ice internal energy (J m~2)

Vin Snow volume (m3 m~2)

Tsn Surface temperature of snow/ice (°C)

u Sea ice velocity (m s~1)

0ij Stress tensor components (i=1,2; j=1,2) (N m 1)

2.2 Fundamental Equations

The fundamental equations determine the spatial and temporal evolution of the state variables. We first
give a rationale for using an ice thickness distribution before describing these equations.

Many properties of sea ice depend on ice thickness (Thorndike et al., 1975). For example, ice compressive
strength, growth rate, surface temperature, turbulent and radiative flux exchange with the atmosphere. Two
contrasting phenomena alter the distribution of ice thickness on a yearlong average: accretion and ablation
against lead opening and ridging of ice. This competition was elegantly described by (Thorndike et al., 1975):
“thermodynamics seeks the mean and dynamics the extremes”. The evolution of the thickness distribution
is the historical integral of these two continuous processes.

Formally, the thickness distribution is described by the distribution function g(h, x,t), where h is ice thickness
(henceforth we suppress the explicit space and time dependence). g(h)dh is the fraction of area covered by
ice of thickness h to h + dh, normalized by fooo g(h)dh = 1, the conservation of total area. The aggregate
ice fraction is A = [7 g(h)dh, while the open water fraction is Ag = g(h = 0) = 1 — A. The cumulative
distribution function is G(h) = foh g(h)dh. The average of a quantity F' that depends on ice thickness is
referred to as the aggregate F' = & [° F(h)g(h)dh.

The evolution of g is governed by the distribution equation

% - _%(hg) + L(h,g) — v - (ug) + R(h, g,u) M)

where h is the rate of change in ice thickness due to vertical thermodynamic processes, —(%(hg) is the
change in distribution due to thickness space transport, L(h, g) is the change in distribution due to lateral



melt/formation processes, — v/ -(ug) is the change in distribution due to horizontal advection (57 is the hor-
izontal gradient operator and u is the smoothed velocity field over the thickness distribution) and R(h, g, u)
(¢ in Thorndike et al. (1975)) is a redistribution function due to rafting and ridging processes.

To solve Eq. 1, a discrete set of N ice categories is assumed, delimited by the thicknesses ({h%},n =0,1,2...N)
for which h§ = 0. Thus, Eq. 1 is integrated over the thickness limits for each category, resulting in a discrete
set of N equations to be solved for the ice fraction in each category n:

h;,
A, = / g(h)dh, @)

where the total (aggregate) ice fraction A = Zgzl A,,. The first moment of the distribution function is the

ice volume V,, = [ h"} hg(h)dh, and any function F which is linear in the ice thickness (i.e. F = Fy + Fih)
n—1
results in F,, = FyA, + F1V,.

There are two known ways to solve Eq. 1. The first assumes thickness is distributed uniformly within each
category (Hibler (1980), and Flato and Hibler (1995)). Sea ice growth and melt processes require advection
in thickness space, and so this method is known as Eulerian. Such advection is very diffusive unless a large
number of categories are employed. It is difficult to resolve vertical temperature profiles in snow and ice
(Bitz et al. (2001)) in this Eulerian method.

The second method of solving Eq. 1 assumes ice can vary in thickness within each category, as in Thorndike
et al. (1975). This method is free from the diffusion of the Eulerian thickness advection, allowing for a
smaller number of categories, as well as the resolution of the vertical temperature profile in snow and ice
(Bitz et al. (2001)). It naturally allows the use of ice volume as a prognostic variable. This method is known
as Lagrangian, and is the method used for the present sea ice model.

Thus, the fundamental equations for the present sea ice model start with the discrete form of Eq. 1 for the
ice fractions A,,, the first moment equations for the ice volume V,,, corresponding equations for the snow
volume V,, equations for the vertically varying ice internal energy (from which the vertical temperature
profile and heat transfer are evaluated), equations for the surface temperature required for the vertical heat
transfer solution, and finally dynamic equations for the aggregate ice velocity u needed to evaluate horizontal
advection and the ridging terms in the distribution equations.

The fundamental equations are as follows. For the category sea ice fraction and volume:

0A,

ot = STAn —V- (uATL) + SMAn (3)
oVy,

a5 = Stvn — V- (uV,) + Suva (4)

where terms St denote sources/sinks due to thermodynamic processes and thickness space transport, while
terms Sy denote sources/sinks due to mechanical redistribution. The sea ice thickness h,, is derived from
the fraction and volume as h,, = V,,/A,.

To resolve vertical atmosphere/ocean heat exchange, and account as well for internal heat within the ice (i.e.
brine pocket heat storage), the ice internal energy E,, (vertically varying) is governed by the conservation
equation:
OFE,
ot

The internal sea ice energy E, is proportional to the ice volume, E, = ¢,V,, where the proportionality
function ¢, (termed the energy of melting) is the internal energy per unit volume (by convention, g, < 0,
and therefore E,, < 0 also). The effects of brine pockets are represented explicitly through the temperature
(T,,) and salinity (S,) dependent energy of melting ¢, = ¢,(Ts,S,)- The vertical temperature profile is
inferred by solving for T), in ¢,(Ty,Sn) = En/V, over an ice thickness h, = V,/A,, using a prescribed
salinity profile.




The conservation equation for snow volume Vg, is:

OVsn
ot

= STVsn -V (UVsn) + SMVsn (6)

Snow thickness is derived from hg, = Vsp/A,. Snow energy per unit volume is E;, = ¢5Vsn, where the
energy of melting of snow ¢, is constant.

For each category, the heat equation governing vertical heat transfer over time interval ¢ to ¢’ corresponding
to temperatures T,, and T respectively, allowing for temperature and salinity dependent heat capacity c¢;,
thermal conduction and internal absorption of penetrating solar radiation, is given by:

T Y7o T,
/T pic;dT, = /t (&ka + st> dt (7

n

where sea ice is assumed to have a constant density p;, z is the vertical coordinate within the sea ice, Qsw
is the absorbed shortwave flux, and the thermal conductivity k is that for either snow or ice. Modifications
to the temperature profile resulting from heat transfer change the ice internal energy according to E, =
Qn(Tna Sn)Vn

The surface boundary conditions for the vertical heat transfer solution require surface temperature T, to
satisfy the conservation equation

0AT,
TSTL = STTsn —-V- (UAnTsn) + SMTsny (8)
For momentum conservation, sea ice is assumed to be a two-dimenstional continuum. The sea ice velocity
u and stress tensor o;; are considered (along with related dynamic quantities) to be representative of the
entire ice thickness distribution. Their governing equations are:

Ou
T‘na=—T_nkau+‘ra+7'o+mgVHo+V-0' 9)
where m = p,V; + p;V, the non-linear u advection terms are ignored as they are negligibly small when the
equations are scaled, f is the Coriolis parameter, k is the local vertical unit vector, 7, and 7, are air and
water stresses respectively, g is the gravitational acceleration, H, is the sea surface height and V - & is the
force per unit area due to internal ice stress, where o is the stress tensor. The stress tensor equations are:

(90’1']' 2 1-— 62 P P

e
& 5o — s
ot Tor,, 00 T, Wk = op A% T g

dij (10)

where (4,7 = 1,2) refer to the four components of the stress tensor, e is a constant ratio of major to minor
axes of the elliptical yield curve, T¢,, is a damping time scale for elastic waves, J;; is the Kronecker delta,
P is the ice compressive strength (or mechanical pressure, a function of the thickness distribution), é;; is
the rate of strain tensor, in turn a function of velocity gradients, and A’ is a function of the rate of strain
tensor. Note that o;; is a state variable because of the EVP solution method, which is not necessary for the
VP solution method.

2.3 Boundary Conditions

Boundary conditions are represented vertically by atmosphere/ocean forcing, consisting of states and
interfacial fluxes (summarized in Table 2), and horizontaly by a lateral no slip condition for u along coastlines
and u — u, (i-e. ocean surface current) on the open ocean edge. The atmosphere states are used, along
with ice surface temperature and aerodynamic roughness (the latter is a constant), to compute the bulk
sensible/latent fluxes and surface stresses (Fsg,Frg and T, respectively). The atmosphere to ice flux



Table 2: State Variables and Fluxes Received by Sea Ice Model from the Coupler

Symbol  Description Units
Atmospheric States

Zq reference height m

Ug x direction wind speed at z, ms!

Uq y direction wind speed at z, ms?!

0, potential temperature at z, K

T, air temperature at z, K

da specific humidity at zg, kg kg~ !

Pa air density at z, kg m—3
Atmosphere = ice fluxes

Fswysar direct, visible downwelling shortwave W m—2

Fswysqp  diffuse, visible downwelling shortwave W m—2

Fswniar direct, near infrared downwelling shortwave =~ W m—2
Fswniap  diffuse, near infrared downwelling shortwave W m 2

Frwpn  downwelling longwave W m—2

Frn freshwater flux due to rain kg m=2 57!

Fsnw freshwater flux due to snow (liquid equiv.)  kgm™2 s7!
Ocean States

T, sea surface temperature K

S, sea surface salinity ppt

U x direction ocean surface current m s~!

Vo y direction ocean surface current m s !

(VH,), x direction sea surface slope m m~}

(VH,), vy direction sea surface slope m m~!
Ocean = ice fluxes

Fooi freezing /melting potential W m—2

of freshwater due to snow (Fsyw) is used to compute snow accumulation (dhs/dt = Fsyw/ps). Rain
(Fry) is assumed to run off directly into the ocean. Down shortwave and longwave fluxes are Fsypny =
Fswysar + Fswosap + Fswnidar + Fswniqr and Frw pn respectively.

Surface albedo « is a function of spectral interval, snow depth, ice thickness and surface temperature. Of the
total absorbed shortwave in the ice (Fsw = Fswpn (1 — @)), a portion (Isy) penetrates below the surface
layer and is either internally absorbed in the ice (Qgw) or penetrates to the ocean below (Fsw,). The net
longwave flux at the surface (FLw) is due to surface emission (e0sT%) and absorption of down longwave
(eFLwpn), where ¢ is the longwave emissivity and o, is the Stefan-Boltzmann constant.

The boundary condition for the heat equation at surface temperature Ty is: Frop(Ts) = Fsw — Isw +
Frw + Fsg + Frg + kdT/dz. If Frop(Tmert) > 0, where Th,e; is the snow/ice melting temperature, then
snow /ice melt is computed by: Frop(Ts = Tmeit) = qdh/dt as appropriate for either snow (if present) or ice
(recall that ¢ < 0).

The ocean surface currents u, and ice velocity u are used to compute ocean/ice stress 7,. The tilt stress is
computed from the gradient of the sea surface height.

Ice formation occurs by three processes. Although these processes are distinguished in formation, no dis-
tinction is made between ice types. If the freezing/melting potential is such that heat is required by
the ocean to maintain the freezing temperature (Fg;, > 0), then frazil ice formation occurs, at a rate
dVy /dt = Fgio/piqs, where gy is a heat of melting assuming the ice forms at ' = —1.8°C and S = 4.0ppt. If
the freezing /melting potential indicates ocean heat is available to melt ice (Fg;, < 0), this heat is partitioned
between lateral (Fisyp) and bottom (Fpor) heat fluxes according to the fraction of absorbed solar energy
near the surface and in deeper water. The actual amounts used are limited by mixed layer formulae. The



Table 3: State Variables and Fluxes Sent from Sea Ice Model to the Coupler

Symbol Description Units
Ice States
A ice area
T surface temperature K
Qysdr albedo (visible, direct)
Qridr albedo (near infrared, direct)
Qysdf albedo (visible, diffuse)
Qnidf albedo (near infrared, diffuse)
Ice = atmosphere fluxes
Fro latent heat flux W m2
Fsy sensible heat flux W m—2
Frwup upwelling longwave W m—2
Fryap evaporated water kgm 251
Taz x direction atmosphere-ice stress Nm~2
Tay y direction atmosphere-ice stress N m—?2
Ice = ocean fluxes
Fswo shortwave transmitted to ocean W m 2
Foio heat flux to ocean W m—2
Fyw, fresh water flux kg m=2 g1
Tox x direction ice-ocean stress N m2
Toy y direction ice-ocean stress N m~?
Diagnostic Fields
Trey atmospheric reference temperature (2 m) K
Fsw ice/ocean absorbed shortwave flux W m2

bottom boundary condition is: Fpor — kdT/dz = qdh/dt. If bottom ice formation occurs (i.e. dh/dt > 0),
this ice is termed congelation ice. Finally, if sufficient snow h, overlies ice, the snow-ice interface can be
depressed below sea level. Snow below sea level is assumed to be converted into ice at a rate that conserves
mass and energy, and is termed snow-ice. It is assumed that such conversion occurs without heat or salt
exchange with the ocean. Qutput sea ice states and fluxes are given in Table 3.

2.4 Summary

In summary, Egs. 1 - 10, subject to atmosphere/ocean boundary conditions, constitute the fundamental
equations for the sea ice model. The next two sections present in detail the discretizations, parameterizations
and numerical approximations used to solve the fundamental equations. Parameterizations involve evaluat-
ing fluxes with the atmosphere and ocean, and calculating the thermodynamic, advective, mechanical and
dynamic tendencies in the fundamental equations.

3 Discretization

The fundamental equations are discretized for numerical solution as described in this section. Further details
on the discretization can be found in the following section.
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3.1 Time

The sea ice model is characterized by a collection of state variables S (Table 1) subject to forcing fields Fj,
(Table 2) over the coupling time step At. Let m designate an initial time step and m + 1 the subsequent
time step over a coupling interval. Let V™ represent one of the state variables S at time step m, and V™!
the variable after one coupling time step. The ice model computes V™! from V™ subject to Fj, by two
half (or time split) steps. The two time split steps are separated by exchange with the coupler.

In the first half, the forcing fields Fj,, received from the coupler are used to compute the ice-atmosphere
exchange and the ice vertical thermodynamic response

vz Z ymg g2 (gm pr Fr ) A (11)

in’ " out

where the tendency function ®7+1/2 represents the vertical thermodynamic exchange with the atmosphere,
while the output fluxes F:;;rl/ 2 represent the updating of the ice-atmosphere fluxes. The fields sent to the
coupler at this point (Table 3) update only the surface temperature and the ice-atmosphere fluxes, while the

ice concentration, albedos and ice-ocean fluxes are unchanged.
The second half time step is

Vm+1 — Vm+1/2 + ¢m+1 (Sm+1/27Fm Fm+1)At (12)

iny* out

where the tendency function ®™+! represents the rest of the ice physical processes, including lateral thermo-
dynamics, thickness space transport, dynamics and physical space transport, mechanical and thermodynamic
redistribution and albedo calculation. The output fluxes ngjl now are all updated, including the ice-ocean
fluxes and albedos. The collection of state variables V™ *! in S are thus updated to time step m + 1. Note

that the second half time step makes the initial contribution to other fluxes for the coupling time step.

The sea ice model is time split for improved CCSM computational performance, since once the atmospheric
model receives the ice-atmosphere fluxes, it can run in parallel with the second half time step of the sea ice
model.

The ice model requires initialization to set grid and mask (land/ocean) information, as well as a restart
file with the states S™ and the fluxes F™7'/?

ot to be sent to the coupler. The model outputs restart files

(Ss™, F(Zfl/ %) periodically, and accumulates time mean states (S™) and fluxes (Fm, FFY)) as well as diag-

nostic fields, for the output history files.

The time stepping code runs in parallel. All communication between the ice model and the other components
is handled via MPI in parallel through the coupler. The ice model also runs parallel internally in a somewhat
different manner via MPI for its domain decomposition.

3.2 Thickness

The thickness distribution function g(h) is integrated over N discrete thickness ranges or categories. Presently
there are N = 5 ice thickness categories in the standard model, but arbitrary N is allowed. These categories
are described in the next section. The state variables (listed in Table 1) of sea ice concentration, volume,
energy, snow volume and surface temperature are discretized into n = 1,2,...N categories. Henceforth, a
subscript n will refer to the nt* thickness category.

3.3 Vertical

To compute vertical heat conduction through ice, ice thickness is divided into an even number of vertical
layers. This requires sea ice internal energy E to vary in the vertical, with two evenly spaced layers in the
thinnest ice thickness categories and four in the thickest. Temperatures are computed from E using the
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energy of melting and the ice volume in each layer. Internal temperatures are centered within each layer,
while conductivities and energy fluxes are represented at layer interfaces. Temperature boundary conditions
at the surface and base of ice are taken at the top and bottom interfaces respectively. See Figure 2 in section
4.6 for a diagram on the vertical level structure.

