The CCSM Coupler
Version 6.0

— DRAFT —

User’s Guide,
Source Code Reference,
and Scientific Description

Brian G. Kauffman!
Robert Jacob?
Tony Craig!
William G. Large!

June 23 2004

Community Climate System Model
http://www.ccsm.ucar.edu/

I National Center for Atmospheric Research, PO Box 3000, Boulder CO 80307
2 Argonne National Laboratory, Argonne, IL

CONTENTS

Contents

1 Preface

I User’s Guide

2 Introduction

w

Building and Running the Coupler

4 Input Namelist Parameters
41 Conventionsl
4.1.1 Generic periodic event specification.
4.2 List of Parameters
4.3 Example Input Namelists

5 Output Data
51 Stdout Data
5.2 Restart Files
5.3 History Files
5.3.1 Instantaneous and Time Averaged File
5.3.2 History File Format
5.3.3 History File Content

IT Source Code Reference
6 Introduction

7 Source Code Overview
7.1 cpl6 programming conventions
7.2 The cpl6 version of the CCSM coupler
7.3 Cpl6 General Datatypes and Methods.
7.4 Summary of CPL6 structure

8 Major cpl6 Modules
81 Thedomainmodule
82 Thebundlemodule
83 The infobufmodule,
84 The contractmodule
8.5 The interfacemodule
86 The fieldsmodule
87 Themapmodule

9 The cpl6 main
9.1 Variable Naming Conventions
9.1.1 State Variables
9.1.2 FluxFields
9.1.3 Domain Maps.,
9.1.4 Bundles and Contracts

14
14
15
15
15
15
16

CONTENTS

9.2 Scientific Assumptions inmain oL L.
9.2.1 Number of Components
9.2.2 Numberof Grids
9.2.3 Time Integration and Coordination
9.2.4 Data Pathways through the Coupler

9.3 Main Program Detail oo
9.3.1 Psuedocode formain
9.3.2 A Data Pathwayin Detail

10 Modifications to the Coupled System
10.1 Adding Fields to Existing Pathways
10.2 Interfacing a Component with the Coupler.

IIT Scientific Reference
11 Introduction

12 What is a "Coupler"?

13 Development History

14 Scientific Requirements

15 Data Exchanged with Component Models
15.1 Units Convention
15.2 Time Invariant Data
15.2.1 Datasent to Coupler,
15.2.2 Data sent to Component Models
15.3 Time Variant Data
15.3.1 Atmosphere Model
15.3.2 IceModel Lo
15.3.3 Land Model L.,
15.3.4 Ocean Model

16 Calculations Performed in the Coupler
16.1 Mapping L
16.2 Atmosphere/Ocean Surface Fluxes
16.2.1 General Expressions
16.2.2 Specific Expressionso L.
16.3 Surface Albedo and Net Absorbed Solar Radiation
16.3.1 Land Surface Albedos
16.3.2 Ice Surface Albedo
16.3.3 Ocean Surface Albedos
16.4 Areanormalizing L.
16.5 Merging and Fractional Weights

17 Physical Constants

IV Appendix

28
28
28
29
29
29
29
34

35
35
36

40
40
40
41
42

44
45
45
45
46
46
46
48
49
50

51
51
52
52
54
55
55
56
96
96
a7

57

60

CONTENTS

18 Glossary

60

1 PREFACE 4

1 Preface

Version 6.0 of the CCSM Coupler, cpl6, is included with version 3 of the Com-
munity Climate System Model. The name “cpl6” is meant to reflect its place in
the lineage of CCSM couplers but cpl6 is very different from its predecessors.
Like cpl5 and earlier versions, cpl6 includes a specific instance of a coupler main
program to implement CCSM3’s coupling scheme. But new with this version,
cpl6 also includes a class library of Fortran90 modules which provide a flexible
and uniform way to construct the Coupler main program and interface it to the
other components of CCSM. Along with more flexibility, cpl6 allows the Coupler
to be run as a distributed memory parallel application.

This guide is divided into three parts. Part I is the traditional User’s Guide
and describes how to use the Coupler main included within CCSM3, modify its
runtime options, and understand its output. Part IT, the Source Code Reference,
describes the structure of the Coupler main and also describes the objects and
methods of c¢pl6 and how to use them to modify or construct a new coupled
system. Part III contains the scientific description of the Coupler including
details on the physical calculations performed in the Coupler.

Part 1
User’s Guide

2 Introduction

This part of the Coupler documentation provides information needed for users
of the Coupler within CCSM3. This includes how to build and run the Coupler.
It also provides a complete list of the namelist parameters which can be set by
the user and guide to the output produced by the Coupler.

3 Building and Running the Coupler

The CCSM system consists of 5 separate executables, one of which is the Cou-
pler. A series of c-shell scripts and GNU Makefiles are used to build CCSM
including the Coupler. Usage of the scripts that build CCSM is described in
detail in the CCSM 3.0 User’s Guide, and the Coupler user should consult this
guide for information on building the complete system.

The CCSM Coupler requires two libraries, the Model Coupling Toolkit (MCT)
and MPH3. These libraries are distributed with CCSM and are compiled be-
fore the Coupler within the CCSM3 build system. These libraries must compile
successfully for the Coupler to complete it’s build.

The Coupler can only execute within the complete CCSM system. In CCSM3,
this requires atmosphere, ice, land, and ocean models along with the Coupler.
There is no “standalone” Coupler. Again, the CCSM3.0 User’s Guide should
be consulted for information on how to run CCSM3. CCSM3 allows several
possible combinations of active and data models to be executed as a coupled
system with the Coupler. The simplest system to run the Coupler with is to
use all data models for the ocean, atmosphere, land and sea ice. This will still
result in a 5 executable system but the data models are very simple and each
run on only 1 processor. For advanced testing, an all-dead models case can be
run with the Coupler. Unlike the data models, the dead models do not pro-
duce physically realistic fields but they can be run on any number of processors.
An all-dead-model case is useful for testing the scalability of the model-coupler
communication routines.

The Coupler can run on any number of processors. After creating a case (See
CCSM3 Users Guide), edit the env_mach.$MACH file and change ntasks_cpl
to change the number of MPI processors the Coupler runs on. nthrds_cpl
should always be left as 1 because the Coupler currently has no thread-level
parallelism.

4 Input Namelist Parameters

To some extent, the behavior of the Coupler can be specified or modified at run
time. This is done almost exclusively through the use of an F90 namelist. This
section contains a list and description of available namelist input parameters.
The Coupler reads this namelist from a data file, called cpl.nml, at runtime.

4 INPUT NAMELIST PARAMETERS 6

Many of the Coupler namelist values are set as part of creating a case within
CCSM (See the CCSM3 Users Guide). Most namelist variables which can be
changed by the user within an already existing case are in the env_run file
in the it $CASE directory. Remaining variables can be changed by editing
Buildnml_Prestage/cpl.buildnml_prestage.csh in the $CASE directory.

4.1 Conventions

Coupler input variables follow a naming convention in which the first few letters
of the variable identify a basic functionality group or “event’:

* case_xxx selects options with respect to specifying a case name and
description

* start_xxx selects options with respect to selecting restart files or the
simulation start date.

* rest_xxx selects options with respect to when restart files are created
* stop_xxx selects options with respect to when a simulation will stop

* hist_xxx selects options with respect to when and what type of history
data is created

* diag_xxx selects options with respect to run-time diagnostics of the
physical simulation,

* flx_xxx selects options with respect to flux calculation specifics
* orb_xxx selects options with respect to solar orbit calculations

* info_xxx selects options with respect to monitoring the progress or
computational performance of the model

The following list of input namelist parameters includes this information:

TyYPE: the variable’s data type. Note: some character strings have length
= CL. "CL" is a single global constant used throughout the Coupler to
define a "long" character string. The CL is hard-coded to be 256. If
necessary, a one line change to the source code will lengthen all such
character variables.

DEFAULT: the default value of the variable. While reasonable default values are
selected when possible, generally users need to alter some of these values
according to their application.

REQUIRED: tells if and when the variable is required input. Very few input
parameters are required. In a few cases, changing one default value will
cause other input parameters to become required.

DESCRIPTION: a brief description of the purpose and effect of the parameter.

EXAMPLE: a reference to an example namelist which uses the variable (examples
follow this list).

4 INPUT NAMELIST PARAMETERS 7

4.1.1 Generic periodic event specification.

Many namelist variables are used to specify periodic events such as restart file
creation, history file creation, creation of diagnostics data, etc. All such periodic
events are triggered by the same underlying calendar/clock/alarm functionality
and thus they all have the same set of namelist variables. This general func-
tionality and the related variables is described here, and then referred to below
as necessary. <event> refers to one of the functional groups listed above (case
start etc.).

<event> option
TYPE: character(len=32)
DEFAULT: <varies, see the particular namelist variable>
REQUIRED: <varies, see the particular namelist variable>
DESCRIPTION: This is the option that selects how often an event will occur.
When an event happens on a day, it happens at the start of the day.

OPTIONS:
"date" occurs only once, on the given date
"daily" occurs every day

"yearly" occurs on every January 1st

"monthly" occurs on the 1lst of every month

"ndays" occurs every n days relative to an offset date
"nmonths" occurs every n months relative to an offset date
"never" never occurs

EXAMPLES: start_option stop_option

If <event>_option = "date" then namelist parameters <event>_date is
required to specify the date (see below).

If <event>_option = "ndays" or nmonths, then namelist parameters <event>_n
and <event>_date are both required (see below), to specify n and the
offset date, respectively.

<event> n
TYPE: integer
DEFAULT: <varies, see the particular namelist variable>
REQUIRED: maybe, only used if event option = "ndays" or "nmonths"

DESCRIPTION:
EXAMPLES: rest_n stop_n
If <event>_option = "ndays", the event will occur every n days, where =

<event>_n.

If <event>_option = "nmonths", the event will occur every n months,
where n = event_n.

But in either case, the exact timing of the event is not yet completely
specified, one must specify an "offset date" (see below), such that an event
occurs on the offset date and every n days (or n months) before or after the
offset date. It is not necessary that a simulation ever encounters this offset
date.

4 INPUT NAMELIST PARAMETERS 8

There is a special case that occurs when, for example, event_option =
"monthly", event_n = 1, event_date = 31. Apparently the event should
occur on February 31st, a non-existent date. In such a case the event will
occur on the last day of the month. Thus the events will occur on January
31st, February 28th, March 31st, April 30th, May 31st, etc.

<event> date

TYPE: integer

DEFAULT: O

REQUIRED: no

DESCRIPTION:

EXAMPLES: start_date stop_date

If <event>_option = "date", then this is the date when the event will
occur.

If <event>_option = "ndays" or "mmonths", then this is the offset date
described above. This offset date must either be a valid calendar date,
encoded: yyyymmdd, or, if event date < 1, the offset date is taken to
be the starting date of the simulation (this is the default value).

4.2 List of Parameters

case _name
TYPE: character(len=CL)
DEFAULT: "unset"
REQUIRED: no, but highly recommended
DESCRIPTION: This is the case name text string which is used to create
output file names and is also included in output files to help identify the
model run. Because this variable is used to construct file names, it must
contain only those characters that are valid in unix file names. While the
name can be quite long, it is recommended that it be rather short, for
example, 8 to 16 characters.
See Example: 1, 2, 3

case desc
TYPE: character(len=CL)
DEFAULT: "unset"
REQUIRED: no, but highly recommended
DEesScRIPTION: This is a short text string (typically less than 80 chars)
which is included in output files to help identify the model run.
See Example: 1, 2, 3

start type TYPE: character(len=16)
DEFAULT: "initial"
REQUIRED: no (but default is of limited usefulness)
DESCRIPTION: This selects the run type. Valid choices are: "initial",
"continue" or "branch. Selecting "branch" makes start_bfile a required
input.
See Example: 1, 2, 3

start pfile
TYPE: character(len=CL)
DEFAULT: $HOME/cpl6.<case_name>.rpointeror ./rpointerif case_name
is unspecified.

