
POP INSTALLATION GUIDE

Supported System Procedures

Bringing up POP on a supported system

Machines on which POP is supported
POP is written in Fortran 90 and uses two-dimensional domain decomposition (in longitude and latitude)
with MPI (Message Passing Interface). This allows POP to be run on a wide variety of parallel computers
as well as workstation-class computers. POP is highly portable to any parallel computer that supports
Fortran 90 and MPI. The machines on which POP and its ‘makefile’ system have been tested are listed
below. Usually only minor tweaks are required to get POP running on a new architecture, but sometimes
more is required.
Hardware O/S Fortran MAKE Serial MPI SHMEM SMP
SGI Origin 2000 Irix 6.5 MIPSpro F90 gmake 3.77 yes yes yes no
Pentium II Linux PGI mpif90 gmake 3.77 yes yes no no
Cray T3E Unicos F90 gmake 3.77 yes yes no no
 Pentium II Win NT Digital Visual 5 built into IDE yes no no no

Where to get help

CSM-POP users
If you are using POP as a component of the NCAR CSM, technical support is provided by Matthew Hecht
(hecht@ncar.ucar.edu, 303-497-xxxx).

LANL-POP users
If you obtained POP directly from LANL and are involved with its development, technical support will be
provided through John Davis (jfd@lanl.gov, 505-667-4793) and Phil Jones (pwjones@lanl.gov, 505-667-
6386).

Where to get the source code

LANL ACL website
The latest version of the POP source code is always available through http://www.acl.lanl.gov/climate.
POP is distributed as a compressed tar file named POP_nnn.tar.Z, where ‘nnn’ is the version number. An
accompanying ASCII text file named POP_nnn_Readme describes the changes made in this version.

NCAR CSM website
It is anticipated that POP will be adopted as the ocean component of the Climate System Model, at which
time the version of POP that is officially supported by CSM will become available from the NCAR website
http://www.ncar.ucar.edu.

Setup procedure

Extracting source code
It is a simple procedure to get and extract the POP source files. Go to the directory where you want to store
the POP tar file. Get the compressed tar file, POP_nnn.tar.zzz from the FTP server. If the file name ends
with ‘gz’, uncompress it with a ‘zip’ utility (eg., ‘gunzip’ on Unix or Linux). If it ends with ‘Z’, use the
Unix standard ‘uncompress’. You will end up with POP_nnn.tar. As you can verify with “tar tf
POP_nnn.tar”, the paths within the tarfile are relative, each beginning with “./”.
Find a file system with at least ten megabytes free and create a working directory named anything you like,
poptop for example.
Change directory to poptop and type “tar xf <path-of-POP_nnn.tar>”. In a short time you will have a tree
something like this:
.../poptop/

input_templates/
 setup_run_dir*
 setup_test_dir*

mpi/
serial/
shmem/
source/
tools/

Setting up a working directory
A working directory is created by the C shell script setup_run_dir . You invoke it at the same directory
level by typing

setup_run_dir directory [model]
where

directory is an arbitrary working directory name,
model is the kind of run for which you want to build POP.

(The default model is test; other possibilities are sector and 192x128x32.)

Setting environment variables
What happens in any working directory is determined by a single environment variable, ARCHDIR.
Primarily, ARCHDIR sets the configuration for which POP is built. The configuration has two parts, the
first for the ARCHitecture (sgi, unicos, linux, etc.), the second for the DIRectory (mpi, serial, shmem)
containing code variants.
For example, ARCHDIR=sgi_mpi means that pop will run under Irix in parallel mode using MPI .
ARCHDIR=sgi_serial means that pop will run under Irix on a single SGI processor in serial mode.

Parallel/vector/cache architecture options

Total number of processors
 Pick an even number. The number depends on the available hardware arrangement.

X-Y assignment of processors
Factor the total number of processors into NPROC_X and NPROC_Y for the X and Y dimensions
respectively. Edit the definitions in the working directory copy of ARCHDIR.gnu.

Configuring the make system for your machine

The following files are under every working directory as part of the make system. They are automatically
invoked as needed by the gmake command.

fdepends.awk - awk file for defining dependencies of .f files on other .f files
containing modules.

GNUmakefile - gmake top-level control file which ’includes’ or references others
in this list.

sgi_serial.gnu - ’included’ when building a one-processor version of POP on
Bluemountain.

sgi.gnu - ’included’ when building an MPI multiprocessor version on
Bluemountain.

sgi_shmem.gnu - ’included’ when building a shared memory multiprocessor
version on Bluemountain.

t3d_serial.gnu - ’included’ when building a one-processor version on a Cray T3D
or T3E.

utilities.gnu - ’included’ to define target "clean".

compile/GNUmakefile - referenced by level above. Originally designed to allow
building while in the compile subdirectory, but that capability is no longer
supported. (It still works, but it may go away in future versions.)