3.4 Horizontal

The horizontal grids used presently for the sea ice model are the POP displaced pole grids, in which the
South Pole is typically located at the geographic South Pole, but the North Pole may be located in any
northern hemisphere land mass. The CCSM has chosen a grid with the North Pole in central Greenland.
The grids are orthogonal curvilinear, so that vectors parallel to increasing longitude and latitude coordinates
are perpendicular to one another. Two available resolutions are the standard gx1 (320 longitudes x 384
latitudes, ~ 1.1° x 0.94°), and a coarse gx3 (100 longitudes x 116 latitudes, ~ 3.6° x 1.6°). The grids south
of the equator are regular spherical coordinates. Spatial discretization is that of a B-grid (see Figure 1).

(a) (b)

u,v u,v Ui—l,j Uy 5

AV, T Ai 1 Aij

u, v u,v Ui—1,5j—1 Ui, j—1

Figure 1: The Arakawa-B grid (a), with horizontal indices (b), used for computation. Shown are the A,V, T,
prognostic fields on the T-grid, while u,v are on the U-grid. Modified from Bitz (2000).

All state variables except ice velocity and stress tensor components are taken at grid box mid-points (a
tracer grid termed the T-grid), while velocities at grid box corners (a velocity grid termed the U-grid). The
stress tensor, rates of strain and viscosities are defined bilinearly across each grid cell using the values at the
corners. This discretization tends to avoid decoupling problems associated with the B-grid.

Grid information is taken from a grid data file read in by the ice model at initialization. The fields on the
U-grid are latitude, longitude and angle the grid makes with a geographic latitude line (ULAT, ULON and
ANGLE respectively), and fields on the T-grid are the land/ocean mask and T cell widths on north and
east sides (tmask, HTN and HTE respectively). tmask gives the land points on the T-grid, and is either 0
(land) or 1 (ocean). umask (on the U-grid) is 0 if any four surrounding tmask points are 0 (i.e. land), and
is 1 for points where non-zero ice velocity is possible (if ice is locally present). In other words, umask is zero
for all coastal points. dxt and dyt are the T-grid longitudinal and latitudinal widths through cell centers
respectively, while dxu and dyu are the analogous for the U-grid. ANGLET x! is ANGLE x* interpolated
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to the T-grid. Specifically:
1
1

1
dru;; = 5(HTN,~J- + HTN;y15)

1
dyui; = 5 (HTEyj + HT Eyji) (13)
Agj = da)ti]‘ dytij
1
Af = Z(Agj + A)z;-i-lj + A§j+1 + A§+1j+1)
1

Xij = 70X + X1 + X1+ Xisy)

where the ij are the grid longitude and latitude indices respectively (see Figure 1), A%,A}‘j are the grid box

areas on the T-grid and U-grid respectively, and for the x* calculation, x* values are adjusted if any differ
by more than 180°.

3.5 Domain Decomposition

The horizontal computational grid is domain decomposed in two dimensions for parallelization. The global
domain of dimensions imtgiopar X jMigiopar (for example, the gx1 grid has imtgoper = 320 longitude points
and jmigoper = 384 latitude points) is divided into integral NX longitude by NY latitude subdomains of
dimensions (imtlocal = imtglobal/NX + 2nghost + ].) X (jmtlocal = jmtglobal/NY + 2nghost + 1), where
imtgiopar /[NX, jmtgiopar/NY must be integers. Each subdomain has a physical portion indexed as [ilo :
ihi, jlo : jhi] with ngpes boundary cells outside. Periodic boundary conditions are applied, with boundary
routines performing communications between subdomains when running parallel. Global scatter and gather
routines distribute information from the global domain to the subdomains and back, respectively.

We note that since the thermodynamic calculations involve one grid point at a time, a purely thermodynamic
model integration is independent of the domain decompostion (i.e. the exact values of NX,NY), while the
dynamic calculation depends upon domain boundary conditions. Hence an integration with active dynamics
is dependent upon the exact values of NX and NY.

4 Parameterizations and Numerical Approximations

Sections 2 and 3 introduced the sea ice model state variables, fundamental equations, boundary conditions

and discretizations. In the present section we elaborate on the parameterizations necessary to represent
various forcing terms in the fundamental equations and the details of the numerical solutions. For many
of the subsections to follow, the processes are described (sometimes implicitly) for a particular thickness
category n. For exchange with the coupler, only aggregate quantities (i.e. those summed over the thickness
distribution) are used.

4.1 Thickness Distribution

The number of ice thickness categories NV used in the ice model results from a trade off between the desire
to resolve thin ice that is important in ocean-atmosphere heat exchange and feedback processes against
computational cost. Bitz et al. (2001) showed that five thickness categories with adequate thin ice resolution
are sufficient to represent the first order effects of an ITD. We therefore chose N = 5, with thickness
boundaries given in Table 4, based on the category limit formula of Lipscomb (2001). (Note that we also list
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the number of vertical levels for each category). While N = 5 is a convenient value for climate modeling, it
is not hardwired in the code; other values can be used, including N = 1. Also, while the category 1 lower
limit is 0, for thermodyanmic stability the minimum ice thickness in category 1 is hp. If ice thickness in
this category falls below Ay, it is reshaped using hypin A = hyA;.

Table 4: Ice Thickness Distribution (N=5)
n Range (m) Levels

0 0 0
1 0%t-065 2
2 065-139 2
3 139-247 4
4 247-460 4
5 > 4.60 4

In the Lagrangian method of ice thickness distribution used here, there is no process (thermodynamic or
dynamic) that absolutely prevents ice from outgrowing its thickness range for a given category. While it is
true that the incremental linear remapping used to evaluate thickness space transport in most cases prevents
ice from outgrowing its category thickness limits, an occasional adjustment is still necessary, which is termed
”thermodynamic redistribution”. This process contributes to the thermodynamic source terms St in the
conservation equations (see section 4.2).

Any category of ice which outgrows its upper thickness limit is combined with the next thickness category.
The combination is done preserving ice area, volume, energy and snow volume. Any category of ice which
melts below its lower thickness limit, will be combined with the next lower category in a manner similar
to outgrowth just described, except for the thinnest ice category. For ice in category 1 that melts below
its lower limit, the ice is reshaped so its thickness equals the minimum, with its concentration adjusted to
conserve ice volume.

Small amounts of either open water or ice area can be created due to numerical diffusion associated with
horizontal advection. To reduce the possiblity of roundoff error corrupting the ice state owing to very small
amounts of sea ice, any ice category whose area is less than an adjustable minimum (typically 5 x 10)
is added to the nearest ice filled category, if one is available. Small amounts of open water (typically less
than 1 x 107%) are eliminated by increasing ice concentration equivalently in the thinnest ice category. Any
remaining small ice areas in a grid box are set to zero in such a way that ice and snow volume are conserved
across the entire hemisphere’s ice pack (i.e. renormalization factors are applied across the entire hemispheric
ice pack to compensate exactly for setting small ice areas and volumes to zero).

4.2 Thermal Properties

The ice area (A,,) and volume (V,,) were introduced in the previous section for specific ice thickness categories.
The ice internal energy (FE,) is proportional to the ice volume:

En = C]n‘/n (14)

for the nt" category, where the proportionality function g, is termed the energy of melting. g, is thus the
internal energy of the ice per unit volume. It is derived from the basic thermodynamic relation between the
applied heat @ for the given heat capacity of sea ice ¢; and the resulting temperature change from T to T":

TI
Q = /T picidT (15)

where the ice density p; is a constant (see Table 10). Treating ice density as a constant is a limitation of the
model. During the melt season, a layer of deteriorated ice 5-10 cm thick is often observed at the top surface,
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with a density of 500 kg m™ or less. Beneath this deteriorated ice, multiyear ice contains air-filled pores
that can reduce its density to 700-800 kg m 2 in the upper 30-50 cm (Bitz, 2000). A constant ice density
implies that all drained brine pockets are filled with melt water and not air.

The storage of latent heat in brine pockets is accounted for explicitly by using the heat capacity of Bitz and
Lipscomb (1999), originally from Ono (1967):

T2

ci(T,S) =co + (16)
where ¢ (J kg=! °C™1) is the heat capacity for pure water ice, L; (J kg 1) is the latent heat of fusion of
ice, S (ppt) is the ice salinity, T (°C) is the temperature, and p (°C ppt~!) is the empirical constant in the
melting temperature (Ty,e;:) and salinity relation:

Tmelt = —p,S. (17)

(See Table 10 for a list of physical constants.) For each category n, (15) is evaluated using this heat capacity
from temperature T' to the melting temperature Ty,

S
an(T, S) = —pico(Tmerr — T) — piL; (1 + %) . (18)

The quantity gy, is defined to be negative, implying that |¢,| is the amount of energy required to melt a unit
volume of sea ice of salinity S and temperature 7. With this sign convention, a positive amount of heat
|gn (T, S)| must be applied to raise the ice temperature from T' to Ters, resulting in a rise of internal energy
from E, < 0 to zero.

For snow, the heat required to change its temperature below melting is small compared to the latent heat
of fusion, and thus for simplicity is ignored. Tests show that allowing for internal heat storage in a one-
layer snow model makes little difference in the heat transfer and surface temperature simulation for climate.
Further, snow is fresh and therefore has zero salinity. Hence, the amount of energy required to melt a unit
volume of snow is given by:

qs = —psL; (19)

where p, is the constant snow density. Note that since gs is a constant, the snow internal energy is pro-
portional to Vi, so that an explicit snow internal energy is not a state variable. When required, the snow
internal energy is computed from:

The snow/ice surface temperature is an important quantity for determining the heat and mass exchange
between the atmosphere and the snow/ice surface. The surface temperature Ty, for the n** category varies
rapidly with changing forcing conditions, and because it is used as an initial condition for the thermodynamic
surface energy calculation, it is treated as a state variable. The area-weighted surface temperature is used
for conservation and transport, in both thickness and physical space.

Snow and ice thickness and ice temperature are not state variables, but they can be diagnosed as follows.
Ice and snow thickness are computed from the ice area and volume and snow volume, respectively, as:

hn =Vo[An hsp = Ven/An. (21)

Ice temperature can be diagnosed from the energy of melting. As discussed in section 4.6 on vertical heat
conduction, the ice is divided vertically into a number of layers. For each layer there is an internal energy
and volume. From these an energy of melting (g,) can be computed for each layer (Eq. 14), and hence a
layer temperature from the solution to the quadratic equation (Eq. 18)

picoT? = (gn + picoTmert + pili)T — p;LipnS = 0. (22)

The solution yields one temperature below T),,¢;; and another above T),¢;¢, which is discarded.
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4.3 Input from the Coupler

Fields received by the ice model from the coupler are shown in Table 2. They include atmospheric/oceanic
states and fluxes. Atmospheric states must be available to the ice model because with an ice thickness
distribution, it is necessary for the ice model, rather than for the coupler (as in CSM1), to compute fluxes
over each ice thickness category and aggregate them.

All of the fields received are on the T-grid (see section 3.4). However, the vector fields of surface wind, surface
ocean current and tilt are projected onto geographical latitude-longitude directions. These vectors are first
rotated to the pop grid directions using a T-grid rotation angle (x*) calculated from a U-grid rotation angle
(x*) provided by a pop grid input dataset. The rotated surface wind is then used on the T-grid to calculate
atmosphere/ice fluxes, including stresses (see section 4.5). The resulting atmosphere/ice stress, as well as
the ocean surface current and tilt, are then bilinearly interpolated with area weight to the U-grid for use in
the dynamics (see section 4.10).

Specifically, let (ul,v!) represent a vector field of components (u,v), where the subscript “g” refers to
geographic, and the superscripts “t” and “u” to the T-grid and U-grid respectively. Similarly, let a subscript
“p” refer to the POP grid. All the vector fields received from the coupler are then (ug, U;) fields. For these

to be useful on the POP grid, they must first be rotated to the POP grid boxes as follows:

(ub)ij = (ub)ijcos(xt;) + (vh)izsin(x%;)

—(ub)igsin(xt;) + (v})izeos(x};) (23)

—~
<
RS
~
S
<
I

where (ij) are the longitude/latitude indices of the appropriate grid. The atmosphere winds in the (uﬁ,,vf,)
form can be used to directly compute atmosphere/ice stresses. However, these stresses, as well as the ocean
currents and tilts, are required to be on the U-grid for the dynamic calculation. Therefore, the following
interpolation from the T-grid to the U-grid is required:

1
(up)ij = Z(Afj (uh)ij + ALy (ub)ipay + ALy (ub)ijrn + Ay (ub)igrjen) JAY,

u 1 u
(vp)ij = Z(AZ- (Wh)ij + Aby1; Wh)ivrs + AL (Wh)ijar + Alyjy1 (0))igrj41) /A
where Aﬁj is the T-grid box area, and A}; is the U-grid box area (see Fig. 1).

The freezing/melting potential F(,; is calculated in the ocean model and received by the ice model as input.
In the ice model, three forms of ice are distinguished: frazil (which forms directly in the ocean surface layer),
congelation (which forms at the ice base), and snow-ice (which forms by flooding of snow-covered ice).
Frazil ice formation is determined by the ocean model, and the other two by the ice model.

If the ocean surface layer temperature (T,) falls below freezing (at fixed temperature Tyy), frazil ice forms
such that the heat flux F(y,; restores the ocean temperature to freezing:

FQoi = pocoho(Tof - To)/At (25)

where p,c, is the product of ocean density and heat capacity, h, is the surface layer thickness, At is the
coupling time step for the ocean (i.e. the time between exchanges of data with the coupler: one day). If
(T, < T,y) then Fgo; > 0 and frazil ice forms (note that all CCSM fluxes are positive downwards).

The salinity adjustment AS in the ocean model due to brine rejection is:
AS = (Sro - Sri)FQoz'At/(pohoqf) (26)

where S, is the constant reference ocean salinity, S,; is the constant reference salinity of sea ice, p, is
the constant ocean density, and ¢y is the latent heat of sea ice for frazil ice formation. This latent heat
is computed from the (positive) ice energy of melting per unit mass (18) with T' = T,y and S = 4ppt.
Furthermore, there is no physical reason for the reference salinity of sea ice to depend on the assumed
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salinity profile used for the brine pocket parameterization and hence g, and gy. Therefore we have not
imposed such an unnecessary requirement.

However, it is important to note that in the current configuration, the water flux exchanged between ice and
ocean is assumed fresh (i.e. S,; = 0). Also, the freezing temperature is T, is kept constant independent of
salinity, and the latent heat gy of frazil ice formation is a strict constant, and identical in the ocean and sea
ice models.

The total downwards shortwave flux is the sum of the four components, which are defined in Table 2:

Fswpn = Fswysar + Fswosar + Fswniar + Fswniag- (27)

For the rest of the document, At will represent both the physical and the coupling time step. These do not
need to be identical, as in the present code. The time step At is one hour.

4.4 Snow and Ice Albedo

Snow and ice albedos are important for computing the absorption of shortwave radiation in the snow/ice
system, and hence the snow/ice feedback (Curry et al., 1995). The physics of this absorption and scattering
is very complex (Ebert and Curry, 1993; Grenfell et al., 1994), but here it is simplied significantly. The
snow and ice albedo formulas are basically those of CSM1, modified to give better agreement with various
modeling and observational studies cited below. The albedo depends upon spectral band, snow thickness,
ice thickness and surface temperature.

Snow and ice spectral albedos (visible = wvs, wavelength < 0.7um and near-infrared = ni, wavelength
> 0.7um) are distinguished, as both snow and ice spectral reflectivities are significantly higher in the vs
band than in the ni band. This two-band separation represents the basic spectral dependence. Thus, we
ignore the near-infrared spectral structure, with generally decreasing reflectivity with increasing wavelength
(Ebert and Curry, 1993).

The zenith angle dependence of snow and ice is ignored (Ebert and Curry, 1993; Grenfell et al., 1994), and
therefore the distinction between downwelling direct and diffuse shortwave radiation. With the addition of a
solar elevation angle, an angle dependent albedo could easily be employed. Horizontal variations in snow /ice
topography are also ignored, which affect scattering and transmission into the surface through shadowing
effects and through variations in the angle of the surface above the horizon.

Snow albedo depends strongly on snow age (i.e. grain size, Grenfell et al. (1994)) and on surface temperature
(i.e. melting or non-melting conditions, Ebert and Curry (1993)). Sea ice albedo depends on ice thickness
(Allison et al., 1993), as well as the presence of melt ponds (Ebert and Curry, 1993). In addition, snow only
partially covers a surface if there are strong topographic variations (Allison et al., 1993).

Here we ignore the dependence of snow albedo on age, but retain the melting/non-melting distinction and
thickness dependence. Dry snow spectral albedos are:

Ay qp (dry) =0.98

. 28

a7 (dry) =0.70 (28)
These values are consistent with those of Grenfell et al. (1994) and Ebert and Curry (1993). In the case of
the measurements of Grenfell et al. (1994), these dry snow albedos are closest to clear sky values for low sun
and for limited cloud cover, corresponding to the spring-time high values prior to significant melt (Curry
et al., 2001). These albedos are only slightly higher than those for late summer conditions with early snow
fall under cloudy skies.