4 INPUT NAMELIST PARAMETERS 9

REQUIRED: no

DESCRIPTION: This is the complete path and name of the restart "pointer
file." This must include an existing, NFS mounted directory. All run types
will update this file (and create it, if necessary), but only a continuation
run requires that this file exists prior to the start of the run.

See Example: 1, 2, 3

start bfile
TYPE: character(len=CL)
DEFAULT: "unset"
REQUIRED: yes, if start_type = "branch", ignored otherwise.
DESCRIPTION: This is the file name of the “branch file” (the IC data file).
Note that a prefix like “mss:” is used to indicate a file archival device, Valid
prefix options are:

"cp:" or no-prefix indicates a normal unix file copy from an NFS mounted
file system.

"mss:" indicates a file on NCAR’s MSS

"null:" indicates no archival — the file name, stripped of any directory
information, indicates a file in the current working directory.

See Example: 3

start date
TYPE: integer
DEFAULT: 00010101 (January 1st, year 1, encoded yyyymmdd)
REQUIRED: no (ignored for "continue" and "branch" runs)
DESCRIPTION: This is the start date for "initial" runs

On "inital" runs , start_date is the initial date of the simulation.

On "branch" runs , the start date will be the date found in the start_bfile

file, this is the IC/restart file.

On "continue" runs , the start date will be the date found in the restart
file.

See Example: 1

rest option
TYPE: character(len=32)
DEFAULT: "monthly"
REQUIRED: no
DESCRIPTION: This is the restart option that selects how often restart The
generic periodic event specification (Sec. 4.1.1) applies to this option with
the exception is that a restart file will never be created at the start of a run.
See Example: 1, 2, 3

rest n
TYPE: integer
DEFAULT: 3
REQUIRED: maybe (only used if rest_option = "ndays" or "nmonths")
DEeSCRIPTION: The generic periodic event specification (Sec. 4.1.1) applies
to this option.
See Example: 2

4 INPUT NAMELIST PARAMETERS 10

rest date
TYPE: integer
DEFAULT: O
REQUIRED: no
DESCRIPTION: The generic periodic event specification (Sec. 4.1.1) applies
to this option.
See Example: 3

stop option
TYPE: character(len=32)
DEFAULT: "monthly"
REQUIRED: no
DESCRIPTION: This is the stop option that selects when the simulation The
generic periodic event specification (Sec. 4.1.1) applies to this option with
the exception that every run must be at least two days long. Also note that
if stop_option = "date", and the the given date is before the start of the
model run, the model will stop with an error message.
See Example: 1, 2, 3

stop n
TYPE: integer
DEFAULT: 3
REQUIRED: maybe (only used if stop_option = "ndays" or "nmonths")
DEeSCRIPTION: The generic periodic event specification (Sec 4.1.1) applies
to this option.
See Example: 2

stop date
TYPE: integer
DEFAULT: O
REQUIRED: no
DEeSCRIPTION: The generic periodic event specification (Sec 4.1.1) applies
to this option.
See Example: 3
hist option
TYPE: character(len=32)
DEFAULT: "monthly"
REQUIRED: no
DESCRIPTION: Selects how often history data files are created. The generic
periodic event specification (Sec 4.1.1) applies to this option.
See Example: 2

hist n
TYPE: integer
DEFAULT: 3
REQUIRED: maybe (only used if hist_option = "ndays" or "nmonths")
DESCRIPTION:
The generic periodic event specification (Sec 4.1.1) applies to this option.
See Example: 2

hist date
TYPE: integer
DEFAULT: 0

4 INPUT NAMELIST PARAMETERS 11

REQUIRED: no
DEeSCRIPTION: The generic periodic event specification (Sec 4.1.1) applies
to this option.

hist _64bit
TYPE: logical
DEFAULT: false
REQUIRED: no
DESCRIPTION: If true, history files contain 64-bit binary data, otherwise
history files contain 32-bit binary data. This option applies to both instan-
taneous and time averaged history files.

avHist option
TYPE: character(len=32)
DEFAULT: "monthly"
REQUIRED: no
DESCRIPTION: Selects how often time average history data files are created.
The generic periodic event specification (Sec 4.1.1) applies to this option.
Note: time average history data is averaged over the interval defined by
these file creation events. For example, avHist_option = "monthly" re-
sults in monthly average data and avHist_option = "yearly" results in
annual average data.

avHist n
TYPE: integer
DEFAULT: 3
REQUIRED: maybe (only used if avHist_option = "ndays" or "nmonths")
DESCRIPTION: The generic periodic event specification (Sec 4.1.1) applies
to this option.

avHist date
TYPE: integer
DEFAULT: 0
REQUIRED: no
DEeSCRIPTION: The generic periodic event specification (Sec 4.1.1) applies
to this option.

diag option
TYPE: character(len=32)
DEFAULT: "monthly"
REQUIRED: no
DESCRIPTION: Selects how often instantaneous diagnostics data is written
to stdout. The generic periodic event specification (Sec 4.1.1) applies to
this option.
See Example: 2

diag n
TYPE: integer
DEFAULT: 3
REQUIRED: maybe (only used if diag_option = "ndays" or "nmonths")
DESCRIPTION: The generic periodic event specification (Sec 4.1.1) applies
to this option.
See Example: 2

4 INPUT NAMELIST PARAMETERS 12

diag date
TYPE: integer
DEFAULT: O
REQUIRED: no
DESCRIPTION: The generic periodic event specification (Sec 4.1.1) applies
to this option.

avDiag option
TYPE: character(len=32)
DEFAULT: "monthly"
REQUIRED: no
DESCRIPTION: Selects how often time averaged diagnostics data is written
to stdout. The generic periodic event specification (Sec 4.1.1) applies to
this option.

avDiag n
TYPE: integer
DEFAULT: 3
REQUIRED: maybe (only used if diag_option = "ndays" or "nmonths")
DESCRIPTION: The generic periodic event specification (Sec 4.1.1) applies
to this option.

avDiag date
TYPE: integer
DEFAULT: O
REQUIRED: no
DESCRIPTION: The generic periodic event specification (Sec 4.1.1) applies
to this option.

fix albav
TYPE: logical
DEFAULT: .false.
REQUIRED: no
DESCRIPTION: The Coupler computes ocean albedos and sometimes modi-
fies ice albedos. See Sections 16.3.2 and 16.3.3.

if fix albav = true , the ocean albedos are computed such that they
have no zenith angle dependence and ice albedos, which are computed
by the ice model, are unaltered.

if fix albav = false , the ocean albedos are computed with a zenith angle
dependence and ice albedos are set to unity on the dark side of the
earth.

Typically £1x_albav ("daily average albedos") is only turned on when the
atm component is a climatological data atm model that is sending daily
average data to the coupler, and thus "daily average albedos" are an ap-
propriate complement to the daily average solar fluxes sent by the atm
component.

fix epbal
TYPE: character(len=16)
DEFAULT: "off"
REQUIRED: no

4 INPUT NAMELIST PARAMETERS 13

DESCRIPTION: Non-default values can be used to conserve globally inte-
grated salinity in ocn and ice components that are coupled to a climato-
logical data atm model. The conservation takes place by multiplying pre-
cipitation, P, and runoff, R, by a single scalar (spatially constant) factor
f to balance evaporation, E: (E) + f(P) + f(R) = 0, where (z) denotes a
globally averaged value. There are three valid values for f1x_epbal:

"off" no factor is applied to P + R

"inst" the Coupler computes a factor f so that (E) + f{P)+ f(R) =0 at
each time step ("instantaneously").

n n

ocn" the ocn component provides the Coupler with a factor f and the
Coupler applies this factor to P and R. Typically this factor is chosen,
by the ocn component, so that (E) + f{P) + f(R) = 0, but perhaps
not instantaneously, maybe as an annual average. This can be used
to allow some fluctuation in the global average of salinity on shorter
time scales while enforcing a constant global average of salinity on
longer time scales. The ocn component is responsible for providing an
appropriate factor to the Coupler.

orb_year
TYPE: integer
DEFAULT: <none>
REQUIRED: yes
DESCRIPTION: This is the calendar year which is used to determine the
solar orbit and resulting solar angles. This is necessary, for example, to
compute ocn surface albedo, which may be zenith angle dependent. Valid
values are in the range [—1000000,+1000000]. A typical value might be
1990.
See Example: 1, 2, 3

info dbug
TYPE: integer
DEFAULT: 1
REQUIRED: no
DESCRIPTION: Debugging information level: 0, 1, 2, or 3. Level 1 is recom-
mended, levels 2 and three are generally for debugging purposes.

0: do not write any extra debugging information to stdout
1: write a small amount of extra debugging information to stdout
2: write a medium amount of extra debugging information to stdout

3: write a large amount of extra debugging information to stdout

See Example: 3

info bitCheck
TYPE: integer
DEFAULT: 0 (off)
REQUIRED: no (normally not recommended)
DESCRIPTION: computes and writes to stdout information that can be used
when comparing two simulations to see if they are bit-for-bit identical. The
information written can verify two runs are NOT bit-for-bit, and it can

4 INPUT NAMELIST PARAMETERS 14

strongly suggest two runs are bit-for-bit, but it is insufficient to prove that
two runs are bit-for-bit identical.

0: do not compute or write any information

1: compute and write information once per month
2: compute and write information once per day
3

: compute and write information every time step

4.3 Example Input Namelists

Example 1: a "startup" run

$inparm

case_name = "test.01"

case_desc = "testing a startup run "
start_type = "initial"

start_pfile = "$HOME/cpl6.test.0l.rpointer"
start_date = 19800101

rest_option = "monthly"

stop_option = "monthly"

orb_year = 1990

/

Here the inputs specify a initial run starting on 1980 Jan 1st and stopping
every month, in this case on February 1st, 1980. No initial condition data is
needed — “initial” runs don’t use any IC data. Restart files will also be created
every month. A restart pointer file, cpl6.test.01.rpointer, will be created
in the user’s home directory and will contain the name of the most recently
created restart file. History data files and diagnostic data will be created at the
default frequencies. Solar orbit calculations will be based on the year 1990.

Example 2: a "continuation" run

$inparm

case_name = "test.01"

case_desc = "testing a continuation run "
start_type = "continue"

start_pfile = "$HOME/cpl6.test.0l.rpointer"
stop_option = "nmonths"

stop_n =6

rest_option = "nmonths"

stop_n =3

hist_option = "ndays"

hist_n =10

diag_option = '"ndays"

diag_n =10

orb_year = 1990

info_dbug =0

/

5 OUTPUT DATA 15

Here the inputs specify a continuation run. Assuming this run continues
from where example 1 finished, this run will start on 1980 February 1st and stop
six months later on 1981 August 1st. Exactly where this run continues from
is specified by the restart file — the restart file which will be used is specified
by the restart pointer file. Restart files will be created every three months.
History data and diagnostic data both will be created every 10 days relative
to the start of the run. Setting info_dbug = 0 will minimize the amount of
debugging information written to stdout.

Example 3: a "branch" run

$inparm

case_name = "test.02"

case_desc = "testing a branch run "
start_type = "branch"

start_pfile = "$HOME/cpl6.test.02.rpointer"
start_bfile = "test.01.cpl6.r.1980-08-01-00000 "
stop_option = "date"

stop_date = 19810101
rest_option = "date"
rest_date = 19810101
orb_year = 1990
info_dbug = 2

/

Here the input parameter start_type specifies a branch run. The branch file (a
restart file from a previous run) must be specified. In this case it’s expected to
be pre-positioned in the execution directory. The start date will be taken from
the branch file (apparently 1980 August 1). The simulation will stop on the
given date (1981 January 1st). A restart file will also be created on the given
date (1981 January 1st). Setting info_dbug = 2 will increase the amount of
debugging information written to stdout.