Building a POP executable
POP comes with a test problem built in. You should run it to see if POP will work correctly on your
machine. Even on a supported system, your particular machine configuration may require you to edit
existing files.
Let’s walk through an example. Suppose you are building on a cluster of Pentium Linux workstations
which has MPI already installed. You’ve untarred the POP distribution under a directory called pop.

Create a working directory for a test problem
You need a clean working directory directly under pop. Pick a name that doesn’t already exist, say trial.
With your default directory as pop, type “setup_run_dir trial test”. You will see a screenful of informative
messages ending with “Copying ../trial/compile/GNUmakefile”.

Building POP normally
Make sure your environment variable ARCHDIR is set to “linux”. Change to the trial directory you just
created. Type “gmake”. Wait. When gmake finishes, your working directory trial will have an executable
file named pop. You are ready to run.

Building a debug version
Debugging a parallel code is not always easy and is probably not the best way to solve portability problems
with POP. Inserting print statements into the source code and recompiling is usually faster. But if you
must, here is how to do it.
To build a debug version, pop_db, type "gmake OPTIMIZE=no". ("gmake" by itself will build the
optimized executable pop.) Object files are no longer archived in a separate library, so it is necessary to do
"gmake clean" when switching between optimized and non-optimized versions.

Running the test problem to verify the installation
type “mpirun –np 4 pop > somefilename.out”. It should finish in a minute or so. Compare
somefilename.out with the read-only sample output file “pop_sgi.log” in the same directory. Most systems
will have “diff” and “xdiff” available for comparing these text files. A slightly more intelligent perl script
“pdiff” is in pop/tools/validation. “pdiff” allows you to set relative numerical differences which should be
ignored.

Description of test problem
Domain? Boundary conditions
Flat bottom, open ocean, no land masses
Forcing: windstress and thermohaline
Parameter settings (see section on Options below)
Sample output files, named pop_mode.out, where mode is the value of the environment variable
“ARCHDIR”.

Making POP available for other users
The executable “pop” can be run from anywhere. All a user needs is a local working directory for data
files. See the User Guide for details.

Guidelines for Unsupported Systems

Porting POP to an unsupported system
If your system is currently unsupported, we want to help you get it running anyway. When you do get it
running, please tell us how you did it so we can incorporate that information in future versions of this
document.

Where to get help

CSM-POP users
If you are using POP as a component of the NCAR CSM, technical support is provided by Matthew Hecht
(hecht@ncar.ucar.edu, 303-497-xxxx).

LANL-POP users
If you obtained POP directly from LANL and are involved with its development, technical support will be
provided through John Davis (jfd@lanl.gov, 505-667-4793) and Phil Jones (pwjones@lanl.gov, 505-667-
6386).

Setup procedure

Extracting source code
It is a simple procedure to get and extract the POP source files. Go to the directory where you want to store
the POP tar file. Get the compressed tar file, POP_nnn.tar.zzz from the FTP server. If the file name ends
with ‘gz’, uncompress it with a ‘zip’ utility (eg., ‘gunzip’ on Unix or Linux). If it ends with ‘Z’, use the
Unix standard ‘uncompress’. You will end up with POP_nnn.tar. As you can verify with “tar tf
POP_nnn.tar”, the paths within the tarfile are relative, each beginning with “./”.
Find a file system with at least ten megabytes free and create a working directory named anything you like,
poptop for example.
Change directory to poptop and type “tar xf <path-of-POP_nnn.tar>”. In a short time you will have a tree
something like this:
.../poptop/

doc/
 setup_run_dir*
 setup_test_dir*

mpi/
serial/
shmem/
source/
tools/

Setting up a working directory
A working directory is created by the C shell script setup_run_dir . You invoke it at the same directory
level by typing

setup_run_dir directory [model]
where

directory is an arbitrary working directory name,
model is the kind of run for which you want to build POP..

(The default model is test; other possibilities are sector and 192x128x32.)

Setting environment variables

What happens in any working directory is determined by a single environment variable, ARCHDIR.
Primarily, ARCHDIR sets the configuration for which POP is built. The configuration has two parts, the
first for the ARCHitecture (sgi, unicos, linux, etc.), the second for the DIRectory (mpi, serial, shmem)
containing code variants.
For example, ARCHDIR=sgi_mpi means that pop will run under Irix in parallel mode using MPI .
ARCHDIR=sgi_serial means that pop will run under Irix on a single SGI processor in serial mode.

Parallel/vector/cache architecture options

Total number of processors
 Pick an even number. The number depends on the available hardware arrangement.

X-Y assignment of processors
Factor the total number of processors into NPROC_X and NPROC_Y for the X and Y dimensions
respectively. Edit the definitions in the working directory copy of ARCHDIR.gnu.

Configuring the make system for your machine

The following files are under every working directory as part of the make system. They are automatically
invoked as needed by the gmake command.

fdepends.awk - awk file for defining dependencies of .f files on other .f files
containing modules.