To represent melting snow albedos, the surface temperature is used. Springtime warming produces a rapid
transition from sub-zero to melting temperatures, while late fall values transition more slowly to sub-zero
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conditions. This is approximated by a temperature dependence out to —1°C. Let T, represent the snow/ice
surface temperature for category n in °C. If Ty, = T, — Trnerr > —1°C then

ATy =Tpe + 1.0
Qysqp (melt) =ag, ¢ (dry) — 0.10AT; . (29)
piar (melt) =34 (dry) — 0.15AT;
The lowest albedos at 0°C are .88 and .55 for visible and near-ir respectively, consistent to within +.02 of

Ebert and Curry (1993). If the surface temperature Ts,. < —1°C, the dry snow albedos are used; otherwise
the melt albedos are used.

For bare non-melting sea ice, albedo depends on thickness and spectral band. If h, < 0.5 m then

ysap (dry) =ao(1 — fR) + s (thick) fh

30
Qnigr(dry) =o,(1 — fh) + aniqr (thick) fh (30)
where «, is the open ocean albedo,
fh=min(tan ' (A h;)/tan™ (A 0.5),1.0) (31)
A =5, and the thick, dry sea ice albedos are:
vsds (thick) =0.78
Qysar (thick) (32)

Qniar (thick) =0.36

which are the asymptotic values for ice thicker than 0.5 m. These expressions represent a crude fit to the
data of Allison et al. (1993), with the limiting cases for zero ice thickness that of the open ocean albedo a,,
and for ice thicker than 0.5 m that of the thick ice case of (Ebert and Curry, 1993). The inverse tangent
functional form approximates the theoretical dependence of ice albedo on thickness.

For bare melting sea ice, melt ponds can significantly lower the area averaged albedo. This effect is crudely
approximated by the following temperature dependence. If T,. > —1°C, where Ty, = Tsp — Tinets, then

Oysar (Mmelt) =aysap (dry) — 0.075AT,

. 33
Qniaf (Melt) =aniqr (dry) — 0.075AT; (33)

This results in minimum spectral albedos of .705 and .295 for visible and near-ir respectively, or a rough
broad band albedo (summertime spectral ratios of visible and near-ir of .53 and .47 respectively) of .512 .
As for the case of snow, if the surface temperature T;,. < —1°C, the dry sea ice albedos are used; otherwise
the melt albedos are used.

The horizontal fraction of surface covered with snow is

hsn

Fon = Bam + 0.02°

(34)

This expression is approximately in keeping with snow depth dependence of albedo from (Ebert and Curry,
1993), and from measurements of albedo on snow covered Antarctic sea ice (Allison et al., 1993). We arrived
at the value of .02 in the denominator to achieve the best match with SHEBA data.

Combining ice and snow albedos by averaging over the horizontal coverage results in

Qysdfn :avsdf(l - fsn) + fsnaf)sdf

=3 (35)
Cnidfn :anidf(]- - fsn) + fsna'm'df

As noted above, the direct albedos are assumed identical to the diffuse. The final index n is included to
signify that these albedos are category dependent.

18



This crude albedo, when compared with SHEBA measurements (Curry et al., 2001), is able to represent the
major albedo regimes of springtime pre-melt dry snow, melting snow cover, dry bare ice, bare ice with melt
ponds, and early fall freeze with light snow. However, future versions of the CCSM sea ice model will likely
have more explicit physics for these regimes.

For diagnostic purposes, it is useful to have an aggregate broad band surface albedo for the history file (see
section 6):
apy = 290054, + .24avsdf + 3lapigr + -16am'df- (36)

The relative weights are only rough estimates of typical surface flux in each spectral band and incident angle.

4.5 Ice to Atmosphere Flux Exchange

Atmospheric states and downwelling fluxes, along with surface states and properties, are used to compute
atmosphere-ice shortwave and longwave fluxes, stress, sensible and latent heat fluxes. Surface states are
temperature Ty, and albedos Qysdrn, Qusdfn, Cnidrn, Cnidgfn (See section 4.4), while surface properties are
longwave emissivity € and aerodynamic roughness z; (note that these properties in general vary with ice
thickness, but are here assumed constant). Additionally, certain flux temperature derivatives required for
the ice temperature calculation are computed, as well as a reference diagnostic surface air temperature.

The following formulae are used for the nt” category for the absorbed shortwave fluxes and upwelling longwave
flux:

Fswosn = Fswusdr (1 — 0sarn) + Fswosds (1 — Qusdfn) (37)
Fswnin = Fswnidr(1 — @nidrn) + Fswnidr (1 — Qnidfn) (38)
Fswn = Fswusn + Fswnin (39)

Frwupn = —€03Ta, + (1 —€)Frwpn (40)

The downwelling shortwave flux and albedos distinguish between visible (vs,A < 0.7um), near-infrared
(ni, A > 0.7um), direct (dr) and diffuse (df) radiation for each category. Note that the upwelling longwave
flux has a reflected component from the downwelling longwave whenever € < 1.

For the n'" category stress components, sensible and latent heat flux, the following bulk formulae are used
(Bryan et al., 1996):

Tazn = PaTmnls,Ua (41)

Tayn = PaTmnUnVa (42)

Fstn = pacarhnty, (0o — Tsn) (43)
Fran = paLsrenty, (qa — 45(Tsn)) (44)

where:
45(Tsn) = (@1 /Pa)e_qz/TS"

(
Co = Cp(]- + vairqs(Tsn)) (
vair = (prv/Cp) -1 (

gs(T) is the surface saturation specific humidity for either ice or ocean at temperature T in Kelvins (the
values of ¢, ¢> for ice were kindly supplied by Xubin Zeng of the University of Arizona), C) is the specific
heat of dry air and Cpy,y of water vapor (see Table 10 for values of constants). The exchange coefficients for
momentum, sensible and latent heat for each category are 7, Thn, and e, respectively.

[ .
N O Ot
—_ =

The bulk formulae are based on Monin-Obukhov similarity theory. Among boundary layer scalings, this
is the most well tested (Large, 1998). It is based on the assumption that in the surface layer (typically
the lowest tenth of the atmospheric boundary layer), but away from the surface roughness elements, only
the distance from the boundary and the surface kinematic fluxes are important in the turbulent exchange.
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The fundamental turbulence scales that are formed from these quantities are the friction velocity «, the
temperature and moisture fluctuations 8}, and g}, respectively, and the Monin-Obukhov length scale L,,:

u:, = Tmanag (48)
H:L =Thn (aa - Tsn) (49)
q:; = Ten(Qa —d4s (Tsn)) (50)
L, =uy’ [(kFy) (51)
with
Vimag = max(1.0,/u?2 + v2), (52)

to prevent zero or small fluxes under quiescent wind conditions, & is von Karman’s constant (0.4), and F, is
the bouyancy flux, defined as:

b5, a5
+ = 53
Ovn Zv_l + qa } ( )

u*
F, =2
.

with g the gravitational acceleration and the virtual potential temperature 6,, = 0,(1 + 2,q,) where 2z, =
Pwv/ pa — 1.

Similarity theory holds that the vertical gradients of mean horizontal wind, potential temperature and specific
humidity are universal functions of stability parameter ¢ = z/L, where z is height above the surface (¢ is
positive for a stable surface layer and negative for an unstable surface layer). These universal similarity
functions are determined from observations in the atmospheric boundary layer (Hogstrom, 1988) though no
single form is widely accepted. Integrals of the vertical gradient relations result in the familiar logarithmic
mean profiles, from which the exchange coefficients can be defined, where ¢, = 2z,/Ln:

P = o{1+ “2(In(za/2ref) = Xom ()}~ (54)
Thn =To{l + %O(ln(za/zref) —xn(G))} " (55)
Ten = Thn (56)
with the neutral coefficient ry over ice: .
T = fnorerfo) (57)
and over ocean:
7o = (.0027/Vinay + 000142 + 0000764V}, 4,) /2 (58)

where the flux profile functions (integrals of the similarity functions mentioned above) for momentum m and
heat /moisture h are:

Xm(Cn) = xn(Cn) = —5Cn (59)
for stable conditions (¢, > 0). For unstable conditions ({, < 0):
xXm(Gn) = In{(1 + Xn(2 + X,))(1 4+ X2)/8} — 2tan™"(X,,) + 0.57 (60)
xXn(Ga) = 2In{(1 + X7)/2} (61)
with
X = (maz((1 - 16¢,)"/?),1.)"/2. (62)

The stability parameter (, is a function of the turbulent scales and thus the fluxes, so an iterative solution
is necessary. The coefficients are initialized with their neutral value 7y, from which the turbulent scales,
stability, and then flux profile functions can be evaluated. This order is repeated for five interations to
ensure convergence to an acceptible solution.
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The surface temperature derivatives required by the ice temperature calculation are evaluated as:

dF
% = —deoy T3, (63)
sn
dFsun .
d;’H = —pPaCalhnly, (64)
sn
dFLHn * qu (Tsn)
dT,, = _paLsrenundTm (65)

where the small temperature dependencies of ¢,, the exchange coefficients 74, and r.,, and velocity scale u},
are ignored.

For diagnostic purposes, an air temperature (Trgry) at the reference height of 2z, = 2m is computed,
making use of the stability and momentum/sensible heat exchange coefficients. Defining b,, = k/rmn, and
by = k/Thn, we have:

Iy = In{(1 + 22 /24)(eP™ — 1)} (66)
g, = In{(1 + z2m/2q) (e’ = 1)}. (67)
For stable conditions ({, > 0)
fint = (lnm - (z2m/za)(bm - bh))/bh (68)
and for unstable conditions ({, < 0)
fint = (Inm — Inp) /bp (69)
where f;n; is bounded by 0 and 1. The resulting reference temperature is:
Trefn = Tsn + (Ta - Tsn)fint- (70)

4.6 Vertical Heat Conduction

Vertical heat conduction follows Maykut and Untersteiner (1971) and Bitz and Lipscomb (1999). This section
is also drawn from Bitz (2000) with modifications to match the notation used in this report, and with minor
modifications for assumptions unique to this model.

To represent the vertical transfer of heat through the ice, we allow the ice internal energy (Eq. 14) to vary
with level z, where z is vertical depth measured positive downwards from the ice/atmosphere interface. The
number of layers of ice (L) depends on the category, with the thinnest two categories (see Table 4) having
two equally spaced layers and the thicker three categories having four, with each layer thickness Ah, = h,,/L
where h,, is from Eq. 21. The internal energy for each layer can be solved for an equivalent layer temperature
(Eq. 22). Vertical heat transfer is then calculated for (I = 1...L) vertical layers in the sea ice and one layer of
overlying snow. A staggered vertical grid is used, with temperature and salinity defined at layer midpoints
and conductivity defined at layer interfaces. Layers at the top and bottom are referred to as surface layers,
and those away from the surfaces as interior layers. See Figure 2 for a diagram on the vertical level structure.
In this section, the superscript is reserved for the time index m, and the category index n is implied; the
subscript s on T' denotes the surface and the subscript 0 denotes the snow layer.

The vertical salinity profile is represented by
S(w) = 1.6{1—c0s (Ww%)} (71)
with the normalized coordinate w calculated for each category as
w=z/h0<w<1 (72)

and where the ice thickness h is diagnosed from Eq. (21). This results in a profile that varies from 0 ppt at
ice surface increasing to 3.2 ppt at ice base. Snow thickness h; is diagnosed from Eq. (21). Note that the
salinity profile is independent of category.
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The heat content change over the time interval ¢ to ¢' corresponding to temperatures T' and T", respectively,
allowing for temperature dependent heat capacity, thermal conduction and internal absorption of penetrating
solar radiation, is given by:

T L;uS Y19 or
:Cs = ; I _ d = —K—
/T picidT = pico(T' = T) (1 + COT'T) /t (8zk 9z + st) dt (73)

where ¢; is from Eq (16), Qsw is the absorbed shortwave flux, and the thermal conductivity & is either that
for snow or ice. For snow, k = k; is a constant, while for ice:
B8S

E(S,T) = ks + T (74)

where kf; and (8 are empirical constants from Untersteiner (1961). Qsw is given by:

d —KysZ —KniZz
QSW = _E{IOUSG ve® + Topie™ " } (75)

and Iyys, Ion; are the absorbed shortwave radiation in the visible and near-ir that penetrates the surface,
respectively, given by:
IOvs = 0-70FSstn(]- - fsn) (76)

Toni = 0.0 (77)

where fs,, the horizontal fraction of surface covered by snow, is given by Eq. 34. It is assumed that no
shortwave radiation penetrates the snow covered surface. The spectral extinction coefficients are k,s and
kn; for the visible and near-infrared bands respectively (Gary Maykut, personal communication). For the
purposes of computing the penetration factors (.70 and .0) for the visible and near-ir radiation respectively,
a surface layer of 5 cm thick was assumed. However, for the surface energy balance calculation (see section
4.6.1) the surface layer thickness is not explicitly used. Note that there is no distinction made between direct
or diffuse shortwave: in effect, we assume shortwave radiation penetrating the surface is diffuse.

The heat equation is discretized using a backwards-Euler, space-centered scheme. Using the staggered grid
with T; representing the layer temperature and k; representing conductivity at the layer interfaces, for interior
layers we have

L;uS, At Tmtt _ pmtl Tmtl _ pmtl
pz'CO(Tlm—H _Tlm) (1+ i1 ) _ (km-l I+1 ! _klm 1 -1

I T ) Ahm Ahm Apm ) (78)

where Ah™ = h™ /L, the conductivity is

S+ S T
K=k 1+ l+1’ l I+1 , (79)
2 2
and the absorbed solar radiation is
Ilm — IOUS(efn“lAhm _ efnvs(l+1)Ahm) + IOHi(efnm-lAhm _ efnn.i(l—{—l)Ahm)‘ (80)

See Figure 2 for a diagram on the vertical level structure.

For a purely implicit backward scheme, k should be evaluated at the m + 1 time level. However, when k is
evaluated at time level m, experiments show that the solution is stable and converges to the same solution
one gets when evaluating k at m + 1.

The discrete heat equation for the surface layers is modified slightly from Eq. 78 to maintain second-order
accuracy for 0T /0z. The equation for the bottom layer (I = L) is

L;uSt,
ico(TP+H —Tm 1+’7) =
P CO( L L ) ( COTFHT,{”
81
At Ty — T+ 1 T, -1 Tt -1t &y
— [ Bkppi 22— — “kpy -k +1 |,
Ahm Ahm 3 Ahm L™ ARm E
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Figure 2: Vertical grid of the sea ice (a) when snow is present and (b) when the ice is snow free; Ah is the
thickness of an ice layer and hg is the thickness of the snow layer. The surface temperature in either case is
Ts. Modified from Bitz (2000).

where the L + 1 interface in contact with the underlying ocean is assumed to be at temperature Ty = Ty,
and where the conductivity is simply kg1 = k(Ss,Tp).- The equations for the top surface depend on the
surface conditions, of which there are four possibilities, as outlined in Table 5. If the snow depth is too

Table 5: Top Surface Boundary Cases
snow accumulated melting

case I yes no
case IT no no
case IIT yes yes
case IV no yes

small, numerical solutions are unreliable, and hence the insulating effects of snow are ignored for depths
below hgmin-

4.6.1 Surface boundary conditions

Freshwater fluxes from the atmosphere are received by the ice model in the form of rain Fry and snow
Fsnw (see Table 2). Presently, the rain is assumed to run off into the ocean without modification to the
snow and ice, and adds to the fresh water flux into the ocean Fyy, (see Table 3). Unless otherwise noted, all
fluxes have an implied time step index m.

Snow (see Eq. 21) is assumed to accumulate on the surface as:

RTHY2 — B 4 Fsnw At/ ps. (82)

23



The boundary condition at the ice surface results from a balance of fluxes

dT,

Fropn(Tsn) = Fswusn — Tovs + Fswnin — Ioni + eFLwpn — €05 Ty + Fsrn + Fran + knd—; , (83)
2=0
where z is the vertical depth measured downwards from the top ice interface,.
If Fropn(Tmeit) > 0 then Ty, = Therr and surface melting when snow is present proceeds according to
dhsn,
Fropn (Tsn) =4s - (84)
dt
When no snow is present surface melting proceeds according to
dh
FTOPn(Tsn) = qn(Tna S)—n (85)

dt’

where T}, and S are the ice temperature and salinity of the top ice layer, respectively. The boundary condition

at the ice bottom is a7 i
F - n—n = dn Tna —=
BoT ~kn—5 = =4 (T, S) o (86)

where Fpor is the heat flux from the ocean (see section 4.7), k,, is the ice thermal conductivity, and T,,,S
are the temperature and salinity of the bottom ice layer, respectively.

4.6.2 Case I: Snow accumulated with no melting

The discrete heat equation for the uppermost layer (i.e, the snow layer) is

At Tm+ T T+l _ pmtl
Tm+1 —Tmy — m —1 0 _ 0 s _ 1 s .