5 OQOutput Data

The coupler outputs three types of data: standard out (stdout) diagnostic data,
restart files, and diagnostic history files.

5.1 Stdout Data

Stdout output consists mostly of brief messages that indicate how the simulation
is progressing and whether any error conditions have been detected. Stdout also
contains a record of the values of all Coupler input parameters. If global diag-
nostics have been activated (see the diag_option namelist parameter), stdout
will also contain some diagnostic information, specifically global averages and
time averages of various flux fields flowing through the Coupler.

Exactly where the Coupler’s stdout (and stderr, standard error) shows up is
determined outside of the Coupler source code and executable. Certain environ-
ment variables found in the CCSM run scripts are used to determine where the
Coupler will execute (its current working directory, or cwd) and also to redirect

5 OUTPUT DATA 16

stdin and stdout — these env variables determine where stdout text will end up.
Normally the run script arranges for stdout text to show up in a “log” file in the
Coupler’s execution directory (current working directory) while the simulation
is in progress, and then later, after the simulation ends, the run script moves
this log file to an archival location. See the CCSM User’s Guide for details.

5.2 Restart Files

Restart files are in a machine dependent binary format, written using standard
Fortran write statements. Restart files provide the Coupler with all the IC data
necessary to do an “exact restart” of a previous simulation. “Exact restart”
means stopping and restarting a simulation while preserving, bit-for-bit, the
results that would have be created if the simulation had not been stopped and
restarted.

“Continuation” or “branch” runs both require a restart file and are capable
of exact restart. For “initial” runs, the Coupler does not use a restart file.
Initial runs cannot do exact restarts. The CCSM User’s Guide describes the
related concepts of “startup”, “branch”, “hybrid”, and “continuations” runs. At
the system-wide level there are four types of runs, but for the Coupler alone,
there are only three modes of operation. Both “startup” and “hybrid” at the
system level invoke an “initial” run in the Coupler component. See the CCSM
User’s Guide for more information.

Normally there is no need to examine the contents of a restart file. All
fields found in the restart file can be saved into history files, which are machine
independent NetCDF files.

5.3 History Files
5.3.1 Instantaneous and Time Averaged File

The Coupler can create either instantaneous history file, time averaged history
files, or both. Their creation is controlled by two independent sets of namelist
variables. When doing an ncdump the contents of both files appear to be the
same, but the values in the time coordinate variables (time and time_bound)
clearly define the time averaging interval, if any, as required by the NetCDF
Climate and Forecast Metadata Conventions, version 1.0 (CF 1.0). The Cou-
pler’s NetCDF files conform to the CF 1.0 format.

See http://www.cgd.ucar.edu/cms/eaton/cf-metadata.

5.3.2 History File Format

NetCDF (network Common Data Form) was chosen as the history data format
because many common visualization tools already exist that handle this data
format. NetCDF is an interface for array-oriented data access and a library
that provides an implementation of the interface. The NetCDF library also
defines a machine independent format for representing scientific data. Together
the interface, library, and format support the creation, access, and sharing of
scientific data. The NetCDF software was developed at the Unidata Program
Center in Boulder, Colorado.

See http://www.unidata.ucar.edu/packages/netcdf.

5 OUTPUT DATA 17

5.3.3 History File Content

Because NetCDF files are self-describing, the most complete and accurate de-
scription of the contents of a Coupler history file (or any NetCDF file) will
always come from the NetCDF data file itself. The NetCDF tool "ncdump"
will generate the CDL text representation of a NetCDF file on standard output,
optionally excluding some or all of the variable data in the output.

The Coupler’s NetCDF files conform to the CF 1.0 format. The CF conven-
tions generalize and extend the COARDS conventions.

See http://www.cgd.ucar.edu/cms/eaton/cf-metadata.

Three types of data are found in Coupler NetCDF history data files: global

attributes, domain data, and two dimensional state and flux data.

(1) Global attributes

This is text information, including the case name corresponding to the history
data, and the date the data was created.

(2) Model domain data

This includes the spatial coordinates of the grid cells as well as the cell areas
and a domain mask for each surface model. Each model has two sets of latitude
and longitude coordinates, one corresponding to grid cell "centers" and one
corresponding to grid cell "vertices". Each cell is defined by four vertices which
describe a quadrilateral. Grid cell "centers" lie within this polygon, typically
near its center.

A state variable S(i, j) is understood to be a point value located at the center
of cell (i,7). A flux field F(4,j) can be thought of as a point value located at
the cell center, but more accurately it is an area average value that applies
uniformly over the entire grid cell.

Currently only the grid cell centers are put onto history data files.

The Coupler deals with five model domains: atmosphere, ice, land, land
runoff, and ocean. For each of these model domains, the following domain
information is on the history files:

e latitude and longitude — degrees north or east for grid cell centers

e area — the cell area in radians squared. This is the area provided to the
coupler by a component model.

e aream — the cell area in radians squared. This is the area provided to the
coupler by a mapping data file. The coupler accounts for differences in
area and aream.

e cell mask — a value is zero if and only if this is an inactive point. For
example, for the land model domain, a cell located in the central Atlantic
Ocean would be inactive (because there is no land there), hence its mask
would have a zero value there.

e cell index — for an array A(i,j), sized ni * nj, the index n = (j-1)*ni + ni
This is useful for identifying a grid cell when decomposed on an MPMD
machine.

e process id — This is useful for identifying how a domain was decomposed
when the simulation was running on an MPMD machine.

5 OUTPUT DATA 18

(3) Two dimensional state and flux data

This includes model state variables, component flux fields, and merged input
flux fields.

A variable naming convention has been adopted to help organize and identify
the literally hundreds of state and flux fields managed by the Coupler.

The cpl6 Coupler manages fields by grouping them into bundles of fields. A
bundle is a group of fields that share the same domain. A domain includes grid
cell coordinates, mask, areas, and decomposition. More information on these
Coupler datatypes can be found in Section 8. The variables found in NetCDF
history files are based on the same naming convention as the variables found
in the source code. The variable names found in the history file are formed by
appending a field name onto a bundle name: <bundle>_<field>

Bundles have names like Xa2c_a where the _a indicates the bundle’s domain
is the atm domain and Xa2c is a meaningful shorthand description, in this case
Xa2c means “everything sent from the atm to the cpl.” The X means “everything”,
the a is for “atm”; the c is for “cpl.”

Fields have names like Sa_t or Faoc_lat which are also a meaningful short-
hand description, in this case Sa_t means “atm state, temperature” and Faoc_lat
means “atm/ocn flux, computed by cpl, latent heat”. Additional information on
the naming convention for variables in the Coupler is in Section 9.1.

Here are more examples from the Coupler history file:

Xa2c_a_Sa_u

bundle: Xa2c_a ~ atm-to-cpl bundle on atm domain

field: Sa_u ~ atm meridional velocity
Xc2o_o_Foxx_taux

bundle: Xc2o_o ~ cpl-to-ocn bundle on ocn domain

field : Foxx_taux
domain_o_lat
bundle: domain_o ~ time invariant ocn domain information
field : lat ~ grid cell latitude
frac_o_ifrac

merged zonal ocn surface stress

bundle: frac_o surface fractions on ocn domain

field: ifrac ~ ice fraction

Each variable in the NetCDF history file has long_name and units attributes
which further describe the variable. Also see the Data Exchanged section of this
document.

19

Part 11
Source Code Reference

6 Introduction

This part of the coupler documentation provides details of the cpl6 source code.
This includes where to find the code and build it, variable and file naming con-
ventions, descriptions of the cpl6 version of the Coupler main and the objects
and methods of cpl6. If a user wishes to modify the coupler, including chang-
ing or adding fields transferred between models, this part should be reviewed
carefully. Normal users of CCSM3 may skip this part.

One of the reasons cpl6 was created was to allow the Coupler in CCSM to
be run as a distributed memory parallel application. Previous versions of the
coupler allowed some shared-memory parallelism using OpenMP calls however
distributed memory parallelism is sufficiently different and presented so many
challenges that it was necessary to build a new coupler from scratch. Some
familiarity with parallel programming may be necessary to understand some of
the datatypes and methods in cpl6.

7 Source Code Overview

Source code for the coupler is available as part of the CCSM3 distribution at
http://www.ccsm.ucar.edu/models/ . This distribution includes the source code
for all CCSM component models. Documentation for other CCSM component
models, as well as input data for running the models, is also available at this
site.

The coupler code consists of two parts. The coupler main specific to this
version of CCSM is located in .../models/cpl/cpl6/ (All path names are
relative to the top level directory created when untarring the CCSM3 source
code distribution.) The general-purpose cpl6 datatypes and methods are located
in CCSM’s location for code shared by all the component models,
.../models/csm_share/cpl.

7.1 cpl6 programming conventions

The Coupler source code is written entirely using standard Fortran 90. Inter-
facing with the Coupler requires at least a portion of an interfacing model’s
code, the part that communicates with the Coupler, to be compiled with a
Fortran90 compiler. The Coupler uses a naming convention for source files
and the functions they contain. In general, the source code for cpl_<module
name>_<method name> can be found in cpl_<module name>_mod.F90. Files
containing _mod.F90 are Fortran90 modules.

The source files are self documenting with headers and comments written
for post-processing with the Protex system. Protex generates XTgXversions of
the header information and allows a close linkage between source and documen-
tation.

The Coupler source code was developed using the CVS revision control sys-
tem, but only one “tagged” version of the Coupler is available within any CCSM

7 SOURCE CODE OVERVIEW 20

source code distribution. This information can be used to identify the coupler
version contained in a particular distribution and is printed as part of the output
when the coupler starts.

The Coupler can only be built within CCSM’s build system which uses
GNUMake. There is no “standalone”’ coupler. Within the CCSM build system,
the coupler is treated as a component like the atmosphere, ocean, etc. and
is built automatically with the rest of CCSM3’s components. See the CCSM3
User’s Guide for more information on the build system.

7.2 The cpl6 version of the CCSM coupler

The source code for the CCSM coupler is located in .../models/cpl/cpl6.
The directory path follows the CCSM convention: . ../models/cpl contains all
of the couplers that could be used in the CCSM system just like . ./models/atm
contains the atmosphere model’s available in the system. . ../models/cpl/cpl6
contains the implementation of the CCSM coupler using c¢pl6 datatypes and
methods.

A summary of the modules and subroutines in .../models/cpl/cpl6 is
given below. Additional details can be found below or in Part III for code
which handles scientific calculations in the coupler.

main.F90 Contains all the code to implement the “hub” in the
CCSM3 hub-and-spoke, concurrent execution system
(See Section 12) including all communication calls with
component models and appropriate mapping and flux
calculation calls.
(remaining routines are in alphabetical order)

areafact_mod.F90 Module to hold and calculate grid area ratios. See Sec-
tion 16.4

bitCheck_mod.F90 Module with routines to calculate and output statistics
for a field at high precision for bit-for-bit checking.

data_mod.F90 Module to hold and initialize most variables used in
main.F90

diag_mod.F90 Module with routines for calculating global diagnostics.

flux_mod.F90 Module with routines for calculating inter-model fluxes

and surface albedos. See Section 16.2

frac_mod.F90 Module to hold, initialize and update inter-model frac-
tional weights. See Section 16.5

history_mod.F90 Module with routines to write instantaneous and time
average coupler history files.

merge_mod.F90 Module with routines for merging fluxes between mod-
els.