GNUmakefile - gmake top-level control file which ’includes’ or references others
in this list.

sgi_serial.gnu - ’included’ when building a one-processor version of POP on
Bluemountain.

sgi_mpi.gnu - ’included’ when building an MPI multiprocessor version on
Bluemountain.

sgi_shmem.gnu - ’included’ when building a shared memory multiprocessor
version on Bluemountain.

t3d_serial.gnu - ’included’ when building a serialr version on a Cray T3D or T3E.

utilities.gnu - ’included’ to define target "clean".

compile/GNUmakefile - referenced by level above. Originally designed to allow
building while in the compile subdirectory, but that capability is no longer
supported. (It still works, but it may go away in future versions.)

Setting up for a build the first time
POP comes with a test problem built in. You should run it to see if POP will work correctly on your
machine. Since your architecture does not match one of those currently supported, you will need to create
a new configuration file and a new architecture-specific directory.

Let’s walk through an example. Suppose you are porting to a cluster of HP workstations which has MPI
already installed. You’ve untarred the POP distribution under a directory called pop.

Create a .gnu file for your special configuration
Change directory to pop/input_templates. If you list it, the contents will look something like this:
CVS/ model_size.F.test sample_tavg_contents
GNUmakefile pop_in.192x128x32 sample_transport_file
GNUmakefile.compile pop_in.256x128x20 sgi_mpi.gnu
fdepends.awk pop_in.sector sgi_serial.gnu
linux_mpi.gnu pop_in.test sgi_shmem.gnu
model_size.F.192x128x32 pop_sgi.log.test t3d_serial.gnu
model_size.F.256x128x20 sample_history_contents utilities.gnu
model_size.F.sector sample_movie_contents
Look at the .gnu files. You do not see a file named hp_mpi.gnu, so you have to create one. Since you
expect MPI to be fairly generic, make a copy of the existing file sgi_mpi.gnu.
Bring up hp_sgi.gnu in your favorite editor. Before you forget, change the title on line 2 from
“sgi_mpi.gnu” to “hp_mpi.gnu”.
The first major section has the definitions for FC (Fortran Compiler), LD (LoaDer), CC (C Compiler), etc.
Some of these have only executable names, some have full paths. It is probably safest to determine exactly
which executables you want, then put their full paths in the definitions.
ABI is a compiler/loader flag which sets the 64-bit processing option on SGI machines. You will probably
need a different form.
Since you are going to use MPI, leave the definition of that symbol as is, “MPI = yes”. Also leave
TRAP_FPE as is, “= no” or delete the entire line.
The next section has the precompiler options. NPROCS, the total number of processors, is in effect defined
as the product of NPROC_X and NPROC_Y. Assuming you will run with 4 processors, leave these both
defined as “=2”. Leave IVM defined as impvmix and leave COUPL undefined.
The next three sections set flags for C and Fortran compilers, loading and for libraries. The SGI flags will
probably not be correct for your compilers.
Skipping some empty sections, you will come to “Implicit Rules for Compilation”. The first thing it does
is cancel any pre-existing rules for C and Fortran. Then it redefines those rules. If you want to understand
the hieroglyphics, consult the Gmake manual. All you need to change is “SGI” to “HP” in the two echo
lines. If you don’t care to see how a make is progressing, you can comment out the lines beginning with
“@echo”.
Further on down, you will see a section “Implicit Rules for Dependencies”. All you need to change here is
“SGI” to “HP” in four echo lines.

Create a working directory for a test problem
You need a clean working directory directly under pop. Pick a name that doesn’t already exist, say trial.
With your default directory as pop, type “setup_run_dir trial test”. You will see a screenful of informative
messages ending with “Copying ../trial/compile/GNUmakefile”.

Building POP normally
Make sure your environment variable ARCHDIR is set to “hp_mpi”. Change to the trial directory you just
created. Type “gmake”. Wait. When gmake finishes, your working directory trial will have an executable
file named pop. You are ready to run.

Building a debug version
Debugging a parallel code is not always easy and is probably not the best way to solve portability problems
with POP. Inserting print statements into the source code and recompiling is usually faster. But if you
must, here is how to do it.
To build a debug version, pop_db, type "gmake OPTIMIZE=no". ("gmake" by itself will build the
optimized executable pop.) Object files are no longer archived in a separate library, so it is necessary to do
"gmake clean" when switching between optimized and non-optimized versions.

Running the test problem to verify the port
type “mpirun –np 4 pop > somefilename.out”. It should finish in a minute or so. Compare
somefilename.out with the read-only sample output file “pop_sgi.log” in the same directory. Most systems
will have “diff” and “xdiff” available for comparing these text files. A slightly more intelligent perl script
“pdiff” is in pop/tools/validation. “pdiff” allows you to set relative numerical differences which should be
ignored.

Description of test problem
Domain? Boundary conditions
Flat bottom, open ocean, no land masses
Forcing: windstress and thermohaline
Parameter settings (see section on Options below)
Sample output files, named pop_mode.out, where mode is the value of the environment variable
“ARCHDIR”.