The heat equation solver is formulated for the general case where the heat capacity of snow c¢; may be
specified, although it is taken to be 0. The parameters a and 8 are defined to give second-order accurate
spatial differencing for 9T /0z across the changing layer spacing at the snow/ice boundary;

L hmrawm 2,
hmj2 kot ARm

__ —hy2 2 m
hm + AhmJ2 W+ ARmS

(88)

B

The conductivity at the snow—ice interface is found by equating conductive fluxes above and below the
interface;

LT hmk(Sy, T + Ahmik, 2 :
Because T is below melting, a flux boundary condition is used, and an additional equation is required in
the coupled set:

(89)

Tm+1 — Tm+1 Tm-‘rl — Tm+1
m—+1 0 1

Fo(T") + aks o — + /BksTs

where F,(T™*+1) is the sum of all terms on the right-hand side of Eq. 83 except k0T /8z. The net surface

flux F,(T™*!) is approximated as linear in T™*!; thus

OF,

=0, (90)

F (T ~ Fo(T7") + aT (Tt —Tm). (91)
El T;_m
with
OF, _ 9FLwup OFsu OFLu (92)
T, | o 0Ty |pm | 0Ty |pm * OTs |pm

24



To simplify our set of equations, we define

. LipS
gt =pi (Co + %) ) (93)

where the hat implies that ¢;" m+1 depends on T™ as well as on T}" M+l and
me1 At 1

U T A T (94)
Ah clm"'1
Also, let
km
k= A;z —. (95)
for I > 2 and k
ko = 2 (96)
hg:
km
by = — 1
LT (ARm  hm)/2 1)
and suppress the index m for I®, so that for interior layers (I = 1...L — 1),
T — T = X! [kl+1(7ﬁ_f1 T — k(T =T + 1] (98)
and at the bottom layer
Tm+1 —_Tm — m—+1 3k (T, Tm+1 _ —k Tm+1
L L = XL b(Th — ) 3 b(Th ) (99)
—kp (T = T + I
where ky = kr4+1/Ah™. The equation describing the snow layer is written
At
pocs(TgH = Tg) = o [ (T = T5Y) — ako(Tg™+! = T+ — Blo (T = T ] . (100)
Finally, the flux boundary condition becomes
F,
R+ o] =T = koI =T = ph(Ir T =T, oy

The complete set of coupled equations for case I can be written with all of the terms that explicitly depend
on temperature at the m + 1 time step gathered on the right-hand side:

—F(T) + O Ts"‘sz“(%

87 s . - ak‘o - ﬂko)

T |1
+ Ty lake + T Bko

At
pue Ty =Ty (=) (ko + ko)

S

hm

s

At
+ Ty (pscs + —(ako + k1)>

Tm+1 hm (BkO _ kl) (102)

T + Xm+II _ Tm+1( X, +1kl)
+ T A+ X+ X )
+Tﬂrﬂr1( X7 k1)
8 1
T + X7 L+ 3X?Hkab an (_3XL ok — m+1kL>
+ TP (L4 3x Pk + X7 k).
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These equations are subsequently related to the following abbreviated form

re = T b, + T e, + T d,
o = Tsm+1a0 -+ Tgn+1b0 + T1m+160

ri =T a + Ty + T e (103)

rL = T}In_—iilaL + T£n+1bL.

The first two rows can be combined to eliminate the coefficient on T/ in the first row, allowing the set to
be written in tridiagonal form:

rsCo — Tods bsco — aods  ¢sco — bods Tt
To Qg b(] Co Tgn—f-l
r= r A= a by e T = T1m+1 . (104)

Because the matrix A depends on X;”“, which in turn depends on Tlm+1, the system of equations is solved
iteratively. An initial guess is used for the temperature dependence of xlm+1, and then le+1 is updated
successively after each iteration. Under most conditions the method approaches a solution in less than four
iterations with a maximum error tolerance of ATy, for T; with an initial guess of Tlm+1 =1".

4.6.3 Case II: Snow free with no melting

Nearly the same method applies when the ice is snow free, except one less equation is needed to describe the
evolution of the temperature profile. The equation for the uppermost ice layer is written

L.
pico(TP™H — ) (1 n %f)
Ty T 105
At mT2"L+1 B 1—11m+1 7711—‘1”7’—‘_1 B T;n_'_l 1 mT2m+1 B Tsm+1 m ( )
A\ T A M Ty P3N T e )

where k" = k(S1,Ty™). After the definitions from Eqgs. 93-95 are applied, Eq. 105 becomes
1
T - I = [l - T < 3k (I - T 4 gk @t T o] 09

The flux boundary condition follows after linearizing F,(T+!) in Tm+1:

OF,
0T

1
Fy(T;") + (T3 =T = =8k (T = T + Sk (T = T, (107)

L

The complete set of coupled equation includes Eqs. 102 for layers 2 to L with the following two equations
for the surface and upper ice layer:

OF, OF, 8
R+ | T = T+ ( a7 | - /ﬁg) + T3k + T (—k1 /3)
8 Tsm 8 T:n
8
" + X;ﬂﬂ]{” = Tsm+1 (_XT+1k1 5) (108)

+ T+ X7 ks 43X k)

m m 1 m
+ T, +1(_X1 +1k2 - §X1 +1kl);
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which can be written
re = T b + T/ e, + TomHd,

109
r =T ay + T by + T e, (109)

These two equations can be combined to eliminate the coefficient on T5**!, allowing the set to be written
in tridiagonal form:

rsc; — rids bsci —a1ds csci — bids Tm+l
T1 aj bl (4] T1m+1
r= s A= as by ¢ T=|mt |. (110)

As for case I, this system of equations must be solved iteratively.

4.6.4 Case III: Snow accumulated with melting

Case IIT describes melting conditions in the presence of a snow layer at the surface. Here a temperature
boundary condition is used, which simplifies the solution because the first row in Egs. 102 is not needed
and T = Tne¢ in the second row. Hence the complete set of coupled equations is identical to Egs. 102 for
layers 1 to L, with the addition of an equation for the snow layer,

At At At
psCsT0" + Tonenn3— (o + B)ko = T+ | pses + 7 (k1 + ako) | — T{"“h—(kl — Bko). (111)
This set of equations can be written in tridiagonal form, without the need to eliminate any terms, as was
required in cases I and II. However, the solution must still be iterated.

4.6.5 Case IV: No snow with melting

Like case III, case IV describes melting conditions, but here the sea ice is snow free. Hence, the first two
rows of Egs. 102 are not needed, and Ts = Tye¢ for I = 1. The set of coupled equations comprises those
from Eqgs. 102 for layers 2 to L and the following equation for layer 1:

8 1
T XTI+ Tenx ™ g = T (L X7 4+ 3 ) + T3 (—xi”“kz —~ gxi’l“kl) . (112)

As in case I1I, this set of equations can immediately be written in the tridiagonal form and solved iteratively.

4.6.6 Freezing and melting at the top and bottom surfaces

The energy of melting of snow is a constant, given by Eq. 19, while the energy of melting for each layer [ of
sea ice depends on the temperature and salinity (7; and S;, respectively) of the layer according to Egs. 17
and 18:

N
q = —pico(—pS; — T7) — piL; (1 + u) . (113)

The energy balance at the top and bottom surfaces determines the melt and growth rates of the sea ice.
From the top surface flux balance in Eq. 83, if Frop(Tmeiz) > 0, then the upper surface is fixed at the
melting temperature and Frop is used for melting, according to

Frop (Tmet) At

Shs|
qs

(114)

melt —
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where 0h,| ., is the change in snow thickness due to melt; if the snow layer is completely melted, then

_ Frop(Tmen) At
melt — )
q1

where 6h|, ., is the change in the top layer thickness due to ice melt, and ¢, and g; are the energy of melting
of the snow and the top layer of the ice, respectively. Snow and ice melt water is assumed to drain to the
ocean below without any effect on the intervening snow and ice.

Sh| (115)

Sublimation occurs when Frg < 0 (regardless of Ty), according to

FrpAt
N 11
(Sh |eva,p (qs _ pva) ( 6)

if there is snow at the upper surface, where Jh| is the change in snow thickness due to evaporation, and

FLHAt
oh = 117
evap (@1 — piLy) (1)
if the ice is snow free, where <5h|eva13 is the change in the top layer ice thickness due to evaporation. The
same set of equations applies when F g > 0 for condensation on the ice or snow.

evap

The bottom-surface energy balance is (see section 4.7)

(Fpor — kZL)At
6h|basa1 = g ’ (118)
v
where 6hl, ..., is the change in the lowest ice layer thickness due to basal freezing or melting, Fpor is the
heat supplied to the ice from the underlying ocean,

oT T, —Tmt 1 T, —TpH!
k— =3ky——L— — —ky———— 11
9z = T Apm T3P g (119)
accurate to second order, where the subscript “b” refers to ice base (i.e. ky = kr4+1), and
qar; 6h|basal <0
— 120
® { —pico(—pSy — Tp) — piL; (1 + “Tib) i Ohlpgea > 0. (120)

Oh|pasa1 > O represents formation of congelation ice, and is treated as a (negative) fresh water flux to the
ocean; while 0h|,,.,; < 0 represents basal ice melting which is added to the fresh water flux to the ocean
(see next section).

Snow to ice conversion is allowed. This occurs if the snow layer overlying the sea ice becomes thick enough
to depress the snow-ice interface below freeboard (the ocean surface). The interface height is:

Zint = h — (pshs + pih)/po- (121)

If zint < 0, then an amount of snow equal to —z;,p;/ps is removed from the snow layer and added to the
ice. It is assumed that ocean water floods the depressed snow, and then converts it into ice of thickness
—2Zint- The energy of melting of the newly formed ice is: gfi00q¢ = ¢spi/ps- Note that such conversion is
assumed to occur with no heat or salt exchange with the ocean. The energy of melting of the ice and snow
layers needs to be adjusted when the layer spacing changes after growth/melt, evaporation/sublimation, and
flooding (see Figure 3). The adjusted energy of melting is

L )
Ek:l Wr19k — Qfloodﬁ§ =1
L
G = Ppo1 WhIGk 1<I<L (122)
5h
EIE:1 Wk,L9k + Qb maX(W,O); {= L.

where wy,; are weights computed from the relative overlap of layer ! with each layer k¥ from the old layer
spacing and Ah' is the new layer spacing.
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Figure 3: Diagram showing energy content before (a) and after (b) changing the layer spacing for an ice
model with four vertical layers that experiences melt at the top surface and growth at the bottom surface.
From Bitz (2000)

4.6.7 Flux exchange with the underlying ocean

The shortwave flux transmitted to the ocean for the nt* category is:
FSWon = {IOvsein”hn + IOnieinnih" }n (123)
(see Eq. 75 and following).

During ice melt, a fraction of the heat available from the ocean (Fg,; < 0), is used, and the ice model must
give the actual heat used to the ocean model. The heat used by the ice model in melt includes that used to
melt the ice basally and laterally. For the n'" category we have:

Fgion = {Fpor + Fsip}n (124)
(see next section).

For the fresh water flux Fyy,, recall that three types of ice formation are distinguished: frazil (which forms
directly in the ocean surface layer), congelation (which forms at ice base), and snow-ice (which forms by
flooding of snow covered ice). Frazil ice is formed in the ocean model as previously described (see section
4.3). The amount of frazil ice given to the ice model is implied in the freezing/melting potential (Fgo; > 0).
Therefore, there is no explicit water flux from the ocean to the ice model in this case. However, when the
ice melts, the melt water is passed back to the ocean. Congelation ice forms in the ice model at ice base.
Therefore, the water exchange with the ocean must include both formation and melt. Snow-ice is an internal
transformation in the ice model itself, and need not be included in the fresh water flux to the ocean.

The fresh water flux to the ocean for category n is:
Fwon = ApFrN + {_piéht - pzéhb - pséhs + Rgide (PzV + psVs)}n/At- (125)

with AFgy is that due to rain on ice assumed to drain directly to the ocean, dh; is the change in the
top ice thickness due to surface melt and evaporation, dh; is the change in the basal ice thickness due to

29



congealation ice formation and melt, dh; is the change in surface snow depth due to melting and evaporation,
and Rgige(piV + psVs) is the ice and snow amount melted by lateral thermodynamic processes (see next
section).

4.7 Lateral Formation and Melt

In this section, we evaluate the contribution of the lateral formation/melt term L(h, g). Lateral formation
and melt occurs depending on the sign of the freezing/melting potential Fi,; (see section 4.3).

For positive Fg,; values, frazil ice formation occurs. In this case, the lower boundary condition flux
Fpor=0, and the ocean temperature is Tpz. A volume of frazil ice Vy = F,;At/qsp; is formed, where ¢y is
the constant latent heat of frazil ice formation (Eq. 18 evaluated at T' = T,y and S = 4 ppt). It is assumed
that such frazil ice formation occurs either in open water, or in the thinnest ice category. If open water
exists (i.e. Ag > 0), ice of thickness hf = Vy /Ao is assumed to form of area Ay = Ag, unless h§ < hpmin, for
which the area is adjusted to Ay = V¢/hmin. If no open water exists (i.e. A9 = 0), then Af = 0 is assumed.
In either case, the thinnest category ny such that A,, > 0 is found, and frazil ice is added to this category

such that: , ,
Ani =A,; + 4

Var =Va. +V,
P o (126)
Tsnf :(Tsannf +TnewA0)/Anf
A, =A;lf
where Tye,y = min{T,,0.5(T, + Tof)}. For each level z:
En(z) = En(z) + quf/L (127)

where L is the number of vertical layers of ice and gy is the (positive) heat of formation of frazil ice.

For negative Fg,; values, heat is available to melt ice. This flux is partitioned into heat available for side
melt and bottom melt based on first assuming F,; is dominated by shortwave radiation, and then assuming
shortwave radiation absorbed in the ocean surface layer above the mean ice thickness causes side melting
and below it causes basal melting. For the mean ice thickness h = V/A, where V and A are the aggregate
ice volume and area respectively (see section 4.8):

Foot —Re PG 4 (1- R)C*E/Cz
fsia =1 — fot

where R = 0.68, (; = 1.2 m™!, {( = 28 m~! (Paulson and Simpson, 1977) and f,; and fsq are the
fractions of bottom and side melt flux available, respectively. Thus the maximum fluxes available for melt
are frotFQoi and fsiqaFQoi. The actual amount used for bottom melting, Fpor, is based on boundary layer
theory (McPhee, 1992).

(128)

Fpor = maz(—pocochu* AT, footFQoi) (129)

where the empirical drag coefficient ¢, =0.006, and

AT = max(T, — Toy,0) (130)

w = /(15 +72,)/po (131)
with %, the minimum allowed skin friction velocity u*.

The heat flux for lateral melt is the product of the vertically averaged, aggregate energy of melting of snow
and ice (Ey = psLsVy + Egﬂ 25;1 GniVn/Ln, where g, is the energy of melting for layer [, and L,
is the number of layers of sea ice for category n) with the interfacial melting rate M, and the total floe
perimeter py per unit floe area Ay. The interfacial melting rate is taken from the empirical expression of
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Maykut and Perovich (1987) based on Marginal Ice Zone Experiment observations: M, = m;AT™2, where
mqp = 1.6 x 107%m s~! deg™ and ms = 1.36. The lead-ice perimeter depends on the ice floe distribution
and geometry. For a mean floe diameter d and number of floes ny, p; = ngrd and the floe area Ay = ny,d?
(Rothrock and Thorndike (1984) and Bitz (2000)). Thus the heat flux for lateral melt is Eyot(py/As) Mo, s0
that the actual amount used is:

By
FSID = max( tOtd mlATmza fsz'dFQoz') (132)

Mm

where 7, = 0.66 (Rothrock and Thorndike (1984)). Based partially on tuning and partially on the results
of floe distribution measurements, the mean floe diameter of d=300 m was chosen. The ice area, volume,

snow volume, and ice energy are all reduced by side melt in time At by the fraction Rg;q. = &ét—’zfﬂ
The heat flux available that is actually used by the ice model is:
Fgio = Fpor + Fsip (133)

4.8 Output to the Coupler

Aggregate states and fluxes over the ice distribution are computed for exchange with the coupler and for
history output. Table 3 lists the states and fluxes which are sent to the coupler. The general aggregate
equation for an arbitrary field ({X,},n =1,..N) is;

X = lZXnAn (134)

where A is aggregate ice concentration.

Note that the ice-ocean stress in the ice dynamics is an implied aggregate; so there is no aggregate equation
for it.

For the atmosphere/ice stress, the computed values on the T-grid in the ice model are rotated from the
pop grid onto the geographical latitude/longitude directions before being sent to the coupler. Similarly, the
ocean/ice stress on the U-grid is first bilinearly interpolated to the T-grid, and then reprojected onto the
geographical latitude/longitude directions. In this manner, all vector fields exchanged with the coupler are
on the T-grid and projected onto geographical latitude/longitude directions.