7 SOURCE CODE OVERVIEW 21

restart_mod.F90 Module with routines to read/write Coupler restart

files.

tStamp_mod.F90 Module with routine to output current model date and
time

timeCheck.F90 Module with routine to verify/enforce time coordina-

tion between models.

Code for many of the Coupler’s tasks (diagnostics, flux calculation) are nat-
urally separated into files as above. However we should note that some modules,
such as merge_mod.F90 and data_mod.F90 were created to prevent main.F90
from becoming too long.

7.3 Cpl6 General Datatypes and Methods.

Besides a new version of the CCSM coupler main(), cpl6 also includes a set of
Fortran90 modules consisting of derived datatypes and methods which act on
them. The contents of these modules are used to construct the new coupler and
provide a uniform, flexible and extendable interface between the Coupler and
the component models of CCSM.

The cpl6 modules make extensive use of another set of Fortran90 modules
called the Model Coupling Toolkit (MCT). MCT provides generic datatypes and
methods for the construction of parallel couplers in a distributed memory paral-
lel application. cpl6 combines and extends many of the datatypes in MCT and
provides additional datatypes to meet the specific requirements of the CCSM
Coupler. The reader of this section may also need to refer to The Model Cou-
pler Toolkit API Reference Manual and the User’s Guide to the Model Coupling
Toolkit for additional information on the concepts underlying cpl6.

See http://www.mcs.anl.gov/mct.

A summary of what each module in cpl6 handles is below in alphabetical

order:

cpl_bundle_mod.F90 The gridded data values exchanged between model’s
and the domain associated with that data.

cpl_comm_mod.F90 MPI communication groups and model ID’s. This
module uses methods from the MPH3 library to
divide MPI_COMM_WORLD into sections for each com-
ponent.

cpl_const_mod.F90 Physical and other constants used in the Coupler.

cpl_contract_mod.F90 Information needed to exchange data between
models including a bundle and a domain.

cpl_control_mod.F90 Integration control and Fortran namelist process-
ing for the Coupler.

cpl_domain_mod.F90 Data about the grid (latitude, longitude values,
etc.) and its parallel decomposition.

7 SOURCE CODE OVERVIEW 22

cpl_fields_mod.F90 Master list of all fields exchanged between models
and the Coupler.

cpl_infobuf_mod.F90 Scalar data exchanged between models.

cpl_interface_mod.F90 Wrapper routines with simple arguments used
to interface between component models and the
Coupler.

cpl_iobin_mod.F90 Binary I/O methods for the Coupler

cpl_iocdf_mod.F90 NetCDF I/0 methods for the Coupler

cpl_kind_mod.F90 Fortran90 KIND typing for the Coupler

cpl_map_mod.F90 Interpolation between different grids

cpl_mct_mod.F90 Master list of MCT functions and datatypes used
in cpl6

7.4 Summary of CPL6 structure

The software which makes up cpl6 is summarized in Figure 1.

cpl6 main.F90

cpl6 main modules
(data_mod, flux_mod, etc.)

cpl6 datatypes/methods

(domain, bundle, field, etc.)

MCT/MPEU, MPH
MPI, OpenMP, BLAS

Figure 1: The software structure of cpl6.

The cpl6 main is the top level program and is built on top of the software
layers beneath it. MPEU, the Message Passing Environment Utilities, is part
of MCT. OpenMP and BLAS calls are planned for future releases.

8 MAJOR CPL6 MODULES 23

8 Major cplé Modules

This section describes some of the cpl6é modules and how they are used in the
Coupler and CCSM3. Detailed information on each module and its contents
can be found in the CPL6 API Reference Manual.

8.1 The domain module

One of the fundamental datatypes in cpl6 is the domain which is defined in
cpl_domain_mod.F90. The domain contains information about the physical grid
that a quantity, such as Temperature, is defined on. This includes a descriptive
name for the grid, the total number of points and number of points in each
horizontal dimension. (Since all the fields exchanged by the Coupler in CCSM3
are two dimensional, the domain currently only supports two-dimensional grids.)
Finally, the domain contains information about the how the global grid is decom-
posed over processors. This information is stored using an MCT datatype called
the GlobalSegmentMap. All of this information is identical on each processor the
Coupler runs on.

The domain also includes numerical data about the grid such as the latitude
and longitude values and grid-cell area but only for points local to the processor.
The contents of this component of a domain will thus vary from processor to
processor. The values are stored in another MCT datatype, the AttributeVector.
The complete list of values saved for each grid point is:

lat latitude value in degrees

lon longitude value in degrees

area the component’s (e.g. ocean) value for the area of a grid cell

aream the mapping program’s (e.g. SCRIP) value for the area of a grid cell
mask list of active/inactive cells. 0 for inactive cells

pid Processor id (identical for all points)

8.2 The bundle module

The bundle is another fundamental datatype in cpl6 and is defined in cpl_bundle_mod.F90.
A bundle contains the actual values of fields passed in and out of the coupler such

as temperature, wind speed, etc. These values are stored as a one-dimensional

vector using an MCT AttributeVector. The bundle also contains a pointer to the

domain associated with the data in the bundle. Thus all the data in a bundle

must be on the same domain however more than one bundle can point to a given

domain.

Within the coupler, there are many bundles. Most are named according to
what component they’re involved with but their content can also be regrouped
using methods such as cpl_bundle_split according to how the Coupler treats
them. For example bun_Si2c_i contains all the state data passed from the ice
model to the Coupler while bun_Fi2c_i contains the flux data.

8 MAJOR CPL6 MODULES 24

8.3 The infobuf module

While the bundle is for gridded data, the infobuffer, defined in cpl_infobuf_mod.F90
is used to hold scalar data, integers and reals, exchanged between models and
the Coupler. “info” is used because much of the integer data acts as logical
control flags so the Coupler can tell a component model to perform actions
such as write a history file or do diagnostics or halt execution. The size of the
real and integer parts of the infobuffer and the location of each real and inte-
ger number in the arrays is the same in all models and is set by parameters in
cpl_fields_mod.F90 (See Sec. 8.6). It is not necessary for each model to define
every possible value in the infobuffer. For example, the eccentricity of Earth’s
orbit is set in the atmosphere model and passed to the Coupler through the
infobuffer while the other models never receive or set this value.

8.4 The contract module

The contract is a key concept and an important datatype in cpl6 and is defined
in cpl_contract_mod.F90. A contract contains all of the information needed
for a single model-coupler exchange. Thus there is one contract for the data
sent by the atmosphere model to the Coupler and a second contract for the data
received by the atmosphere from the Coupler. The main interaction between
a model and the Coupler is conceptualized as first setting and then sending or
receiving contracts.

To contain all the information needed for a data exchange, the contract
contains an infobuffer, a bundle and a domain (which the bundle points to). The
contract also contains an MCT datatype called the Router which contains all the
information needed to do a parallel data transfer between a distributed memory
parallel model running on one set of processors and the distributed memory
parallel Coupler running on a different set of processors.

8.5 The interface module

cpl_interface_mod.F90 contains the routines component models and the Cou-
pler call to interact with each other. The interface is closely related to the
contract and a contract is an argument in nearly all the interface routines.

The purpose of the interface module is to provide a simple, compact inter-
face for component models to talk to the Coupler while making no constraints
on how the component models represent data internally. Four methods from
cpl_interface_mod.F90 do nearly all the work in allowing a component model
to interact with the Coupler:

cpl_interface_init Initialize the communication infrastructure,
e.g. MPI communicator groups.

cpl_interface_contractInit Initialize a contract with the Coupler. This
is where the coupler is told the grid of the
component model and what fields will be
exchanged.

cpl_interface_contractSend Send data (bundles and infobuffers) to the
Coupler

8 MAJOR CPL6 MODULES 25

cpl_interface_contractRecv Receive data (bundles and infobuffers) from
the Coupler

Along with reducing the needed routines to a handful, the interface module
also simplifies the argument list. Aside from the contract, which is a Fortran90
derived datatype, the remaining arguments in cpl_interface_ methods are
simple native Fortran (90 or 77) types such as real and integer scalars and arrays.
Access to these simple arrays is coordinated through the use of integer indicies
defined in the fields module discussed below. By making no assumptions on the
relation between Coupler datatypes and model datatypes, moving data between
the model’s internal data structures and the arguments to cpl_interface_x
is done with a copy. Testing shows that the cost of all copying is insignificant
compared to the total time to simulate a day in CCSM3. More detail on the
use of INTERFACE is given in Section 10.2.

8.6 The fields module

cpl_fields_mod.F90 contains the master list of all scalar and gridded data
transferred between the coupler and component models. The coupler and each
component model shares this data through Fortran90 USE association of this
module. Localizing this information in one module and requiring all component
model subroutines which read or set transferred data to use it helps coordinate
the access of the simple arrays used in the cpl_interface_mod routines.
The integer indicies for the data in the infobuffer is set in cpl_fields_mod.F90.

Elements of the infobuffer are named according to their type and a descriptive
name:

cpl_fields_ibuf_<mname>: index of an integer scalar quantity in the in-
teger portion of the infobuffer

cpl_fields_rbuf_<name>: index of a real scalar quantity in the real por-
tion of the infobuffer

Examples include cpl_fields_ibuf_rcode, an inter-model error code and
cpl_fields_rbuf_eccen, the eccentricity of the Earth’s orbit. The values
given to these indicies in cpl_fields_mod.F90 are arbitrary. CCSM devel-
opers should ignore them and use the long names like cpl_fields_rbuf_eccen
to retrieve/set values in the interface arrays.

The indicies for data sent in the bundle portion of the contract are also set
in cpl_fields_mod.F90. These indicies are named according to the direction
of travel (Coupler to Atmosphere, c2a, or Atmosphere to Coupler, a2¢) and a
descriptive name. For example:

cpl_fields_a2c_lwdn Longwave Downward radiation passed from the At-
mosphere to the Coupler

cpl_fields_c2i_ot Ocean Sea Surface Temperature passed from the
Coupler to the Ocean

Along with integer indicies for each field exchanged, the fields module also con-

9 THE CPL6 MAIN 26

tains a colon-delimited character string defining the fields exchanged between
each model and the coupler. One example is the string defining all the fields
sent from the atmosphere to the coupler, cpl_fields_a2c_fields. This and
similar character strings are used by the Coupler to allocate memory in a BUN-
DLE at runtime. The number of colon-separated items in the string is counted
and that number, along with the local grid size, is used to allocate local storage.
The individual string names, also called “attributes” of the BUNDLE (and the
underlying MCT ATTRIBUTEVECTOR), are used internally by the Coupler to
access data in the bundle. The exact name of each field is up to the user however
repeating names between strings is part of the how the Coupler controls the flow
of information between components (Section 9.2.4).

Each *_fields string is actually assembled by joining two sub-strings, *_fluxes
and *_states. The distinction is used to route the correct data to the correct
interpolation routine. See Section 9.2.4 for more information.

Finally, the fields module also contains the total number of fields exchanged
between each model and the coupler, e.g. cpl_fields_a2c_total. This param-
eter is used in setting the size of the simple arrays used in the interface routines
at compile-time.

NOTE: There is a strong relation between the colon separated character
string *_fields and the integer parameters like cpl_fields_a2c_lwdn. Since
“Faxa_lwdn” (longwave down from the atmosphere) is the 10th item in the
cpl_fields_a2c_fields character string, cpl_fields_a2c_lwdn must be set
equal to 10. (See cpl_fields_mod.F90). This relationship must be maintained
by the programmer when modifying cpl_fields_mod.F90.

8.7 The map module

The map module represents a major subsystem of cpl6. Cpl6 uses “Mapping” to
refer to the interpolation of gridded data from one grid to another, e.g. mapping
atmosphere data onto the ocean grid. This is sometimes called “regridding”.

cpl_map_mod.F90 contains datatypes for holding all of the information needed
to perform a mapping of data between two grids and methods for initializing
that data, cpl_map_init, and performing the mapping between two bundles,
cpl_map_bun.

The details of the mapping calculation are described in Section 16.1. The
cpl_map datatype includes not just storage for the mapping weights, but also
information needed to perform any communication necessary to complete the
mapping. Because the source and destination grids are each decomposed over
processors in their own way, all the data needed to complete the mapping may
not be present on a processor. Thus cpl_map_bun performs necessary commu-
nication using additional information in cpl_map and methods from MCT such
as Rearranger.

9 The cpl6 main

This section provides guidance to understanding the cpl6é main program which
coordinates the transfer of data between components in CCSM3.

9 THE CPL6 MAIN 27

9.1 Variable Naming Conventions

A variable naming convention has been adopted to help organize and identify
the literally hundreds of state and flux fields managed by the Coupler. Un-
derstanding this naming convention will aid understanding the main code and
pseudo-code below.

9.1.1 State Variables

Model state variables are denoted Sx, where x denotes the corresponding com-
ponent model:

* Sa = atm state variables, e.g. atm wind velocity
* Si = ice state variables, e.g. ice temperature
* S1 = Ind state variables, e.g. Ind albedo

* So = ocn state variables, e.g. ocn SST

* Ss = all surface states merged together, e.g. global surface temperature

Next, a suffix _x indicates what model grid the states reside on:

* Sa_a: atm states on atm grid

* Sa_o: atm states on ocn grid

9.1.2 Flux Fields

Input flux means fluxes given by the Coupler to a model. Output flux means
fluxes computed within a model and given to the Coupler. All input fluxes
for one model were either computed by the Coupler or were the output flux
of another model. In general, a given flux field between any two component
models may have been computed in one of three places: within either of the two
models or within the Coupler.

One function of the Coupler is to gather, merge, sum, and/or time-average
the various component flux fields from various sources and form a set of complete
input fluxes for each component model. This gathering and merging process will
generally involve mapping flux fields between various model grids and combining
like fields from several grids onto one grid. A summation might be required,
e.g., net heat flux = solar 4 latent 4 sensible + longwave. Also, for
some flux fields the Coupler might be required to form time-averaged quantities.
Thus component fluxes are mapped, merged, summed, and/or time-averaged by
the Coupler in order to form complete input fluxes for the models.

Flux fields are denoted Fxyz, where xy denotes the two model between which
a quantity is being fluxed, and z denotes the model which computed the flux
(i.e. it is an output flux of model z).

Component fluxes that are gathered, merged, summed, and/or time—averaged
to form the complete input fluxes are:

* Faia = atm/ice flux, computed by atm, e.g. precipitation

* Faii = atm/ice flux, computed by ice, e.g. sensible heat flux

9 THE CPL6 MAIN 28

* Fala = atm/Ind flux, computed by atm, e.g. precipitation

* Fall = atm/Ind flux, computed by Ind, e.g. sensible heat flux

* Faoc = atm/ocn flux, computed by cpl, e.g. momentum flux

* Faoa = atm/ocn flux, computed by atm, e.g. precipitation

* Fioo = ice/ocn flux, computed by ocn, e.g. ice formed within the ocn

* Fioi = ice/ocn flux, computed by ice, e.g. penetrating shortwave radia-
tion

* Flol = Ind/ocn flux, computed by Ind, e.g. river runoff

Complete input fluxes (an "a" prefix denotes a daily average):

* Faxx = all atm input fluxes: a map/merge/sum of: Faoc, Faii, Fall
* Flxx = all Ind input fluxes: a map/merge/sum of: Fala
* Foxx = all ocn input fluxes: a map/merge/sum of: Faoc, Faoa, Fioi,

Flol
* aFoxx = a time average of: Foxx
* Fixx = all ice input fluxes: a map/merge/sum of: Faia, Fioo

Finally, just like the state variables above, a suffix _x indicates what model grid
the fluxes reside on:

* Faoa_a: atm/ocn fluxes, computed by the atm, on the atm grid

* Faoa_o: atm/ocn fluxes, computed by the atm, on the ocn grid

9.1.3 Domain Maps

Mapping between domains is implemented by matrix multiplies. Generally there
are different maps for state fields vs. flux fields, as state fields maps are generally
smoother (e.g. bilinear) whereas flux field maps must be conservative (e.g.. area
averaging, aka Riemann sum integrals). In the case of mapping between identical
domains, the map would be the identity map. The necessary mapping matrices
are:

* map_Fa2i: map for fluxes, atm -> ice

* map_Sa2i: map for states, atm -> ice

* map_Fa2l: map for fluxes, atm -> Ind

* map_Sa2l: map for states, atm -> Ind

* map_Fa2o0: map for fluxes, atm -> ocn

* map_Sa2o0: map for states, atm -> ocn

* map_Fi2a: map for fluxes, ice -> atm

* map_Si2a: map for states, ice -> atm
etc.

9 THE CPL6 MAIN 29

9.1.4 Bundles and Contracts

The Coupler declares several instances of the BUNDLE and CONTRACT datatypes
and they also follow a naming convention. Bundles have names similar to the
map’s but with an extra postfix to identify which grid the data is on. For
example:

* bun_Sa2c_a: State data from the atmosphere on the atmosphere grid.
* bun_Sa2c_o: State data from the atmosphere on the ocean grid.
* bun_Fa2c_a: Flux data from the atmosphere on the atmosphere grid.

* bun_Fa2c_o: Flux data from the atmosphere on the ocean grid.

The bun_Sa2c_o bundle contains the bun_Sa2c_a data after it has been mapped
(interpolated) onto the ocean grid.

The names of Contracts also contain a direction but, since the BUNDLE in
the CONTRACT contains both State and Flux data, an “X” is used in the name.

* con_Xa2c: The atmosphere-to-coupler CONTRACT.
* con_Xc2a: The coupler-to-atmosphere CONTRACT.
* con_Xi2c: The ice-to-coupler CONTRACT.

* con_Xc2i: The coupler-to-ice CONTRACT.

9.2 Scientific Assumptions in main

The code of the c¢pl6é main fixes many of the assumptions and scientific re-
quirements of CCSM3. This section describes which assumptions/requirements
have been “hard-coded” into CCSM3’s coupler. However, because of the mod-
ular structure of the cpl6 code, it is straightforward to remove most of these
assumptions and allow alternate configurations of CCSM3 components.

9.2.1 Number of Components

The total number of components is fixed at 6 corresponding to the number of
components in CCSM3: the Coupler itself, and models of the atmosphere, land,
river runoff, sea ice and ocean. However the number of separate executables
is limited to 5 because in CCSM3 the land and river runoff are contained in
the same model, CLM. This assumption is in both main and the cpl_comm_mod
module which contains public data members with parallel programming infor-
mation for only 5 components and a method to initialize them.

Since the river model runs on a different grid, the Coupler establishes a
separate contract for the one-way exchange of information from the river model
to the Coupler and the river model is treated as a sixth component. But in the
MPI view of CCSM, the land and river models are on the same processors and
share the same MPI communicator.

9.2.2 Number of Grids

The Coupler main assumes there are only 3 different grids however the size and
type of each grid may change. The atmosphere and land models are assumed to

9 THE CPL6 MAIN 30

share the same grid and the ocean and sea ice models are also assumed to share
the same grid (but different from the atmosphere-land). The river model’s grid
is the third grid in the CCSM3 Coupler.

9.2.3 Time Integration and Coordination

The Coupler code is configured for a particular time coordination scheme. Model
time coordination involves two communication intervals, with the longer interval
being an integer multiple of the shorter interval. The atmosphere, ice, and land
models communicate once per short interval while the ocean model communi-
cates once per long interval. Also, one day (24 hours) is an integer multiple of
the longer communication interval. Typically the longer interval is exactly one
day, while the shorter interval is several hours or less. While this configuration
is hard-coded within the Coupler, its modular design facilitates code modifi-
cations to implement alternate configurations. A variety of time coordination
schemes can be, and have been, implemented by rearranging subroutine calls
at the highest level (within the main program), requiring a minimal amount of
code modifications or new code.

9.2.4 Data Pathways through the Coupler

The Coupler code allows only certain data pathways between models. We de-
fine a “pathway” as the sequence of operations performed on data sent from a
component model to the Coupler on it’s way to another model. An example is
shown in Figure 2. Figure 2 shows what happens to the BUNDLE of data from
the atmosphere after it enters the coupler. The number of pathway’s and the
sequence of events in each is fixed in a given release of the Coupler. Indeed the
code in the integration loop of the Coupler’s main consists mostly of calls to
cpl6 routines to route data through these pathway’s.

Some pathways are not implemented in the current release of the Coupler.
There is no path directly from the land model to the ocean model (although
there is a path from the river model to the ocean model.) Pathways which do
exist have only certain operations. For example in the path between the ice and
the ocean model, there is no mapping because it is assumed that the ice and
ocean models are on the same grid (Section 9.2.2).

9.3 Main Program Detail

To understand the details of the Coupler’s functionality, it is useful to have a
basic understanding of the Coupler main’s source code. To that end, pseudo-
code for main is shown below. If one wishes to modify the Coupler source code,
it is strongly recommended that one first study this section in conjunction with
studying the source code file, main.F90. This should provide a good overview
of how the Coupler works; a necessary pre-requisite for successful code modifi-
cation.

9.3.1 Psuedocode for main

In the pseudocode below, code from the Coupler is in typewriter font. Com-
ments about the code are in italics and summaries representing sections of code
are in [ALL CAPS|.

9 THE CPL6 MAIN 31

Form precip

l

bun precip.a

|
Map Fa2Zo

bun _precip_o

OCean
solar flux

atm /ocn flux

_

merge /hun_ aoflux_o

ocean input

Ocean

Figure 2: The pathway of data from the atmosphere model through the coupler.
Note that not all operations are shown

9 THE CPL6 MAIN 32

PROGRAM main
[INITIALIZE TIMERS]

Initialize MPI and get local MPI communicator
call cpl_interface_init(cpl_fields_cplname,local_comm)

Read the Coupler namelist
call cpl_control_readNList()

Get simulation start date
call restart_readDate(cDate)

Initialize the Coupler infobuffers in each Contract

call cpl_infobuf_init(con_Xa2cYinfobuf)

[INITIALIZE OTHER INFOBUFFERS]

Initialize receiving Contract with atmosphere

call cpl_interface_contractInit(con_Xa2c,cpl_fields_cplname, &
cpl_fields_atmname,cpl_fields_a2c_fields,bunname="Xa2c_a", &
decomp=cpl_control_decomp_a)

Initialize sending Contract with atmosphere

call cpl_interface_contractInit(con_Xc2a,cpl_fields_cplname, &
cpl_fields_atmname,cpl_fields_c2a_fields,bunname="Xc2a_a", &

decomp=cpl_control_decomp_a)

dom_a = con_Xa2c%domain Make sure domains are identical
con_Xc2a%domain = dom_a

[INITIALIZE CONTRACTS WITH ICE AND OCEAN MODEL]

[INITIALIZE SPECIAL DOMAIN CONTRACT WITH LAND MODEL.
DETERMINE IF COUPLER SHOULD SEND LAND DOMAIN.]