Specifically, the following U-grid to T-grid interpolation is required. Note that (u,v) represents a vector field
[{Pe)

for which the subscripts “9” and “p” refers to geographic and POP grids respectively, and the superscripts
“t”and “u” to the T-grid and U-grid respectively.

1 u u u u u u u u
(u,)ij = 7 (A (wp)ij + A (up)ioag + Afj 1 (up)ij—1 + AY o (up)icijo1) AL (135
1
(vh)i = 1AL W)ig + Ay (0p)im1g + A1 (vp)ij-1 + AY 11 (0p)ic1j-1) /AL
where A, is the U-grid box area, and Af; is the T-grid box area (see Fig. 1).
Then, the vector components (u;, vf)) are rotated back to the geographic grid orientation by:
t t ¢ EY . o (1
uwl)ii = (uy)icos(x;;) — (V3)ijsin(xs.
( f)m ( :)m (x J) ( It))u (x ]) (136)

(vh)ij = (uh)izsin(x};) + (v])ijcos(x};)

where (i) are the longitude/latitude indices of the appropriate grid.
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4.9 Linear Remapping

In this section we evaluate the first right-hand side term in the distribution equation (Eq. 1) due to ther-
modynamic processes, which can be thought of as a transport in thickness space:

a9 _

2 = - (hg) (137)

where h = dh/dt. To evaluate this term we use the linear remapping method of Lipscomb (2001). The
method is similar to the 1D version of the incremental remapping algorithm of Dukowicz and Baumgardner
(2000).

The linear remapping method uses the integral form of the distribution equation. Integrating the above
thickness space transport equation between h_,(t) and hX(t), where the boundary thicknesses are time
dependent (i.e. following the motion), results in

B g HONP
g
—dh+/ 2 (hg)dh = 0. 138
/h:_1<t> ot Ry (1) o "9 (138)

Evaluating the second term yields

g dh* dh*
— (hg)dh = g(h} —g(h; 1
[ grtharn =) Ge |~ Gl (139)
n—l() n n—1
The integrated transport equation can be rewritten as
d =@
dt Jn;_,
or using Eq. 2
dA,
-0 141
praadt (141)

This equation can be interpreted in a Lagrangian sense as a conservation equation, where the time dependent
limits are the boundaries of the Lagrangian volume following the motion in thickness space. Differentiating
the volume (V,, = A, h,) with time we have

W _ g, 90 (142)
dt dt

The linear remapping method involves first calculating the new Lagrangian boundaries hX™t1, linearly
approximating the distribution function in the nt® category g,(h), and finally transferring ice area and
volume in order to restore the original thickness boundaries. g(h) is approximated by a series of linear
piecewise continuous functions, and ice is transferred in small increments between categories.

The original ice thickness in category n is h7". After the thermodynamic (both vertical and lateral) changes
to ice thickness are computed, the new ice thickness is h™*!. Let the growth rate of ice thickness in category
nbe fp = h, = (h™*t" — h™)/At. The m + 1 growth rates at h%™ are estimated by interpolating between
neighboring values of f,:

(fn+1 - fn)

fon="Fn+t m(h;m - hy) (143)
The new boundary locations are then: h™*! = h*™ 4 f*At. Note that in principle the boundaries can shift

any distance, but we require here that h7'' < REm+ < pI%HL.

If any category has no ice (i.e. A, = 0), while an adjacent category does (A,+1 # 0), the boundary is
adjusted by the same amount as the thickness in the non-zero category: k™t = h¥™ + f* | At.
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We approximate each Lagrangian volume linearly as g,(h) = gon + ginh. To evaluate the coefficients
{9gon,g1n}, we make use of the area and volume constraints, the requirement of a positive distribution
function, and the minimum and maximum boundary conditions. The area and volume constraints are

hxm hrmtl
/h L amdn= [ " gdn = a7 (144)
hrmtt
— hg(h)dh = A™pm+1 (145)

n=—1

Note that the area is conserved following the motion (i.e A™ is a constant) but the volume changes to
Ampmtl,

Let us redefine the n*® category boundaries at time step m + 1 as hy, = h*™+" and hg = h:™+! (henceforth
we drop the time and category indices). A positive linear function is constructed such that the area and
volume integrals over the Lagrangian volume are satisfied. We transform variables from h to 5 (a relative
coordinate): for each Lagrangian volume n = h — hy, and 7, = h,, — hz, so that g(n) = go + ¢17m, where 5
ranges from 0 to ng = hg — hr. Note that the h, in , = h,, — hy, is the m + 1 value K™+

R 1
Ap = / g(m)dn = 5773291 +1Rrgo (146)
0
nrR 1 3 1 5
Anhn = (1 + he)(g1n + go)dn = heAn + 31R"g1 + S1R" 0 (147)
0
We have two linear equations for go, and gi, for the n** category
1
§nRzgln + NrRgon = An (148)
Lo I,
g’?R gin + EnR gon = Annn (149)
which have the solution 194
_ n R
9in =3 (n — 7) (150)
6An 277R
Jon = U?(T — 1n)- (151)

Note that the sign of g1, is determined by 7, — Lt = h, — hy — hR;hL = h, — %(hL + hg). When h,, is

greater than the Lagrangian midpoint, the slope is positive; when it is less, it is negative.

As g is linear, its maximum and minimum lie at the boundaries n = 0 and n = ng

6An 277R
Ly el L 152
90) = S5 (21 ) (152
and 6A
n Nr
= —Z(n, — —=). 153
9(nr) o (1 = 5°) (153)

For g(n) to be positive, both boundary values must be positive. g(0) is less than zero when (”’TR —1,) <0,
or n, > %’TR, and g(nr) is less than zero when 7, < %%, i.e. whenever 7, lies outside the central third of
the Lagrangian thickness range. As just noted, whenever h,, is greater than the range mid point, the slope
gin > 0; if it is greater than hy, + %(hg — hz), the slope is so great that the minimum value at g(0) falls
below zero; and conversely for h, < hr, + %(hR — hr,), for which the slope becomes so negative as to require

g(nr) to be less than zero.

For the case when h,, falls in the first third of the Lagrangian thickness range, we redefine the upper limit to
Wy, as: hy = hp+ 3 (hly —hi) or hy = 3h, —2hy, and set g = 0 between hl, and hg. Similarly, when h, lies in
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the upper third of the Lagrangian thickness range, the lower limit is redefined to kY, as: h, = hl,+3(hr—h')
or h, = 3h,, — 2hg and set g = 0 between hy, and h’. In either case, the solutions for go, and g1, can still
be used as long as the appropriate boundaries are defined.

Once g(h) is constructed for each category, the thickness distribution is remapped to the original category
boundaries by transferring the appropriate area AA, and volume AV,,. If the displaced boundary h}™+1
has moved to the right, then:

prmtl
AA?Jrl = gn(h)dh
h*m
" (154)
hrml
AVnmJr1 = hgn(h)dh

xm
k3

If the displaced boundary has moved to the left, the limits of integration are reversed.

The thinnest (i.e. n = 1) and thickest (i.e. n = N) categories have special minimum and maximum boundary

conditions respectively. For category 1, if sea ice is growing in open water at a positive rate fo, shift h]

to the right by foAt. If sea ice is not growing in open water, approximate the growth rate as fo = f1. If

fo < 0, reduce the ice area by the integral of g(h) from 0 to —foAt, leaving the ice volume fixed, as ice

volume cannot cross the left boundary. For the right boundary, h}, varies with hy. As g(h) is linear, setting
% = 3hn — 2h},_; ensures g(h};) = 0.

Snow volume, internal energy of ice and surface temperature are affected by thickness space transport
as follows. Assuming that within each category snow depth varies linearly with ice thickness, the snow
volume transport is proportional to the ice volume transport (see section 2.2). The internal energy of
ice is B, = @nVn, where g, is the energy of melting of ice, a function of ice temperature and salinity.
The internal energy of ice is proportional to the volume of ice, so that the new internal energy at m + 1
is Emtl = ¢mFlym+l where ¢™ ! is the m + 1 energy of melting after the vertical thermodynamic heat
transfer has been computed. The surface temperature T}, changes with area due to thickness space transport.

4.10 Velocity

Pack ice is composed of rigid ice floes, ranging in size from order 1 m to greater than 10 km. The character-
istics of motion for the pack ice are discontinuous slippage near shore, near rigid motion under considerable
wind forcing (i.e. nearly rate-independent stress), small or zero tensile strength for both uniaxial and two
dimensional dilation, and high compressive strength.

To model this material, the resolved sea-ice is considered to be a highly fractured, closely packed, isotropic
medium in which inter-floe forces are contact stresses. The resolved spatial scales are considered to be much
larger than the scale of inhomogeneities (i.e. floes). We consider only aggregate ice motion (across the ITD)
in each grid box. Thus, we model sea-ice as a two dimensional continuum, whose momentum conservation

is described by

mg—ltl:—mkau-i-‘ra-}-ro-i-mgVHo-l-V-a (155)

where m is the total mass of snow and ice per unit area given by

N N
m = psZVsn + pzZVna (156)
n=1 n=1

the non-linear u advection terms are ignored as they are negligibly small when the equations are scaled, f is
the Coriolis parameter, k is the local vertical unit vector, 7, and 7, are forces due to air and water stresses
respectively, g is the gravitational acceleration (for this section only), H, is the sea surface slope and V - o
is the force due to internal ice stress.
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The air-ice stress T, is described in section 4.5 and its aggregate equations in section 4.8. The ocean-ice
stress T, can be written in the form of a nonlinear drag law

To = poCd|t, — ul(u, — u) (157)

where ¢g is the ocean-ice drag coefficient, p, is the density of seawater and u, is the surface ocean current.
Note that while the drag coefficient ¢4 does vary with ice thickness for actual ice floes, here we assume it to
be constant.

The internal stress tensor o is a linear vector function of a vector argument, which gives the internal force
on the material for a specified direction. The general constitutive law for sea-ice relates the stress to the
rate of strain, and generally includes elastic (linear and reversible) and plastic (non-linear and irreversible)
components.

The CSM1 sea ice model assumes a cavitating fluid rheology, in which both elastic, shear and tensile stresses
are ignored (Bettge et al., 1996), and the ocean-ice stress is linearized. The model suffers numerical grid
convergence difficulties near the North Pole (Weatherly et al., 1998). The cavitating fluid rheology is useful
in some circumstances, but is limited especially due to lack of shear stresses. A more realistic and generally
accepted rheology is the viscous-plastic, or VP (Hibler, 1979; Kreyscher et al., 2000).

The VP rheology derives from the general stress-strain relation for viscous fluids

P
= (158)

oij = 2néi; + (€ — n)érrdi; — 5

where the stress tensor is o;; (i,j = component indices), the compressive strength P, d;; is the Kronecker

delta and the rate of strain tensor is 1 /8 5
. U; U5
= = 159
i3 (ax,- * axi) : (159)

the total linear rate of strain (divergence) is éxp, = €11 +€22 and €12 = €21 is the shear rate of strain component.
¢ and n are bulk (i.e. linear) and shear viscosities respectively. The general form of this plastic rheology
satisfies the condition that the deformational part of the plastic stress tensor vanishes for constant u and
that for solid body rotation no stress is produced. For the viscous flow to be dissipative both ¢ and 1 must
be positive.

The plastic assumption is that the flow obeys an idealized plastic behavior, namely, that stressed ice is
motionless until a yield stress is obtained, after which the flow is irreversible and rate independent. The
principal stress states for plastic deformation lie on the yield curve specified by a normalized convex yield
function, while the (irreversible) deformation is given by the normal flow rule.

The VP rheology assumes an elliptical yield curve of specified ratio of major to minor axes e. In terms of the
stress and strain rate (or deformation) invariants, obtained by diagonalizing and transforming the symmetric
stress (or,017) and rate of strain tensors (€r,ésr) into pure compression (I) and shear (II) components, we
have the yield function
(01 + §)2 oir
Y(or,o11) = o T pe =L (160)
(3) (3)
which is chosen to lie in the lower left quadrant of principal stress space, corresponding to no tensile stress
but with finite compressional and shear stresses (the latter if e is relatively small). With the normal flow

rule é; = /\%, and é;; = )\%, the unknown A can be computed, resulting in
or = Cér — P/2 (161)
o1 = Nérr (162)
¢=P/2A (163)
n= (/e (164)
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where 5 5
. u v

€r = %—f—a—y (165)

. ,0u Ov,  Ou  Ov,,

611_{(830 6y) +(8y+ax) }

N

(166)

(Stern et al., 1995), and

A=[E+é,/e (167)
In the limit of zero strain rate (i.e. rigid solid with no deformation), the viscosities become infinite. To
regularize this behavior, the viscosities are bounded for sufficiently small strain rates so that the sea ice
moves as a linear viscous fluid undergoing slow creep. Minimum viscosities are set to prevent non-linear
instabilities.

The elastic viscous plastic (EVP) rheology (Hunke and Dukowicz 1997) derives from the simple stress-
strain relation for small strains: o;; = Ee;;, where E (analogous to Young’s modulus) is related to ice
strength such that it increases as ice strength increases. Writing this relation in terms of rate of strain,

. . - . . ; . do
and ignoring the non-linear advection as in the momentum equation, gives % 75 = ¢;;. The stress tensor

at
equation (158) for viscous fluids can be solved in terms of the rate of strain, as
: =9 P
= gas 1
€ 2770” + yPve ——~okplij + — 4C (168)
Combining these two rates of strain (elastic and plastic) to yield the total rate of strain results in
. 1 9oy 1 P
i = f &;J + %C’z‘j R chkk(szj + = 4( (169)

In the limit £ — oo this rate of strain equation asymptotes to the pure VP rheology, while for n,{ — oo,
the purely elastic rheology is recovered. Hence, as 7, — oo under conditions of very small strain rate, the
elastic term controls the solution behavior, and represents a regularization of the VP rheology. Note that
the elastic term in the stress tensor equation requires that the stress tensor components become prognostic
variables in EVP. This is in contrast to VP for which the stress tensor components are diagnostic. The
elastic parameter E is given in terms of the bulk viscosity and a damping time scale for elastic waves Tey,
and time step At

E = (/T (170)
Tew = EgAt. (171)
where FEj is a constant less than 1. The momentum and stress tensor equations are

ou 0H,

m——|—cu—mfv=c'uo—|—Taz mg—— + Fy (172)
ot Oz

H,

ma—: —}—c’v—}—mfu:c'vo—}-Tay—mga@—y + Fy (173)
60,7' 62 1-— 62 P P

ot +amy, it am, OO = g niti T a, O (174)

where ¢/ = pycqlu,—u| and A’ = maz (A, Aiy) (which prevents residual ice motion due to spatial variations
in P for extremely small or zero rates of strain, where A,,;, = 10713AT, AT is the T-grid area), and the
stress divergence terms F, and Fj are evaluated for a general orthogonal curvilinear coordinate system
subject to the contraints that the discretization be dissipative and includes grid curvature effects (see Hunke
and Dukowicz (2002)).

It is convenient to introduce the divergence Dp, the horizontal tension Dy and shearing rates Dg defined
by:

Dp = é11+éx (175)
Dy = é11—é€2 (176)
Ds = 2é9. (177)
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Letting 61 = 011 + 022 and o3 = 011 — 022, Egs. (174) can be alternatively expressed as:

]. 801 g1 P

—~ 4+ =D 1
E6t+2c+2c D (178)
1 602 g2
—_ <2472 — D 1
E ot 2n T (179)
1 60’12 g12 1
E ot ' 2 275 (180)

where we note that o7 = 01/2, orr = \/03/4+ 0%, é&1 = Dp, ér1 = /D% + D%, the above definitions of ¢
and 7 are unchanged, while A is:

1/2
A = |D} + 3 (DT+DS) : (181)
Multiplying the momentum equations by u and v respectively and summing, one can form the kinetic energy
. . Boij Oui _ indi
equation. Using the product rule, u; Bz, Bz (uioij) — 04552 az Bz (u;i045) — 0i5€ij, where repeated indices

imply summation over (1,2). The area integral of the 52-(u;o;;) term will vanish on lateral boundaries
J

where u; = 0, or for open ocean where o;; = 0. Thus, area integrals of the kinetic energy equation over the

ice will result in dissipative internal stresses so long as D, defined by:

D= /(011511 + 2019€12 + 092€20) dA,

is positive definite. Using the definitions of Dp, D7 and Dg we have:
1 1
D = / |:§O'1DD + 50'2DT +012Dg| dA (182)

In steady state (% — 0), Egs (178, 179, and 180) reduce to the viscous-plastic constitutive law. Using the
steady state forms for o1, 02 and 012, D can be written as:

1
D = §/P(A—DD)dA20, (183)
which insures that the work done by the internal stress is dissipative. Note that D is a scalar invariant

independent of coordinate system.