Initialize inter-domain area fractions
call frac_init(map_Fo2a,dom_a,dom_i,dom_1,dom_o)

[IF REQUESTED, DETERMINE LAND DOMAIN AND SEND TO LAND MODEL]
[INITIALIZE CONTRACTS WITH LAND AND RIVER MODEL]

[CHECK THAT LAND AND ATMOSPHERE DOMAINS ARE CONSISTENT]
[CHECK THAT ICE AND OCEAN DOMAINS ARE CONSISTENT]

call data_bundleInit() Initialize Coupler bundles

call data_mapInit() Initialize Coupler maps for interpolation

9 THE CPL6 MAIN 33

call history_avbundleInit() Initialize history buffers
[SET VALUES FOR. INITIAL INFOBUFFER]

Send infobuffer to atmosphere

call cpl_interface_infobufSend(cpl_fields_atmname,
con_Xc2a%infobuflibuf,con_Xc2a}infobuf’rbuf)

[SEND INFOBUFFERS TO OCEAN, ICE, LAND AND RIVER MODELS]

[VERIFY ACCEPTABLE COUPLING INTERVALS.|
[CHECK FOR DEAD COMPONENTS.]

date = shr_date_initCDate(cDate,ncpl_a) Initalize model start date
call cpl_control_init(date) and control flags
call cpl_control_update(date)

[RESET BUNDLE DOMAINS AREAS TO MAP FILES AREAS]

Receive initial condition data from atmosphere

call cpl_interface_contractRecv(cpl_fields_atmname,con_Xa2c)

Multiply received data by normalized area

call cpl_bundle_mult(con_Xa2c)bundle,bun_areafact_a,’comp2cpl’, &
bunlist=cpl_fields_a2c_fluxes)

[RECEIVE INITIAL DATA FROM ICE, LAND, RIVER AND OCEAN MODELS]

call restart_read(date) Read restart
[PROCESS (SPLIT INTO BUNDLES AND MAP) INITIAL CONDITION DATA]
[IF REQUESTED, SEND ALBEDO TO ATMOSPHERE AND GET NEW INITIAL DATA]
DO WHILE (.not. cpl_control_stopNow) Main integration loop
DO n=0,ncpl_a Loop over number of atmosphere communications per day

Send message to ocean
if (mod(n-1,ncpl_a/ncpl_o) == 0) then If time to talk to ocean
if (.not. cpl_control_lagOcn) then
multiply sent data by normalized area
call cpl_bundle_mult(con_Xc2o)%bundle,bun_areafact_o, &
’cpl2comp’ ,bunlist=cpl_fields_c2o_fluxes)
Send the data
call cpl_interface_contractSend(cpl_fields_ocnname,con_Xc2o0)
multiply sent data by inverse of normalized area
call cpl_bundle_mult(con_Xc2o%bundle,bun_areafact_o, &
’comp2cpl?’, bunlist=cpl_fields_c2o_fluxes)
endif
call cpl_bundle_zero(bun_Xc20PSUM_o) zero out the partial sum

9 THE CPL6 MAIN 34

endif

if (mod(n-1,ncpl_a/ncpl_1) == 0) then
[SEND DATA TO LAND MODEL|

Map atmosphere states (from initial receive or previous step) to ocean grid

call cpl_map_bun(bun_Sa2c_a,bun_Sa2c_o,map_Sa2o,mvector=a2ovector)
Map atmosphere fluxes to ocean grid)

call cpl_map_bun(bun_Fan_a, bun_Fa2c_o,map_Fa2o ,mvector=a2ovector)

[IF REQUESTED, FORCE BALANCE THE FRESH WATER FLUX]

Correct the a20 vector mapping near north pole
call cpl_map_npfix(bun_Sa2c_a,bun_Sa2c_o,’Sa_u’,’Sa_v’)

[SEND DATA TO ICE MODEL]

Compute net solar fluz into ocean.
call flux_solar(bun_Fa2c_o, bun_oalbedo_o, bun_aoflux_o)

call merge_ocn() merge ocean inputs

Form time average of ocean inputs
call cpl_bundle_accum(bun_Xc20SNAP_o,outbun=bun_Xc20PSUM_o)

[DO DIAGNOSTICS]
call flux_albo(date,bun_oalbedo_o) Compute ocean albedos. (Sec. 16.3.3)

Compute atmosphere/ocean fluzes. (Sec. 16.2)
call flux_atmOcn(con_Xo2cY%bundle,bun_Sa2c_o,cpl_control_dead_ao,
bun_aoflux_o)

if (mod(n-1,ncpl_a/ncpl_i) == 0) then
[RECEIVE DATA FROM ICE MODEL]

If requested, add diurnal cycle to ice albedo. (Sec. 16.3.2)
call flux_albi(date,con_Xi2c%bundle)

Split received ice data into states and fluzes
call cpl_bundle_split(con_Xi2c%bundle,bun_Si2¢c_i,bun_Fi2c_i)

Map ice and ocean states to atmosphere grid

call cpl_map_bun(bun_Si2c_i,bun_Si2c_a,map_So2a, &
bun_frac_i,’ifrac’,bun_frac_a,’ifrac’,oi2avector)

call cpl_map_bun(bun_So2c_o,bun_So2c_a,map_So2a, &
bun_frac_o,’afrac’,bun_frac_a, ’ofrac’,oi2avector)

[MAP ICE AND OCEAN FLUXES TO ATMOSPHERE GRID]

9 THE CPL6 MAIN 35

if (mod(n-1,ncpl_a/ncpl_1) == 0) then
[RECEIVE DATA FROM LAND MODEL]

if (mod(n,ncpl_a/ncpl_r) == 0) then
[RECEIVE DATA FROM RIVER MODEL]

call merge_atm(fix_So2c_a) Merge atmosphere state and flux fields

if (mod(n-1,ncpl_a/ncpl_a) == 0) then
[SEND DATA TO ATMOSPHERE MODEL]

Map river model data to ocean grid
call cpl_map_bun(con_Xr2cYbundle,bun_Xr2c_o,map_Xr2o,mvector=r2ovector)

call history_write(date) Create and/or update history files
call history_avwrite(date)

if (mod(n,ncpl_a/ncpl_o) == 0) then
[RECEIVE DATA FROM OCEAN]

if (mod(n-1,ncpl_a/ncpl_a) == 0) then
[RECEIVE DATA FROM ATMOSPHERE]

call shr_date_advistep(date) Advance date and update control flags
call shr_date_getCDate(date,cDate,sec)

call shr_date_getYMD(date,year,month,day,sec)

call cpl_control_update(date)

END DO

call timeCheck(date,.false.,.true.) Verify time coordination
END DO WHILE FEnd of main integration loop
call history_avwrite(date) Write last history file
Send final message to atmosphere
call cpl_interface_contractSend(cpl_fields_atmname,con_Xc2a)
[SEND FINAL MESSAGE TO ICE, LAND AND OCEAN MODELS]

call cpl_interface_finalize(cpl_fields_cplname) Disconnect from MPI

STOP/END OF PROGRAM

9.3.2 A Data Pathway in Detail

With the pseudocode, the *_field definitions in cpl_fields_mod.F90, and the
BUNDLE initializations in data_mod.F90, one can determine how the attribute
names in a BUNDLE are used to route data through pathways. Consider the in-

10 MODIFICATIONS TO THE COUPLED SYSTEM 36

coming atmosphere bundle shown in Fig. 2. The BUNDLE in Con_Xa2c/bundleis
initialized using the cpl_fields_a2c_fields string while bun_Sa2c_a is initial-
ized with the cpl_fields_a2c_states substring and bun_Fa2c_a is initialized
with the cpl_fields_a2c_fluxes substring. The call to cpl_bundle_split
copies the data in Con_Xa2cbundle into bun_Sa2c_a or bun_Fa2c_a according
to the matching attribute names. Since, by construction, *_fields is the union
of *_states and *_fluxes, the split is exact.

Attribute name matching is also used the move data through the Fa2o map-
ping call shown in Fig. 2. This call will automatically map all the fields in
bun_Fa2c_a which have the same names as the fields in the output BUNDLE
bun_Fa2c_o. Since bun_Fa2c_ois also initialized with cpl_fields_a2c_fluxes
(in data_mod.F90), the entire contents of bun_Fa2c_a are mapped to the ocean
grid.

Finally, attribute name matching is used to “gather” data for passing out
to a component model using cpl_bundle_gather. Note that this does not
mean “gather” in the MPI sense of gathering distributed data to a single pro-
cessor. It means gathering data from several BUNDLES with the same attribute
name into one outgoing BUNDLE. For example, cpl_fields_a2c_states and
cpl_fields_c2i_states both contain an attribute called “Sa_u”. Since the
same name appears in both the Con_Xa2cYbundle, bun_Sa2c_o, and Con_Xc2i%bundle,
this ensures that the data contained in the “Sa_ u” slot in the Con_Xa2c%bundle,
the atmosphere’s zonal wind field, will be mapped to the ice/ocean grid with
the correct mapping and sent to the ice model.

10 Modifications to the Coupled System

Some of the Coupler’s behavior can be controlled through the use of a Fortran
namelist as described in Section 4. However, some necessary changes to the
coupled system, such as adding new fields, requires editing the Coupler source
code. In this section, we provide some guidance on how to change the Coupler
code for likely situations. This section assumes some familiarity with the CCSM
code and build system.

10.1 Adding Fields to Existing Pathways

The complete list of fields exchanged between models is in cpl_fields_mod.F90.
To add or subtract fields to existing data pathways in the Coupler (Section 9.2.4),
only cpl_fields_mod.F90 needs to be edited.

For an example, we’ll consider adding a field to the ocean-to-coupler fields,
cpl_fields_o2c_x. The first step is to add a descriptive character string to the
colon-delimited list of fields. The field must be added to cpl_fields_o2c_states
if its a state and cpl_fields_o2c_fluxesifit is a flux. Adding a state variable
So_new is shown below with changes in bold.

character (*), parameter,public :: cpl_fields_o2c_states = &
&’So_t&
&:So_u&
&:So0_v&
&:So0_s&

10 MODIFICATIONS TO THE COUPLED SYSTEM 37

&:So_dhdx&
&:So_dhdy&
&:S0 new’

character (*), parameter,public :: cpl_fields_o2c_fluxes
&’Fioo_q’

character(*), parameter,public :: cpl_fields_o2c_fields = &
trim(cpl_fields_o2c_states)//":"//trim(cpl_fields_o2c_fluxes)

&

Next, the integer parameters for the fields must be modified. Note that the
new field must be numbered correctly according to its position in the joined
cpl_fields_o2c_field string.

b ocn states -----
integer (IN) ,parameter,public :: cpl_fields_o2c_t =
integer (IN) ,parameter,public :: cpl_fields_o2c_u =
integer (IN) ,parameter,public :: cpl_fields_o2c_v =
integer (IN) ,parameter,public :: cpl_fields_o2c_s
integer (IN) ,parameter,public :: cpl_fields_o2c_dhdx surface slope, zonal
integer (IN) ,parameter,public :: cpl_fields_o2c dhdy surface slope, meridional
integer (IN),parameter,public :: cpl fields 02c new = 7! new field
integer (IN) ,parameter,public :: Cpl_flelds_02c_q = 8 ! heat of fusion (g>0)

melt pot (q<0)

! temperature

! velocity, zonal

! velocity, meridional
! salinity

!

!

1]
OO WN =

A new integer was added for So_new and the subsequent integers, cpl_fields_o2c_q
were renumbered.
Finally, the integer parameter for the total number of fields must be updated.

integer (IN) ,parameter,public :: cpl_fields_o2c_total = 8

NOTE: The programmer making these changes is responsible for ensuring
that the character string cpl_fields_o2c_fields, the integer parameters for
the individual fields and the integer parameter for the total are all consistent.

The above changes will only add a field to the ocean BUNDLE passed in to
the Coupler. If you want this field passed out to another model, say the ice
model, similar changes should be made to the cpl_fields_c2i_fields string
and the string for any other models which need to receive this data.

To make the Coupler aware of these changes, recompile the code. On the
next run of CCSM3 with the changes, the Coupler will automatically create
extra storage for the new field and perform the same operations on So_new as
on the rest of cpl_fields_o2c_states.

Because the Coupler is designed to work with models which may have very
different internal data structures, additional editing must be done in the com-
ponent models to complete the addition of the field. In the ocean model, code
must be added to copy So_new from the ocean model’s internal data structure
into the buf argument of the ocean’s cpl_interface_contractSend call. And
any receiving models must also be edited to copy the received data into it’s
appropriate internal data structure. The steps needed to interface a component
model with the Coupler are described below.

10.2 Interfacing a Component with the Coupler

This section will review what is required to interface a component with the
Coupler in place of a current component, e.g. replacing POP with a different

10 MODIFICATIONS TO THE COUPLED SYSTEM 38

ocean model or CAM with a different atmosphere, while sending and receiving
the same fields. This only covers how to communicate with the Coupler and
ignores other issues such as merging the model with the CCSM3 build system.
Not every detail will be covered and programmers are encouraged to exam-
ine the code of current CCSM3 components to see how they interact with the
Coupler. Clear examples of how a model is connected to the Coupler can be
found in the routine msg.F90 in any of the data models (. . /models/atm/datm6,
../models/ocn/docn6/ etc.). msg.F90 contains all of the data model’s inter-
action with the Coupler and mimics the steps performed by the full models.
One can find all the references to the Coupler in any model within CCSM3 by
searching for cpl_ in the code.

All the routines needed to connect a model to the CCSM system are in
cpl_interface_mod.F90. Connecting a model to the CCSM Coupler involves
placing calls to these routines within the model. No other editing or reorgani-
zation of a model’s source code is required. Where exactly the calls go depends
on the model code but there is some generality which can be used to guide their
placement.

To use the routines in cpl_interface_mod.F90, a Fortran90 USE statement
must be placed at the top of each model. Because references must also be made
to the integer parameters in cpl_fields_mod.F90 and the CONTRACT datatype
in cpl_contract_mod.F90, 3 use statements must appear in each model sub-
routine involved in Coupler communication:

use cpl_contract_mod
use cpl_interface_mod
use cpl_fields_mod

The first call which must be made is to cpl_interface_init:
call cpl_interface_init(cpl_fields_<modelname>,local_comm}

The first argument, cpl_fields_<modelname> must be one of the component
names defined at the top of cpl_fields_mod. The second argument returns
an MPI Communicator which must be used by any MPI calls made internally
within the model. (cpl_interface_init also handles calling MPI_Init.) This
call only needs to be made once and can be placed within one of the model’s
initialization routines.

The second and third calls are to cpl_interface_contractInit, one each to
initialize the send and receive CONTRACT (Sec. 8.4). When called from a model,
cpl_interface_contractInit should use the following set of arguments:

call cpl_interface_contractInit(contractS, cpl_fields_<modelname>,
cpl_fields_cplname, cpl_fields_<x>2c_fields, ibufi, buf, ibufr)

contractS will be the output send contract and is the only Fortran90 derived
datatype a component model needs to declare to interact with the Coupler:

type(cpl_contract),save :: contractS

The other arguments of the INTERFACE routines are native scalars and arrays.
<x> should be replaced with o, a, i, 1, or r depending on if the calling model
is an ocean, atmosphere, etc. ibufi and ibufr are the integer and real parts
of the INFOBUFFER (Sec. 8.3) as simple arrays declared with one of the FIELDS
parameters:

10 MODIFICATIONS TO THE COUPLED SYSTEM 39

integer :: ibufi(cpl_fields_ibuf_total)
real :: ibufr(cpl_fields_ibuf_total)

During the CONTRACT initialization, only some of the integer parts of the in-
fobuffer must be set before calling cpl_interface_contractInit:

ibufi(cpl_fields_ibuf_ncpl) = number of communications per day
ibufi(cpl_fields_ibuf_gsize) = the size of the global grid
ibufi(cpl_fields_ibuf_lsize) = size of the local grid
ibufi(cpl_fields_ibuf_gisize) = global size in i-index
ibufi(cpl_fields_ibuf_gjsize) = global size in j-index
ibufi(cpl_fields_ibuf_nfields) = cpl_fields_grid_total
ibufi(cpl_fields_ibuf_dead) 0 if not a dead model

The two-dimensional real array buf can be declared or allocated using an-
other FIELDS parameter:

real :: buf (nx*ny, cpl_fields_grid_total)

where nx and ny are the local grid sizes in the x and y directions. The buf array
is used to tell the Coupler about the grid the model is running on its information
is used to initialize the DOMAIN and MCT datatypes. An example of filling buf
can be found in datm6/msg.F90:

n=1
do j=1,ny ! local j index
do i=1,nx ! local i index

buf (n,cpl_fields_grid_lon) = xc(i,j)

buf (n,cpl_fields_grid_lat) = yc(i,j)
buf (n,cpl_fields_grid_area) = area(i,])
buf (n,cpl_fields_grid_mask) = mask(i,])
buf (n,cpl_fields_grid_index) = n
n=n+1

enddo

enddo

In this case datm6 has very simple internal data structures to hold the local
values of longitude, latitude, area and mask. datm6’s internal 2D array’s, xc,
yc, etc., are “unrolled” into 1-dimension of buf while the other dimension of
buf is used for the different fields. The latitude, longitude, area and mask
values should be local values but cpl_fields_grid_index contains a global
index number given to each point on the portion of the model’s numerical grid
communicating with the coupler (i.e. the lowest level of a 3D atmosphere grid).
Since datm6 is a single-processor application, this assignment is trivial but care
must be taken to assign the correct values to cpl_fields_grid_index for a
processor in a parallel application since this information is used by MCT to
perform the parallel communication between the model and the Coupler. On
each processor, cpl_fields_grid_index should contain the globally-indexed
values of points that processor “owns”. The order should be noted because
later, when computed data is sent to the coupler, it must be placed in the send
buffer in the same order. More detail on grid point numbering and its use in
parallel communication can be found in the User’s Guide to the Model Coupling
Toolkit.

10 MODIFICATIONS TO THE COUPLED SYSTEM 40

The receive contract call to cpl_interface_contractInit can use the same
input arguments as the send illustrated above but the first argument should be
different, e.g. contractR. Like cpl_interface_init,the cpl_interface_contractInit
calls also only need to be done once as part of the model’s initialization. The
last initialization step is to receive an INFOBUFFER from the Coupler with a
call to cpl_interface_ibufRecv. The CONTRACTS initialized above must be
passed to the routines which will communicate with the coupler during runtime.

Sending and receiving data during execution is very similar to the CONTRACT
initialization. During a send, first real and/or integer arrays like ibufr and
ibufi are updated with appropriate items in the INFOBUFFER. The a real
array similar to buf is loaded with the latest calculated values intended for
the Coupler using the indicies defined in cpl_fields_mod to place data in the
correct location in buf. Then the INTERFACE send routine is called:

call cpl_interface_contractSend(cpl_fields_cplname, contractS, ibufi, buf)

A receive reverses this order. First a call is made to cpl_interface_contractRecv,
then data is copied out of buf using the indicies in cpl_fields_mod into the ap-
propriate internal datatypes and scalars from the INFOBUFFER are also accessed
using the indicies in cpl_fields_mod and the ibufi or ibufr arrays.

41

Part III
Scientific Reference

11 Introduction

This part of the documentation describes the scientific requirements behind the
design of the CCSM Coupler. It also provides the details behind the scientific
calculations performed in the Coupler including atmosphere-ocean flux calcula-
tions and mapping between different grids.

12 What is a "Coupler"?

The CCSM coupled model is a framework that divides the complete climate sys-
tem into component models connected by a coupler. In this design the Coupler
is a hub that connects four major component models — atmosphere, land, ocean,
and sea-ice (see Figure 3. We’ll ignore the river model component contained in
the land model). Each component model is connected to the Coupler, and each
exchanges data with the Coupler only. The CCSM is not a particular climate
model, but a framework for building and testing various climate models for var-
ious applications. In this sense, more than any particular component model,
the Coupler defines the high-level design of CCSM software. The Coupler code

Figure 3: The CCSM Coupled Model Framework in its most basic form.

has several key functions within the CCSM framework:

e It allows the CCSM to be broken down into separate components, at-
mosphere, sea-ice, land, and ocean, that are "plugged into" the Coupler.
Each component model is a separate code that is free to choose its own
spatial resolution and time step. Individual components can be created,
modified, or replaced without necessitating code changes in other compo-
nents. CCSM components run as separate executables communicating via
message passing (MPI).

e It controls the execution and time evolution of the complete CCSM by
synchronizing and controlling the flow of data between the various com-
ponents.

13 DEVELOPMENT HISTORY 42

e It communicates interfacial fluxes between the various component models
while insuring the conservation of fluxed quantities. For certain flux fields,
it also computes interfacial fluxes based on state variables. In general, the
Coupler allows any given flux field to be computed once in one component,
this flux field is then routed through the Coupler so that other involved
components can use this flux field as boundary forcing data.

13 Development History

The origins of the Coupler are in the Oceanography Section (OS) of the Climate
and Global Dynamics Division (CGD) of the National Center for Atmospheric
Research (NCAR). While coupling the Community Climate Model (CCM2, the
atmosphere model) with a regional Pacific Basin Model for ESNO /El-Nino stud-
ies (Gent, Tribbia, Kauffman, & Lee, 1990), it became clear that it was ex-
tremely awkward to couple the models by implementing the ocean model as
a subroutine within an atmosphere model. An idea emerged that a more de-
sirable software architecture would be to have both the ocean and atmosphere
models as subroutines to a higher-level driver/coupler program. This “coupler”
component would reconcile the differing component model spatial grids (handle
the mapping of data fields), reconcile different time step intervals, and control
when the coupled system would start and stop. Thus the two component mod-
els could be very independent and largely unaware of the software details of
the other components. The modularity of this arrangement also suggested a
framework in which, for example, it would be relatively easy to exchange one
ocean component for another.

Other OS scientists joined in (McWilliams, Large, Bryan, 1991), and to-
gether worked out a scientific design philosophy for the Coupler and the cou-
pled system, for example, that the appropriate boundary conditions for com-
ponent models were the fluxes across the surface interfaces, that fluxes should
be conserved, and that ad hoc flux corrections were undesirable. Frank Bryan
suggested the models be separate executables communicating by message pass-
ing rather than subroutines in a single executable, this resulted in an MPMD
implementation that proved extremely successful.

Climate Modeling Section (CMS) scientists joined the effort (Boville, et.al.,
1992), working on the atmosphere component (CCM) so that it produced a
quality simulation when bottom boundary conditions were fluxes instead of fixed
BC’s. The CMS also had experience in managing community modeling efforts —
the CMS managed the development of the CCM, a very successful community
atmosphere climate model. With the Coupler and its associated framework, and
with a critical mass of engaged ocean and atmosphere model scientists, it now
seemed plausible to start an institutional coupled climate model project.

A proposal was made to NSF for a new, NCAR-wide, Climate System Model
(CSM) Project (1993), with the long-term goal of building, maintaining, and
continually improving a comprehensive model of the climate system. The Cou-
pler proto-type code and design philosophy formed the basis for CSM’s software
framework. The CSM project was funded and formally began in 1994.

Also during this time, the Department of Energy had funded the develop-
ment of the Parallel Climate Model in a group lead by Warren Washington which
included Tony Craig and Tom Bettge. Around the year 1999, it was decided to

14 SCIENTIFIC REQUIREMENTS 43

merge the two models and create one high-performance parallel Community Cli-
mate System Model. The creation of a coupler which could be both a distributed
memory parallel application and still function as the “hub” in the CCSM system
was a very difficult problem. To solve this problem, a team consisting of NCAR
scientists from the CCSM and PCM projects (Kauffman, Craig and Bettge)
and scientists from DOE laboratories at Argonne (Jacob, Larson and Ong) and
Berkeley (Ding, He) was assembled. The resulting effort created not only cpl6
but two standalone software packages: the Model Coupling Toolkit, the which
underlies most of cpl6 and handles all the communication intricacies presented
by CCSM, and MPH, which handles high-level allocation of MPI resources.