In an orthogonal, curvilinear coordinate system, u and v represent velocity components along nondimensional
coordinates & and & (0 to 1 across a grid box), with scale factors (the physical lengths of the grid box sides)
hy and hg, respectively. The rate of strain components are then:

. 1 [/ du v Ohy

= - —4+ - 184
a = (a8 mae) (184)
) 1 [/ 0v U ahg)

- L(ov udh 185
2 ha (652 hy 8&; (183)
. _ 1 h1 8 u h2 8 v
€12 = E[h_g(?—ﬁg (h_1> + — Iy 651 (—)] (186)

Using these expressions in the dissipation D above and integrating by parts, orthogonal curvilinear forms
for the stress divergence are derived:

1 1 0oy 1 0 2 o 5
FE, = — |—=— o )
2hyho [hl 0&; + hih2 o6, (h2‘72) h%hz &, (h1012)] (187)
_ 1 1 9oy 1 0 2 o 9
= g [h?a_@ 7 06 117 * i oe (h2”12)] - (188)

37



The discretization of the velocity and stress tensor components is termed the “bilinear discretization” (Hunke
and Dukowicz (2002)). For example, the velocity components are expressed in terms of the grid box vertex
values and non-dimensional coordinates (0 to 1 across the grid box) as:

u(é1,8) = w6l +u™(1-E)b+u™ (1 -6)(1—-&)+u’6 (1-6) (189)
v(6,&) = V6L A+ (1-&6) 6+ (1-6) (1 &) +v™& (1 -&). (190)

where the four grid box velocities are referred to as ne, nw, sw, se for northeast, northwest, southwest and
southeast respectively. Note that velocity is continuous across cell edges (for example, u =iy, where ij
now represent grid indices). The stress tensor components, associated with velocity gradients through strain
rates, are discontinuous, with each cell having four corner values for stress. This method of discretization
suppresses B-grid checkerboard solutions, because it is not technically B-grid, since we do not have one grid
box center value for the stress tensor components.

The scale factors are evaluated at grid center by averaging the two appropriate sides (hy = h1, by = hy), while
scale factor spatial derivatives are simple differences in the grid side lengths (Ohy /0 = Aghy, Oha/0& =
Ay hy). Using the bilinear discretization, the strain rate terms are evaluated as follows:

Divergence
1 _ —
D?)e — B ~ [hz (une _ unw) + Ath’Ll,ne + hl (Une _ vse) + A2h1,une]
1762
1 _ —
D;l)w — _ [hg (une _ unw) + A1h2unw + hl (,Unw _ ,Usw) + Azhl’vnw]
hyhg
1 _ -
DE = o [he (0% —u*) + Arhau® + by (v = v°°) + Ashyv*]
hiho
1 _ —
DY = —— [ha (u® — ) + Arhout™ + oy (™ = 0°") + Aghyv®?]
hyhg
Tension
1 _ _
D%e — . [h2 (une _ unw) _ A1h2une _ hl (Une _ Use) + Azhl’l)ne]
hyhg
1 _ _
DR = — [hy (u™ —u™) — Athou™ — hy (V™ —v*") + Aghyo™"]
hihs
1 _ -
D%e — _ [hz (use _ usw) _ Alhzuse _ hl (,Une _ ,Use) + A2hlvse]
hiha
1 _ _
D5 = —— [hy (u*® — u®™) = Athou®™ — hy (V™ — v*™) + Ashyv®™]
hihs
Shearing
Dge = = 1_ [l_’Ll (u"e — use) - Azhlune + 7L2 (,Une - Unw) - A1’127)”6]
hiha
1 _ _
Dgw — _ [hl (unw _ usw) _ Azhl’unw + h2 (,Une _ ,Unw) _ A1h2’1)nw]
hyhg
1 _ _
Dge - f_l h [hl (une - use) - AZhluse + h2 (,Use - ,Usw) - Alhzvse]
1762
Dgw — _ 1_ []_'Ll (unw _ usu}) _ Azhl’usw + 712 (,Use _ vsw) _ Alhzvsw]
hyhg

For the divergence of the stress tensor, we note that for the ne corner of grid box ij, there are contributions
from the four surrounding grid boxes (i.e. northeast corner of ij, southeast corner of ij + 1, northwest corner
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of i + 1j and the southwest corner of ¢ + 1j + 1). The terms below show these contributions to the stress
divergence for the northeast corner of grid box ij. Hence, for the contributions of each grid box, the corner
designations of ¢ are relative to that box.

Contribution of the o1 term to Fy

1 hy (1 1 Aihy (1 1 .
7 (Gerrorm goreom) - 2 (G s gor e+ o)) y
f_L 1 ne nw 1 se sw Arh 1 nw sw ne 1 7€
+{Z2(§(al +01%) + & (01" + o7 )) - 122<§al + 15 (01 +‘71)+%01>
Ligaj
hy (1 1 Aihy (1 L .
+ [_ZZ (5 (01° +01%) + & (01° + U?w)> - 12 Z (501% + g (01 +ot) + %U?w)_ ij+1

hy (1 1
+ [f (— (03 +01") + ¢ (o7 + of™)

1 S’U)+ 1 ( nu}+ se)+ 1 ne
3 9%l I8\t TR ]

Contribution of the o1 term to Fy

1 ’_l 1 ne se 1 nw sw Ah
{[_Zl(_(al +f71)"'”6(01 + 03 )) - 221

hihs 3

hi (1 1
|- (et vt + o1 o)

Contribution of the oo term to Fy

1 }_L? 1 ne nw 1 se sw
Al 5(02 + 0y )+6(02 +a¥)) +

dij

f_l2 1 ne nw 1 se sw : 3
+|:4(3(02 +03%) + g (037 +03%) 2 \9 18 36 i+1j
di41j

hy (1 1 Aihy (1 L .
+ |:_Z (5 (Uge n Ugw) + 6 (a_ge + a_znw)) + 5 50‘;9 + ﬁ (036 + ng) + %Ugw o

hy (1
+ {—2 (— (03 +03") + ¢ (03 + 03

4 \3

sw nw se 1 ne
502 + 18 (o3¥ +05°) + 3602 )]i+1j+1}

Contribution of the oo term to F

) e /1 1 Ashy (1
{5 (Gl som s gl sar) = S50 (Gorr 4 g b+ i) |
#[T (G s egorron) - 2 (g e o1+ goor) i+1
N [_% (5 (07° + 03°) + % (o3 + 5“’)) - Azhl (%”Sw t g (2 Fort) + 3_16031”)] _
+ [_% (% (03% + o3v) + % (03 + Use)> B A22}“ (%US“’ * % (03" + 03 + 3_15036> z'+1j+1}
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Contribution of the o1 term to Fy

1 h1 1 1 1
TiiTos {[ > (3 (013 +013) + (073" + 01y ) + Al (9 o1y + 0 (015" +o13) + %‘712)
+ [ hl ( (012" +013) + (015 + 015 ) +  Ashy (1‘7 + L (013 +o75) + ! 012)]
2 \3 9 18 3672) | 1,
1 1 1
(B (Gt ot oty +oi) - Aab (Foit + 5 (of o)+ ooty )]
ij+1
[}_l ( (012" +013) + (013 + 015 ) +  Ashy (1‘7192 + L (013’ +015) + ! ‘712)]
2 9 18 3672 )| i

Contribution of the 12 term to F»

1 1 1 1 1
SOl+ol) gl o)+ Auhe (gott + 5o O + o) + oot )| }
i+1j+1

1 hz ( ne - _nw ) ( 1 )
— o1y + ot + (075 + 07y + Aih ol + — (o5’ + —o;
hiiha {[ 5 3( 12 12°) 12 12 the | 3 s 18( % +o7s) + 36712 ;
1 1 1 T
[ ( (072 + + (o5 + 075 ) + Aih (50?211] BT (013 +o13) + 36012)
i+1j
h (1 1 1 1
T (Gl rom gl rot)) + A (Goh+ g (o + o) + goolt)
[ 2 (372 + 9 18 367 )]

M|;"'

|3

Eqns. 172, 173, 178, 179 and 180 are solved simultaneously over elastic time step Ate = At/N, < Tepy < At
where N, is the number of elastic subcycle time steps. The left hand side terms are treated implicitly, the
right hand side terms explicitly, and the rate of strain ¢;; and A are updated each elastic time step. The
definition of the elastic parameter E in terms of the bulk viscosity, as well as the updating of the rate of
strain tensor each elastic time step, eliminates any linearization error associated with viscosities which are
lagged over the time step.

OO

4.11 Advection

Horizontal advection in Egs. 3-6,8 is evaluated following Smolarkiewicz (1983). The transport scheme is
known as the Multidimensional Positive Definite Advection Transport Algorithm, or MPDATA (note that
the scheme also works for negative definite scalars).

To illustrate the transport scheme, consider the one dimensional case for uniform flow of a positive definite
scalar :

oy 0
WD (). (191)

The CSM1 sea ice model uses an upwind scheme to evaluate the transport (Bettge et al., 1996). This scheme
is retained as an option in CSIM4. For a staggered grid of resolution Az, upwind advection over time At
from step m to m + 1 is

¢;{n+1 :¢zm_{F( zm7 ﬂlau;’.}_%)_F( ﬂu%ma%"i%)} (192)

where ¢ is the spatial grid index and F' is the interfacial flux between grid points ¢ and 7 + 1, given by
(dropping the m's)

A
Py ig1,0) = L+ ful) s + (u = ul)ssr b (193)
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for which u is the interface velocity between ¢ and i + 1 (i.e. u; +%). To ensure ;™ remains positive definite

when wu is divergent, |“‘At must be < 0.5.

The upwind scheme has strong implicit diffusion. Performing a Taylor expansion to second order for uniform

flow 0 19%ym
Pt =+ % At + 5 at‘; At? (194)
=Y+ 0¢, Az + 3 6; L Ag? (195)
”11=¢{"—8§ZA +%6;;A2 (196)
approximating the second time derivative as 8825 i — g2 88 Yi then the upwind expression becomes
2 = )P+ {05 (fulAr — u?AD) SO, (197)

where kimpm = 0.5(|u|Az — u?At) is the implicit diffusion coefficient. Let the time and length scales for
diffusion be T; and Ly, respectively (hence kimp = L%/Ty). For typical values of u = 0.2 ms™!, At =1
hr and Az = 100 km, the implied diffusive length scale is 300 km over 10 days, during which the flow
displacement is only 173 km.

The scheme of Smolarkiewicz (1982,1983,1984) significantly reduces the implicit diffusion by solving the
equivalent upwind transport equation

op 0 0
ot _6_x(u¢) - 6—x(ud¢) (198)
where the anti-diffusion velocity u' is given by
o = —yy = Fimet 90 (199)

P Oz’

An iterative scheme is suggested, where the initial upwind values of i are corrected using the anti-diffusion
velocity in an upwind evaluation, which in turn generates implicit diffusion that can be reduced by a second
corrective step, and so on.

Thus, the advection scheme is
U = — (PP 90 uly) — FOR s ul ) (200)
¢;n+1 = ’(p: - {F(¢;7¢:+17 U{LT%) - F(¢:717¢:7u7f%)} (201)
where the anti-diffusion velocity u' is

gy 0P AT A8 oy
z+; w* Ox

(202)

and the second step is repeated several times. As long as the velocities satisfy the stability criterion, successive
diffusion velocities (hence the implicit diffusion coefficient) reduce in magnitude.

We can estimate the reduction in the implicit diffusion coefficient. The first (i.e. Az) term in the coefficient is
dominant. Let the typical change in 1)* over Az be f. Then, after m iterations we have a (f/2)™/? reduction
in diffusive length scale. In the worst case where f = 1 (i.e. a step function), after m = 3 iterations the
length scale will be reduced by about 0.35, to about Az in the above example after 10 days. For the more
realistic case of f = 0.20, the reduction after m = 3 iterations is by a factor of 0.032, much less than Az in
the above example. Smolarkiewicz (1984) recommends m = 3.
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In two dimensions, the antidiffusion velocities are

0 Dult 0 0

= —ua = 05(fulda) 27 - ST ) + 5 w0) (203)
10 0.5vAt . 0 0

' = =04 = 05(0lA0) 50 =SSN ) + L w0)). (204)

It is possible that because of quasi-stable conditions a positive definite field after transport will have some
very small negative values, and conversely for negative definite fields. If this occurs, the values out of range
are zeroed.

The transport calculation proceeds first for the surface temperatures (see section 4.2). First, the product
—A, T, is transported making sure it is positive definite, then the ice concentrations A,,, the ice volumes
Vp, the snow volumes Vj,, and the sea ice internal energies F,,. After the transport of A,, the final surface
temperatures are retrieved from the transported — A, T, by division. Any resulting temperatures above 0°C
are set to zero.

For the upwind transport scheme, the ice divergence is relatively simple to compute from u. However,
because the Smolarkiewicz scheme requires iteration, an exact expression of the ice divergence cannot be
computed from the velocity field. Instead we can compute it consistently from the area change by transport.
The ice area is normalized so that prior to transport

N
doAr =1, (205)
n=0

but after transport it is

N
AP =1 ¢At. (206)
n=0

Note the prime on €} denotes the ice divergence computed from Eq. (206) rather than simply ¥ - u.
Mechanical distribution immediately follows the transport with the explicit purpose of returning the total
ice plus open water area back to unity.

4.12 Mechanical Redistribution

Mechanical redistribution of ice thickness due to rafting and ridging processes is treated in this section.
Specifically, the redistribution function R of Eq. 1 (¢ in (Thorndike et al., 1975)) is parameterized, and then
used to evaluate the Sys source/sink terms in Eqs. 3-7. For example, the integral of R over the n'" category
gives the ice fraction source

B
Shian = / ™ R(h, g, u)dh. (207)
h

*
n

The redistribution function R depends on the the ice thickness h, the distribution function g(h), and the
velocity field u, specifically the invariants of the strain rate tensor (see section 4.10). These invariants are the
divergence ¢; and the shear ér;. These two invariants are also used in terms of magnitude |¢| = (€2 4 é2,)'/2
and strain rate angle § = tan~—'(é;7/ér). (Note that § = 0° refers to pure divergence, § = 45° uniaxial
extension, § = 90° pure shear, § = 135° to uniaxial compression, and # = 180° pure convergence).

Two strong constraints on the redistribution follow from the first two moments of the distribution equation,
corresponding to area and volume conservation:

hmaa:
/ Rdh = é, (208)
0
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hmaz
/ hRdh = 0. (200)
0

The first follows from the conservation of total area, since the import or export of area (¢}) must be balanced
by a redistribution. The second follows from the requirement that mechanical redistribution cannot change
the ice volume.

The parameterization of lead opening and mechanical redistribution follows from the theoretical formulation
of Thorndike et al. (1975):
R = |é[[ao(0)d(h) + ar(0)w,(h, g)], (210)

where §(h)(the delta function) is the opening mode, and w,(h,g) is the ridging mode. Note that the
conservation of area requires:

/00 wy(h,g)dh = —1. (211)
0

The coefficients |€|ao(6) and |€é|a,.(6) are known as the lead opening and closing rates, respectively, and they
are related such that their difference equals the ice divergence, |€|ag(6) — |é]a,(0) = €].

Two aspects of the mechanical redistribution must be considered: the relation between the distribution
function and the deformation/compressive strength used in the ice dynamics, and the redistribution source
terms in the conservation equations.

For the first, we follow an energetics argument by Rothrock (1975). The deformational work done on the ice
is equated to known sinks of energy in ridge building:

orér +orrérr = Rpot + Ryric (212)

where R, is the rate of mechanical production of gravitational potential energy per unit area, and Ry, is
the rate of frictional energy loss per unit area. We write

Rfric
Rpot

orér +orrérr = (1 + )Rpot = ZRpot (213)

where Z is the ratio of total energy dissipated to potential energy gain. Ice thickness h has potential energy
relative to sea level of P, = Cp.h?, where Cp, = %%(po — pi)g (here g is the gravitational acceleration).
Integrating over the entire thickness distribution results in the total potential energy

P, = C,, / 12 g(h)dh (214)
0
The rate of gain of P, is
dp, % o dg(h)
- a9() .. 21
7 Che /0 h 7 dh (215)
From the distribution equation, using V-ug =g v -u+u-vg:
dg 0 .
-~ _ — - . 21
= a9 +Lhg) —gv-utR (216)
Thus the total rate of change of potential energy is
dp, T2 0 R s
=— h*—(hg)dh + h*L(h,g)dh — P, 7 -u + h*Rdh. (217)

The first two terms on the right hand side refer to gain/loss due to thermodynamic and thickness transport
processes, the third to large scale divergence, while the last term is due to mechanical redistribution. Using
Eq. 210 for R we have

Rpot = [ear O)Cpe [ 1w, (h,9)dh. (218)
0

43



We can therefore define ~
P=2C,, / h2w, (h, g)dh (219)
0

so that
orér +orrérr = |é|a,-(0)P (220)

where P is the compressive strength used in the dynamics (equation(163)).

Further, from the viscous/plastic relations of o; and oy in terms of €; and €y, and the bulk/shear viscosity
definitions (see section 4.10), we have:

) . 5 P, )
orér +orrérr = (€7 — 561 +nélr (221)
or 1
orér +orrérr = P|é|{m(A —€ér1) (222)

so that the ridging mode «a,.(8) in terms of the strain rate angle is

o (6) = —%cos(@) + %\/ cos?(6) + Si’i(o) (223)
Elen(8) = 2 (A =€), (224)

2

which is the result for the elliptical yield curve with aspect ratio e found by Hibler (1980). Note the use of
€ in the final result, which is the divergence computed from Eq. 206.

Flato and Hibler (1995) separated the expression in Eq. 224 into the sum of two terms representing the
energy dissipation from ridge building by shear and convergence:

, 1
[élar(6) = Co5

(A = |é7]) — min(é7, 0), (225)
with the factor Cs added so the shearing component can be altered by varying Cs between 0 (all energy
dissipation by shear is lost to sliding) and 1 (all energy dissipation by shear is used to build ridges). Equations
224 and 225 are equivalent when Cs = 1. The experiments of Flato and Hibler (1995) indicate that Cs = 0.5
is appropriate to produce the concentrations of ridged ice observed in the Arctic. However, Bitz et al. (2001)
found that a coupled model tended to predict too much ridged ice with Cs = 0.5. Bitz et al. tested the
model with Cs = 0 and found better agreement with observations. Unfortunately, the parameter C; depends
on e and P, and none of these values is well constrained by observations. It is some consolation that Bitz
et al. (2001) found that Cs, and hence the precise concentration of ridged ice, has relatively little affect on
the climate of the Arctic. Our standard model uses a compromise value of Cs = 0.25.

The ridging mode is the sum of two distributions describing the ice participating in ridging a(h) and the
newly ridged ice n(h), normalized to conserve area and volume:

—a(h) +n(h)

wr(h) = TTalh) —mm)idh

(226)

The ice participating in ridging is found by weighting g(h) by a function b(h) that is designed to make
thinner ice more likely to ridge than thicker ice. The newly ridged ice is found by integrating a(h) times the
redistribution function v(h', h) over the range of ice thicknesses h' that can contribute to form newly ridged
ice of thickness h. Hence,

a(h)
() (227)

b(h)g(h)
h
Awmmwmmw-
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Thorndike et al (1975) argued that a plausible b(h) might depend linearly on the cumulative thickness
distribution G(h fo (h")dh' according to

BG) = Gi [1 - Géf)] (228)

when G < G*; otherwise 0 for G > G*, for which G* is the limiting fraction below which all ridging occurs
and is assumed to be 15% as assumed by Thorndike et al. (1975). The redistribution process is parameterized
according to Hibler (1980), who constructed a rule for deriving n(h) from a(h) based on observations that
constrain ice of thickness h participating in ridging to be linearly distributed between thicknesses 2h and

2V Kh:

(229)

when 2h' < h < 2v/Kh'; otherwise 0.

The mechanical redistribution function R, is the integral of the continuous function (see Eq. 210) over the
thickness limits of each category:

*
n

hyq
R = / Rdh = 5(h) [&) + |¢|ar (0)] + [¢las ()W, (230)

where

hyt1
W, = / w, (h)dh. (231)

The W, factors can be separated into two components, participation W,, (loss) and redistribution W,
(gain),
Wy =—Wan + Wnn; (232)

such that

W, = / o b(h)g(h)dh

Wi = / * / )b(h')g(h')dR' dh

where w normalizes W, such that Zf:o R, = é;. After substituting g(h)dh = dG into the equation for
Wan, we find

(233)

1 min(G*,Gn41)
W = / b(G)dG, (234)
W Jmin(G*,G.)
where G,, = EZ:O Ap, with G_; = 0. Finally we express W,, as a function of the auxiliary function Y;:
1 Gns
Wean = ;(Yn —Yn41), where Y, =[1-— G*] (235)

when G,, < G*; otherwise 0 for G,, > G*. In Eq. 233, W, is evaluated by first changing the order of
integration and then expanding the outer integral into a sum of integrals over the categories:

n+1 —+—1
Whn = = Z / / R)dh b(K)g(h')dh'. (236)
Taking f By nt ~(K', h)dh outside of the remaining integral we have
n+1 : 1 1 n+1
= Z -— / b(R)g(W)dh' = = 3" WapTpmi1. (237)
w =
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Figure 4: Example showing mechanical redistribution for a concentration W,y of ice in category 1 with
thickness h; that participates in ridging (a). Conceptually, this ice ridges into a continuous distribution
whose thickness is linearly distributed between 2hh; and 24/Kh, (b). In practice, the model is discrete, so
the ridged ice is redistributed into a few discrete thickness categories (c). In this example, the newly ridged
ice will join categories 2, 3, and 4. Modified from Bitz (2000).
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The discrete distributor T'p,11 is computed as in the method of Hibler (1980) from

hita min(2/Khy, hi . ) — max(2h,, h¥)
Tyns = [ o W) = e, (238)
h P

when 2h, < hj, or 2/Khy, > h}  ;; otherwise 'y, 11 = 0. In general, ice from any category may participate

in ridging provided that the cumulative distribution of ice up to that category is less than G* (see Figure
4). The final equation for Sasa, is:

n+1
Snran = |€lan(6) [—Wan + > WapTpns1 | - (239)

p=1

Because the volume of the ice and snow is influenced by ridging, the volume of the ice and snow must
be redistributed as well as the ice concentration. The ice participating in ridging reduces the volume in
category n proportional to h,Ws,. The ice that ridges into category n increases the volume proportional to
EZ;I hpn+1WanT'pnt1, which is summed over the p categories that ridge into category n. The thickness of
this newly ridged ice ﬁpn+1 is uniquely determined by conservation of volume and the discrete distributor.
For simplicity, we assume the snow thickness redistribution process is independent of the category that
receives the newly ridged ice and snow. Hence, the snow thickness would be the same on top of each ridged

ice category. The rate of change of the ice and snow volumes due to mechanical redistribution is

n+1
SMVn = |€|ar(0) [_hnWan + Z hpn+1Waprn+1]

p=1

o (240)
SMVsn = |€|ar(0) l_hanan + Z ﬁspn+1Waprn+1] )
p=1
where

7 1 * . *

hpnt1 = 3 [max (2hy, hy) 4+ min (2\/th, n+1)]

. hy + \/Kh, (241)

hspn+1 = sphi-

P

Conservation of energy requires a redistribution of internal energy as well. We assume that mechanical redis-
tribution does not mix energy vertically. Again it may be helpful to think of the vertical dimension broken
into a fixed number of layers, where energy is redistributed layer by layer. Hence, redistribution transfers
heat only from the upper layer of one category to another and so on. Consistent with the redistribution of
ice and snow volume, we find

n+1
SMEn = |€|ar(0) l_thnWan + Z thpn+1Waprn+1]
p=1

" (242)
SMESn = |€|Oé7-(0) l_qshanan + Z qspﬁspn+1Waprn+1] .

p=1
The ridged ice will have the same vertical temperature profile as the ice which has participated in ridging.

Finally, the surface temperature is also affected by mechanical redistribution:

SMTsn = |€|ar(0)

n+1
~TerWan + Y TspWaprnH] . (243)

p=1

With the redistribution of surface temperature, the ridged ice will have the same surface temperature as the
ice that participates in ridging.
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Using the definitions above, the mechanical pressure P is:

N n+1
P =ZC,, Z —h2 W, + Z B2 Waplpni| - (244)
n=1 p=1

Based on the work of Hopkins and Hibler (1991) and Flato and Hibler (1995), we let Z = 17.
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Table 6: Ocean Fields Required for Mixed Layer

Symbol  Description Units
ho mixed layer depth m

So salinity o/oo
Uo x direction surface velocity m s™!
Vo y direction surface velocity m s™!
(VH,), x direction surface slope mm™!
(VH,), vy direciton surface slope m m~!
Foap deep heat flux W m 2

5 Special Capabilities

There are a few special configurations of the ice model that can be chosen either by setting internal input
ice parameters, or by setting the run scripts for the other components accordingly. More information can
be found in the separate CSIM User’s Guide Version 4. Some aspects of three special configurations are
discussed as follows.

5.1 Active Ice Only (AIO) Framework

The ice model can be run through the coupler but with other components prescribed in a framework called
Active Ice Only (AIO). Thus, in AIO mode the ice model communicates via the coupler with other com-
ponents in the same manner as it would in a fully coupled run. The user need only insure that the other
components are data models (i.e. prescribed). However, because of the way ice and ocean are coupled, the
ice-ocean heat exchange in the data ocean model is independent of ice state. Therefore the sea ice model has
an option to run with a simple ocean mixed layer model that is part of the sea ice component, as described
in the next section.

5.2 Ocean Mixed Layer

For maximum flexibility in studies of sea-ice/mixed layer interactions, an ocean mixed layer formulation is
included within the sea ice model. The mixed layer prognostic variable is ocean temperature T,, determined
by the thermodynamic equation:

o7,
—; = Fsw + Fow + Fsu + Fru + Fgio — FQdp- (245)

pocoho It

where p,,¢,, h, are the ocean mass density, heat capacity and mixed layer depth respectively, Frw =
Frwpn — Frwup, Fgio is the available mixed layer heat flux used by the sea ice model as shown in section
4.7, and Fggqp is the sub-mixed layer, or deep heat flux. Note that the fluxes include contributions from both
open water and sea ice. The required monthly mean input data are the mixed layer depth, salinity (presently
not used), ocean currents, sea surface slopes and the deep heat flux, as shown in Table 6. The ocean currents
and tilt are used in the sea ice dynamic calculation. All of these data are supplied on a monthly basis from
either an observational and/or a model source. For model data, the mean monthly surface temperatures
and surface heat fluxes from a model run can be used. The deep heat flux Fyq,, which represents seasonal
sub-mixed layer heat storage/release and oceanic heat transport, is computed from the monthly data as:

Tk+1 _ kal

F(Sdp = —pocoht (W) + Fby + Fiw + Fég + Fig + F(Sio (246)
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for the k" month (k = 1, 2, ..., 12), and the required data are shown, with Atz = mean month time. The
monthly data (if necessary) must be spatially interpolated to the sea ice model grid, and be formatted as an
external netCDF file, containing the monthly fields shown in Table 6. Once read in, these monthly data are
linearly interpolated in time to the sea ice model time step (therefore allowing for seasonal variation only).

For a time step m with initial temperature 77", the mixed layer temperature forecast equation is:
T+ = T + At (Fy + Fy + Foy + Fly + F2) [pocoho (247)

where we first evaluate the exchange between the mixed layer and the atmosphere/ice above, in order to limit
possible loss of mixed layer heat to the deep heat source when the mixed layer temperature is at freezing
(see below). FZ%, is computed from:

Fgw = Fgywpn(1 —ao)(1 — A™) + Fgy, A™ (248)

where o, is a constant ocean surface albedo, Fgy;, is the shortwave flux that penetrates the ice to be absorbed
in the underlying ocean, and A™ is the sea ice fraction. The fluxes F7y iy p, F&y and F7y are computed
over the open ocean using the ocean mixed layer temperature and surface properties, and then weighted by
the open ocean fraction.

If T;m“ < T,f, where Ty5 is the freezing temperature of the ocean, and Fggqp > 0 (implying heat loss
to the deep ocean), then the heat exchange is limited by the fraction f (constrained so f > 0) given by:
=T —Tof)/(Toc — Tpy), where T, = 0°C, Fg4p = fFQap, and deep exchange is evaluated by:

Tg’”‘l = Tom"'1 - FédpAt/pocoho. (249)
Frazil ice heat flux (>0) or melt potential (<0) is then evaluated as:

Top — T 1
FQoi = pocoho% (250)
as in the ocean model (see section 4.3). If T+ < T,;, T/ = T,;, to ensure the mixed layer temperature
always remains above freezing.

5.3 Prescribed Ice

For some purposes, it may be useful to run an active atmospheric model with prescribed SST and sea ice
properties. This requires computing the ice-atmosphere fluxes within the ice component model as a function
of a prescribed ice state, while the ocean-atmosphere fluxes are computed in the usual manner (see Tables
1 and 3).

Concerning the specification of sea ice states, the approach followed is to use observational data where
available, and to make some arbitrary but reasonable assumptions about ice states were necessary. The
ice concentration is specified from observational data, either the specific year/month or a twelve month
climatology. Sea ice volume is specified by setting the ice thickness to 1.5 m in the northern hemisphere
and 0.5 m in the southern hemisphere. Snow/ice surface temperature is set equal to the atmospheric air
temperature (maximum value 0°C in case the latter is warmer). Assuming a linear vertical temperature
gradient from the snow/ice temperature to the freezing temperature at ice base allows evaluation of the
sea ice internal energy. The snow volume is specified from a snow cover of twelve monthly values based on
SHEBA data, with maximum snow cover 0.33 m and minimum 0.0 m. The southern hemisphere snow cover is
from the six month phase shifted northern hemisphere values. Specific time step values for ice concentration
and snow cover are linearly interpolated between available monthly means. The sea ice velocities and stress
tensors are simply zeroed, and the ice is assumed motionless. Snow/ice albedos are computed directly from
the assumed ice thickness, snow cover and surface temperature.
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The ice-atmosphere fluxes are evaluated by computing the vertical ice thermodynamics. This calculation
uses the above specified ice states as initial conditions for the updated snow/ice temperatures. The ice
states are set at each model time step, and any implied changes to snow/ice volume as a result of the
thermodynamics calculation are ignored. All lateral thermodynamics, thickness transport, ice dyanmics,
advection and mechanical redistribution are also ignored.

6 Overview of the Sea Ice Model Code

A brief overview of the CSIM4 code is given here, to introduce the sea ice model to a potential user. The
main tasks of the sea ice code and its relation to the coupler are presented. The actual order of computations,
which differs somewhat from the order given in section 4, is discussed. Input datasets and output files are
introduced. A complete listing of user options, as well as other aspects of running the sea ice code, can be
found in a separate CSIM User’s Guide Version 4. A detailed description of the code can be found in an
additional CSIM Code Reference Manual Version 4.

6.1 General Structure

The ice model code performs the general tasks of initiating communication with the coupler, initializing the
ice state by reading in a restart dataset, reading in grid information from a separate dataset, receiving input
states and fluxes from the coupler, performing various ice model calculations, sending output states and
fluxes to the coupler, occasionally writing restart and history files, and finally terminating communication
with the coupler.

The coupler controls the time stepping tasks for the sea ice model, while internal model options are set by
the user through various input parameters. Some of these options (such as ocean mixed layer and prescribed
ice) require seperate datasets.

6.2 Order of Computations

The actual order of computations differs from that presented in section 4. The order in the code reflects the
requirements of computational efficiency and overall CCSM ordering.

To illustrate the actual order of computations in the sea ice model, we refer again to the distribution equation
Eq 1. Into that equation we insert brackets ([]) to show, in the time flow of computations from left to right
in the equation, when various coupler or other calculations or input/output is performed, as follows:

Unitial) 2 = [Cunl[H)[Cout] = - (ho) + L(h, 9)[u] ~ 7 - (ag) + R(h, g, wla[Output].  (251)
[Initial] refers to reading in grid information and the sea ice model initial conditions (see next section;
restart and initial datasets have same structure). Input/output from the coupler of forcing states and fluxes
is designated by [Ci,] and [Clu] respectively. [h] refers to the calculation of the vertical thermodynamics
along with the ice/atmosphere fluxes. The output to the coupler is done after the vertical thermodynamics
to improve load balance, as once the ice-atmosphere fluxes are computed, the atmosphere model can be
stepped forward in time parallel with the ice model. Thickness space transport (—%(hg)) and lateral
thermodynamics (L(h, g)) follow the output exchange with the coupler, followed in turn by the calculation
of ice velocities ([u]), ice advection (— v/ -(ug)), mechanical redistribution (R(h, g,u)) and albedos (a). Note
that since the lateral thermodynamics (including exchange with underlying ocean) and the albedo calculation
follow the send of output to the coupler ([Cout]), the ice/ocean fluxes and snow/ice albedos are offset by one
time step with respect to the ice states and ice/atmosphere fluxes. The albedos are computed last in order
to insure that the computation in the atmosphere model of the atmosphere/ice radiative fluxes received on
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Table 7: Log Output

Field

Arctic

Antarctic

max cH (m)
total area (km?)

total ice volume (m
total snw volume (m?)

max u, v (ms™ 1)
average albedo

arwt rain h2o kg in dt
arwt snow h2o kg in dt
arwt evap h2o kg in dt

%)
3

arwt frzl h2o kg in dt

arwt frsh h2o kg in dt
arwt ice mass (kg)
arwt snw mass (kg)
arwt tot mass (kg)
arwt tot mass chng(kg)

arwt water flux
water flux error

arwt atm heat flux (W)
arwt ocn heat flux (W)
arwt frzl heat flux(W)

arwt tot enthalpy (J)

arwt net heat (J)

arwt tot enth. chng(J)

arwt heat error

8.03225425266130166
1.55832393981866352E+07
2.20786018559233555E4-13
2.17290336346162354E4-12
0.31679670285941031
0.71055459990319281
3.17006796356205261E+411
2.57338282670871045E4-12
-3.72313609236561218E+11
2.39631833842436230E+-12
-1.06491819315876992E+13
2.02460779018817160E+-16
7.17058109942335750E+14
2.09631360118240520E4-16
1.55635762838520000E+13
1.55635762838404180E+13
-5.52495163102852028E-16
-5.05399495812494625E4-14
-8.57981240938527969E+13
5.67278377599885547E4-13
-7.00797110852405481E+-21
-5.14435546236920832E+18
-5.33210204460495667TE+-18
-2.67904332549809225E-05

9.58834109817763292
1.31359497615335882E+07
1.53478890145911914E4-13
4.69722936833253418E4-12
0.39223897146835074
0.70681393896051892
4.78847982778436737E410
3.37288892640776123E4-12
-1.32881931733842285E4-12
1.69429453330916382E+11
1.94703321708546680E+13
1.40740142263801220E+16
1.55008569154973625E+15
1.56240999179298580E+16
-1.72089483101840000E+-13
-1.72089483101765703E+-13
4.75527392875532042E-16
6.48043747524047500E+13
-4.65620142529616938E+-14
4.29626561770771094E4-12
-5.06512061411722946E+21
5.68218511797459149E+18
5.67196916992442368E+-18
-2.01692098342031014E-06

the next time step ([Ci,]) use the same albedos as are used for the ice vertical thermodynamic calculation
[h], thus ensuring energy conservation. Time stepping occurs by cycling between [Initial] and [Output], with
an occasional write of output to both log and history files (see following sections).

6.3 Log Files

Diagnostic output to the log files consists of instantaneous hemispheric mean fields at a user selected fre-
quency. Included is the model step number, the date (yyyymmdd, where yyyy is the year, mm the month,
and dd the day), along with the renormalization factors for the conservation of ice after minimum values are
removed. Then come a list of fields with max values (max cH) and hemispheric area weighted (arwt) values
as shown in Table 7. The frequency of diagnostic output can be varied: see the CSIM User’s Guide Version
4.

These values are examples from an output for year/month/day 251129 of an AIO run. The 'max cH’ field
is the maximum ice volume of any point in the respective hemispheric domains. The 'max u,v’ show the
maximum (positive) u,v values in the respective hemispheric domains.

In addition to the fluxes, energies and masses, there are also two error statistics: a water flux error showing
the boundary water flux over the time step against the change of snow/ice water content, as a relative error,
and the same for the boundary heat flux compared to the change in internal energy. These show that while
the present code conserves mass to within machine accuracy, heat is conserved to no better than 3 x 107>
relative error. The error in conservation of heat is limited by the number of iterations of the heat equation.
Improved accuracy has no significant affect on climate.
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6.4 Restart Files

The variables in the restart dataset are the same as those needed to initialize the model. This dataset
consists of instantaneous states, ice/ocean fluxes and albedos. The latter two are necessary, as these are
offset by one time step with the remaining ice states (as discussed in the previous section). The use of a
restart dataset ensures that the sea ice model restarts exactly, so long as the forcing remains unchanged.

Whenever restart datasets are read or written, the sea ice model code writes out some useful global integral
information into the log file. The frequency of writing restart files is variable- see the CSIM User’s Guide
Version 4.

6.5 History Files

There are two groups of fields written to the history file: time-invariant and time dependent. The former
are fields related to the horizontal grid, while the latter are prognostic and diagnostic fields from an ice
model integration. Table 8 presents a list of the time-invariant fields, while Table 9 lists all prognostic and
diagnostic fields.

Table 8: Time-Invariant History Fields

Name Description Units
tmask T grid mask (0 = land, 1 = ocean)

tarea (A?) area of T grid cells m?
uarea (A%) area of U grid cells m?
dxu U cell grid width longitudinally through middle m

dyu U cell grid width latitudinally through middle m

dxt T cell grid width longitudinally through middle m

dyt T cell grid width latitudinally through middle m
HTN T cell width on north side m
HTE T cell width on east side m
ANGLE (x*)  angle grid makes with lat line on U grid radians
ANGLET (x!) angle grid makes with lat line on T grid radians

Table 9 lists all prognostic and diagnostic fields that can be written to the history file from an ice model
integration (see the CSIM User’s Guide Version 4 for instructions on how to reduce the number of fields in
the history file). The field names and the equivalent variable name used in this document (in parentheses) are
shown. Note that some of the fields have non-standard units and names not necessarily consistent with this
document. History file format is netCDF. The history file frequency (i.e. how often written) can be either
instantaneous (i.e. every time step), daily, monthly, or annual means. A sequence of history files is written
during model execution at the desired frequency, all but the instantaneous files are time averaged over the
interval between writes (see the CSIM User’s Guide Version 4 for more information). There is one exception
to time averaging: the normalized principal stress components (sigl and sig2) are always instantaneous
because time average stress states at geographically fixed points are not physically meaningful.

There are four tendency fields included in the history file: two ice volume and two ice area tendencies
[(8V/dt)r, (0V/Ot)p] and [(0A/Bt)r), (DA/Dt) p] respectively. These tendencies are purely diagnostic, and
distinguish the effect of thermodynamic processes (vertical and lateral, designated by subscript T) from
dynamic processes (advection and rafting/ridging, designated by subscript D). They are computed at every
time step, as for example the ice volume change due to thermodynamic processes:

(8V/ot)yr = [V (after vertical, lateral thermodynamics) — V (before)]/dt (252)

and similarly for the remaining tendencies.
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As noted in section 3, there are two horizontal grids used in the ice model: T-grid (a tracer grid with points
at box mid-points), and U-grid (a velocity grid with points at box corners). In the history file, the prognostic
and diagnostic fields not related to the dynamics are on the T-grid, while the ice/ocean velocity components
and stresses are on the U-grid.

The user may add fields to the history file. The code is modified as follows. The parameter for the number
of fields must be increased accordingly, the desired field(s) stored internally in an accumulator array, the
field name, units and description specified in data statements in the netCDF write routine, and finally the
field(s) included in the appropriate input parameter file (see the CSIM User’s Guide Version 4 for more
information).

Table 9: Prognostic and Diagnostic History Fields

Name Description Units
hi (V) grid box mean ice thickness m

hs (V) grid box mean snow thickness m

Tsfc (Ts) snow /ice surface temperature °C

aice (A) aggregate ice area %
aicel (4;) ice area (category 1) %
aice2 (Asz) ice area (category 2) %
aice3 (A4s) ice area (category 3) %
aiced (A4) ice area (cateogry 4) %
aiceb (As) ice area (category 5) %

u (u;) x direction ice velocity cm s~ !
v (v;) y direction ice velocity cm st
Fswdn (Fswpny) down solar flux W m—2
Flwdn (Frwpny) down longwave flux W m—2
snow (Fsyw) snow fall rate cm day !
rain (Fry) rain fall rate cm day~!
sst (T,) sea surface temperature °C

sss (S,) sea surface salinity psu
uocn (u,) x direction ocean current cm s71
vocn (v,) y direction ocean current cm st
frzmlt (Fgoi) freezing/melting potential W m 2
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Prognostic and Diagnostic History Fields continued

Name Description Units
Fswabs (Fsw) absorbed solar flx in snow/ice/ocean W m—?
albsni (app) snow-ice broad band albedo %

Flat (Frm) latent heat flux W m2
Fsens (Fsm) sensible heat flux W m—2
Flwout (Frwup) outgoing long wave flux W m—2
evap (Fgyap) evaporative water flux cm day !
Tref (Trer) 2 m reference air temperature °C

growb (X(8h|basal > 0)nA,) basal ice growth cm day !
frazil (Fgoi/qy > 0) frazil ice growth cm day~!
snoice (X|zint|ndn) snow-ice conversion cm day !
meltb (X(0h|pasar < 0)nAn)  basal ice melt cm day !
meltt (X(0h|meit < 0)nA4,)  top ice melt cm day !
meltl (V Rgige) lateral ice melt cm day !
Fresh (Fw,) fresh water flux ice to ocean cm day !
Fhnet (Fgio) net heat flux ice to ocean W m~2
strairx (7,z) x direction atm/ice stress N m~—2
strairy (74y) y direction atm/ice stress N m—2
strtltx (H,, = mg0H,/0z) x direction sea surface tilt stress Nm 2
strtlty (Hoy = mg0H,/0y) y direction sea surface tilt stress N m—2
strcorx (+mfv;) x direction coriolis stress N m~2
strcory (—mfu;) y direction coriolis stress N m—2
strocnx (7oz) x direction ocean/ice stress N m~—2
strocny (7oy) y direction ocean/ice stress N m—2
strintx (V - o), x direction div internal ice stress tensor N m™2
strinty (V- o), y direction div internal ice stress tensor N m—2
strength (P) compressive ice strength Nm!
divu (ér) strain rate (divergence) % day~!
shear (érr) strain rate (shear) % day*
opening (ér + [€]|C(8)) lead opening rate % day~*
sigl (o) norm principal stress component 1

sig2 (orr) norm principal stress component 2

dvidtt (0V/0t)r ice volume tendency thermodynamics cm day !
dvidtd (0V/ot)p ice volume tendency dynamics cm day !
daidtt (0A/0t)r area tendency thermodynamics % day~!
daidtd (0A/dt)p area tendency dynamics % day~!
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7 Summary

The CSIM4 sea ice model addresses several recommendations of the CCSM PCWG made during 1999-2001.
Areas of needed improvement in the CCSM sea ice model were:

(1) a plastic rheology with an elliptical yield curve

(2) enhanced sea ice thermodynamics

(3) an ice thickness distribution

(4) elimination of spurious polar convergence near the north pole
(5) an ice model on same grid as the ocean model

(6) an efficient parallel version of the model

(7) and an active ice only framework for testing the ice model.

The CSIM4 sea ice model meets all of these recommendations.
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Constants

Table 10: List of Physical Constants

Symbol Code Symbol Description Value

Ps rhos Density of snow 330 kg m—3

pi rhoi Density of ice 917 kg m—3

Po rhow Density of seawater 1026 kg m—3

Cp cp-air Specific heat of atmosphere dry 1005 J kg=! K—!
Cpwo cpwv Specific heat of atmosphere water 1810 J kgt K—!
Cs cp-sno Specific heat of snow 0Jkg ! K!

co cp-ice Specific heat of fresh ice 2054 J kg~ K~!
Co cp-ocn Specific heat of ocean 4218 J kg=! K!
2 ice_ruf Aerodynamic roughness of ice 5.0x107* m

Zref zref Reference height for bulk fluxes 10 m

q1(ice) qqqgice saturation specific humidity const 11637800

go(ice) TTTice saturation specific humidity const 5897.8

q1(ocean) qggocn saturation specific humidity const 627572.4
g2(ocean) TTTocn saturation specific humidity const 5107.4

cq — Drag coeflicient for water on ice 0.00536

Romin hi_min Minimum ice thickness for cat 1 0.1m

Rsmin hsmin Minimum snow depth for heat eqn 0.01 m or 0.00001 m
ks ksno Thermal conductivity of snow 0.31 Wm~! K—!
kgi kice Thermal conductivity of fresh ice 2.0340 W m—! K~!
B beta Thermal conductivity ice constant 0.1172 W m~! ppt—!
Umin — Minimum ice/ocean friction velocity — 0.001ms™*

as qio=-rhoi*Lfus Frazil ice latent heat of formation 2.9717x10° J kg~!
L; Lfus Latent heat of fusion of ice 3.340x10° J kg~!
L, Lsub Latent heat of sublimation 2.835x10% J kg~!
L, Lvap Latent heat of vaporization 2.501x10¢ J kg~!
Ty Tfiresh Freezing temperature of freshwater 273.15 K

Toy Tf Freezing temperature of ocean -1.8°C

Tinet Timelt, Tsmelt  Melting temperature of top surface 0°C

AT, T _errmax Maximum error tolerance 5x 1074 °C

I depressT Ocean freezing temperature constant 0.054 °C ppt !

57



Constants continued

Symbol Code Symbol Description Value

Sro ocn_ref_salinity Ocean frazil ice ref salinity 34.7 ppt

Sri ice_ref_salinity Sea ice frazil ice ref salinity 0 ppt

g gravit Gravitational acceleration 9.80616 m s~2
Osh stefan_boltzmann Stefan-Boltzmann constant 5.67x1078 W m—2 K—*
€ emissivity Ice emissivity 0.95

Kos kappav Ice SW visible extinction coeff 1.4m™!

Kni kappan Ice SW near-ir extinction coeff 17.6 m~!

Qo albocn Mixed layer ocean albedo 0.06

Eq eyc dynamic constant 0.36

Cs — fraction of shear used for ridging 0.225

G* gstar accumulative ice fraction for ridging 0.15

K cK max ridged ice thickness constant 100 m

A Zfric ratio tot e diss to pot e gain 17

Chpe cpe ice/ocn potential energy constant 450 N m—3
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List of Acronyms

Symbol

Description

AIO
CCM
CCSM
CREL
CSIM
CU
EVP
ITD
netCDF
MPDATA
PCWG
POP
SHEBA
SST
UW

VP

Active Ice Only- the D configuration of CCSM2 with active ice
Climate System Model

Community Climate System Model

Cryogenics Research Environmental Laboratory

Community Sea Ice Model

University of Colorado

Elastic Viscous Plastic sea ice dynamics

Ice Thickness Distribution

network Common Data Format data structure
Multidimensional Positive-Definite Advection Transport Algortihm
Polar Climate Working Group

Parallel Ocean Program, the CCSM Ocean component model
Surface HEat Budget of the Arctic field program

Sea Surface Temperature

University of Washington

Viscous Plastic sea ice dynamics
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Appendix: Non-Default Physics Options

During the development of CSIM4, several physics options were incorporated into the sea ice model. Some
of these relate to options not chosen as default, and others are possible candidates for future versions of
CSIM. These physics options have been retained for the released version of CSIM4. In this appendix these
options are briefly described.

It would be very useful to run CSIM4 in column mode, namely, as a 1D column model with prescribed
inputs (i.e. SHEBA data or other). This would allow efficient testing and validation of the vertical sea ice
physics. There is some code to implement this option in the CSIM4 source, but this option has not been
thoroughly tested.

An earlier method for evaluating thickness space transport is the delta scheme of Bitz (2000); Bitz et al.
(2001). This method represents the distribution function g(h) as a sum of delta functions, one for each
populated ice thickness category. This physics option has the limitation of underpopulating the ITD, resulting
in jumps in properties across category boundaries. The linear remapping scheme in CSIM4 was chosen as
default because it represents g(h) in each category as a linear function, and allows for incremental transport
between categories, yielding a much smoother representation.

For some initial testing and comparison studies, a physics option of running with thermodyanmics only
is available. For this option, the dynamics is not computed, and ice velocities are zeroed so that there is no
ice advection. This option allows an assessment of sea ice model simulations without dynamics.

The previous version of the sea ice model evaluated the ice strength using the method of Hibler (1979). This
ice strength parameterization depends only on the mean ice thickness and ice fraction. The scheme in
CSIM4 makes use of the ice participating in ridging, but is dependable only if the ITD is well resolved (i.e.
has at least five categories). For fewer categories, it is preferable to use the Hibler (1979) expression.

Very high spatial resolution implementations of the EVP dynamics using a reasonable subcycling time step
can produce simulations for which the elastic waves useful for regularization are not sufficiently damped.
In this case, a physical option of damping of elastic waves is available, as in Hunke (2001); Hunke and
Lipscomb (2002). The elastic wave damping is enhanced by reducing the ice strength compared to the default
in CSIM4. For the resolution and subcycling time steps used in CSIM4, this option is not necessary.

The CSIMA4 ridging scheme by default retains snow cover on ridged ice. However, another available physics
option is to allow snow on ice participating in ridging to fall into the ocean. This snow into ocean option
is not well tested, will cause the fresh water budget diagnostics to not be closed, and is not supported.

The previous horizontal advection scheme was upwind, as described in section 4.11. This upwind advection
is retained as an option in CSIM4. It is useful for assessing the effects of second order as against first order
advection. Because of the increased accuracy of the MPDATA advection scheme over the upwind, the former
is the default for CSIMA4.
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