The name, "cpl6" or "Coupler, version 6", alludes to six versions of the
Coupler, they are:

cpll (Kauffman, 1990): a rough proto-type code, never released. Coupler
is a driver program that handles all high-level control (eg. start/
stop/advance of component models) and all mapping between grids.
The complete system is a single-executable with two swappable com-
ponent model subroutines: ocean/ice and atmosphere/land. Written
in Fortran 77.

cpl2 (NCAR/CGD, Oceanography Section, 1992): a proto-type code,
never released. New scientific design philosophy, does flux calcu-
lations, insures conservation of fluxed quantities. Complete system
uses component models that are separate executables. Uses PVM
for message passing.

cpl3 (NCAR/CGD, 1996): released with CSM 1.0 Has three component
models: atmosphere/land, ocean, and ice. First fully functional ver-
sion. Uses MCL for message passing. Uses netCDF.

cpld (NCAR/CGD, 1998): released with CSM 1.2 Has four component
models: atmosphere, land, ocean, and ice. Uses MPI for message
passing.

cpl5 (NCAR/CGD, 2002): released with CCSM 2.0 Written in Fortran
90, uses SCRIP to generate mapping data, handles shifted pole grids.

cplé (NCAR/CGD, ANL/MCS, LBNL 2004): released with CCSM 3.0
Has all the functionality of cpl5 but is a complete rewrite which
generalizes the interface between models and the Coupler and also
allows data parallelism. Built on top of MCT and also uses MPH3.

14 Scientific Requirements

The design of the Coupler and the CCSM modeling framework were motivated
by a variety of scientific and software design issues. Following are some of the
major design and functionality considerations which addressed the deficiencies
of standard coupling strategies at the time of Coupler’s inception (circa 1991),
and which have continued to be important considerations.

14 SCIENTIFIC REQUIREMENTS 44

(a) System decomposition and component model code independence
The CCSM coupling strategy and the Coupler component (see Figure 1)
allows an intuitive decomposition of the large and complex climate system
model. To a large extent, the separate component models, atmosphere,
sea-ice, land, and ocean, can be designed, developed, and maintained in-
dependently, and later "plugged into" the Coupler to create a complete
climate system model. At the highest design level, this creates a highly
desirable design trait of creating natural modules (or "objects") with max-
imum internal cohesion and minimal external coupling.

(b) Control of the execution and time evolution of the system.
The Coupler (a natural choice), rather than one of the component mod-
els (any of which would be an arbitrary and asymmetrical choice), is re-
sponsible for controlling the execution and time evolution of the complete
system.

(c) The appropriate boundary condition for all component models
are the fluxes across the surface interfaces.
In terms of the climate simulation, the Coupler (originally called the "Flux
Coupler") couples component models by providing flux boundary condi-
tions to all component models. State variables flow through the Coupler
only if necessary for a flux calculation in the Coupler or a component
model.

(d) Conservation of fluxed quantities.
The Coupler can conserve all fluxed quantities that pass through it. Since
all surface fluxes pass through the Coupler, this framework assures that
all surface fluxes in the system are conserved. The Coupler also can and
does monitor flux conservation by doing spatial and temporal averages of
all fluxed quantities.

(e) A flux field should should be computed only once, in one compo-

nent, and then the field should be given to other components,
as necessary.
For example, generally the resolution of the ocean component is finer
than that of the atmospheric component. Heat is not conserved if the
atmosphere component computes long wave radiation using sea surface
temperature (SST) averaged onto the atmosphere’s grid, while the ocean
component uses individual grid point SSTs. This is because the flux cal-
culation is proportional to SST* (is non-linear) and the two calculations
will yield two different results . Instead of trying to compute the same
flux twice, on two different grids in two different components, the flux
should be computed once and then be mapped, in a conservative manner,
to other component grids.

(f) Fluxes can be computed in the most desirable place.
For example, when an atmospheric grid box covers both land and ocean,
a problem arises if wind stress is first computed on the atmospheric grid
and then interpolated to the ocean grid. If land roughness is significantly
larger than ocean roughness (as is typical), and the atmosphere uses an
average underlying roughness to compute the wind-stress, and then wind-
stress is interpolated to coastal land and ocean cells, wind-stress will be

15 DATA EXCHANGED WITH COMPONENT MODELS 45

considerably lower (for land) or higher (for ocean) than it should be. This
approach can lead to unrealistic coastal ocean circulations. In this case it
is more desirable to compute the surface stresses on the surface grids and
subsequently merge and map them to the atmospheric grid. Thus this
calculation should take place in either the Coupler, land, ice, or ocean
models.

In the case of computing precipitation, because this calculation requires
full 3D atmospheric fields, and because only 2D surface fields are ex-
changed through the Coupler, this calculation should take place in the
atmosphere component.

(g) Allowing the coupling of component models with different spatial
grids.
In general it is desirable to allow the different component models to exist
on different spatial grids. It is also desirable that a component model
need not be aware of, or concerned with, the spatial grids that other
component models are using. The Coupler handles all mapping between
disparate model grids, allows component models to remain unaware and
unconcerned with the spatial grids of other CCSM components.

Due to scientific considerations, the current version of CCSM requires that
the atmosphere and land components be on the same spatial grid. Because
it is not a requirement to do so, the Coupler does not have the functionality
to allow the atmosphere and land to be on different grids. Similarly, the
current version of CCSM requires that ocean and sea-ice components be
on the same grid and the Coupler does not have the functionality to allow
them to be on different grids.

Except as noted above, no component needs to know what spatial grid
other components are using. The Coupler is responsible for all mapping
between the various spatial grids of the various components models. The
component models themselves have no knowledge of what other grids are
involved in the coupled system and they can remain unconcerned with any
issues regarding mapping between grids.

(h) Allowing the coupling of models with different time steps.
While there are some restrictions on what internal time step models are
allowed to use (for example, there must be an integer number of time steps
per day), the Coupler offers component models considerable freedom in
choosing their internal time step. Frequently all four CCSM components
operate with four different internal time steps.

15 Data Exchanged with Component Models

Each component model exchanges data with the Coupler only. Component
models have no direct connection with each other — all data is routed through
the Coupler. Most data is in the form of 2D fields. This data is accompanied by
certain timing and control information (arrays of scalar real or integer values),
such as the current simulation data and time.

15 DATA EXCHANGED WITH COMPONENT MODELS 46

15.1 Units Convention

All data exchanged conforms to the following sign convention:

‘ positive value <= downward flux

And these unit conventions:

temperature Kelvin

salinity 9/kg
velocity m/s
pressure N/m? = Pa
humidity kg/kg

air density kg/m?

momentum flux N/m?2

heat flux W /m?

water flux (kg/s)/m?

salt flux (kg/s)/m?
coordinates degrees north or east
2

area radians

domain mask 0 <= an inactive grid cell

15.2 Time Invariant Data

This section provides a list of the time invariant data exchanged between the
Coupler and each component model. Generally this data is the "domain" data:
coordinate arrays, domain mask, cell areas, etc. It is assumed that the do-
main of all models is represented by a 2D array (although not necessarily a
latitude/longitude grid).

15.2.1 Data sent to Coupler

domain data

e grid cell’s center coordinates, zonal (degrees north)

e grid cell’s center coordinates, meridional (degrees east)

e grid cell area (radians squared)

e grid cell domain mask (0 <= not in active domain)

e ninj: the dimensions of the underlying 2D array data structure
time coordination data

e ncpl: number of times per day the component will communicate (exchange
data) with the Coupler.

15 DATA EXCHANGED WITH COMPONENT MODELS 47

other information

e IC flag: indicates whether the Coupler should use model IC’s contained
on the Coupler’s restart file or IC’s in the initial message sent from the
component model.

15.2.2 Data sent to Component Models

time coordination data

e date, seconds: the exact time the Coupler will start the simulation from.

15.3 Time Variant Data

This section provides a list of the time-evolving data sent exchanged between
the Coupler and each component model. This list is also contained in the
cpl_fields_mod module in cpl6. Generally a quantity is a state or a flux.
Some state variables are used only as diagnostics and are denoted with a *.

Each component model provides the Coupler with a set of output fields.
Output fields from a model include output states (which can be used by another
component to compute fluxes) and output fluxes (fluxes that were computed
within the model and which need to be exchanged with another component
model.

The Coupler provides each component model with input fields. Input fields
sent to a model include input states (the state variables of other models, which
are needed to do a flux calculation) and input fluxes (a forcing fields computed
by some other component).

Flux fields sent to, or received from, the Coupler are understood to apply
over the communication interval beginning when the data was received and end-
ing when the next message is received. The component models must insure that
fluxes sent to the Coupler are computed with this in mind — failure to do so
may result in the non-conservation of fluxes. For example, if the atmosphere
component communicates with the Coupler once per hour, but takes three inter-
nal time steps per hour, then the precipitation (water flux) sent to the Coupler
should be the average precipitation over an hour (the average precipitation over
three internal time steps). Similarly, if the ocean component has a communi-
cation interval of one day, but takes 50 internal time steps per day, then the
precipitation flux field it receives from the Coupler should be applied as ocean
boundary condition forcing for all 50 time steps during the next communication
interval.

15.3.1 Atmosphere Model

Data sent to Coupler (* = diagnostic)
states
e layer height (m)
e zonal velocity (m/s)
e meridional velocity (m/s)

e temperature (Kelvin)

15 DATA EXCHANGED WITH COMPONENT MODELS

e potential temperature (Kelvin)
e pressure (Pa)

e equivalent sea level pressure (Pa)
e specific humidity (kg/kg)

e air density (kg/m?)

fluxes
e precipitation: liquid, convective ((kg/s)/m?)
e precipitation: liquid, large-scale ((kg/s)/m?)

e precipitation: frozen, convective ((kg/s)/m?)
e precipitation: frozen, large-scale ((kg/s)/m?)
e longwave radiation, downward (W/m?)

e shortwave radiation: downward, visible , direct (W/m?)

e shortwave radiation: downward, near-infrared, direct (W/m?)
e shortwave radiation: downward, visible , diffuse (W/m?)

e shortwave radiation: downward, near-infrared, diffuse (W/m?)
e net shortwave radiation* (W/m?)

Data received from Coupler (* = diagnostic)
states

e 2 meter reference air temperature* (Kelvin)

2 meter reference specific humidity* (kg/kg)
e albedo: visible , direct [0,1]

e albedo: near-infrared, direct [0,1]

e albedo: visible , diffuse [0,1]

e albedo: near-infrared, diffuse [0,1]

o surface temperature (Kelvin)

e sea surface temperature (Kelvin)

e snow height (m)

e ice fraction [0,1]

e ocean fraction [0,1]

e land fraction [0,1] (implied by ice and ocean fractions)
fluxes

e zonal surface stress (N/m?)

e meridional surface stress (IN/m?)

e latent heat (W/m?)

e sensible heat (WW/m?)

e longwave radiation, upward (W/m?)

e evaporation ((kg/s)/m?)

48

15 DATA EXCHANGED WITH COMPONENT MODELS

15.3.2 Ice Model

Data sent to Coupler (* = diagnostic)
states

e ice fraction [0,1]

surface temperature (Kelvin)

2 meter reference air temperature* (Kelvin)

2 meter reference specific humidity* (kg/kg)
albedo: visible , direct [0,1]

albedo: near-infrared, direct [0,1]

albedo: visible , diffuse [0,1]

albedo: near-infrared, diffuse [0,1]

fluxes

atm /ice:
atm /ice:
atm /ice:
atm /ice:
atm /ice:

atm /ice:

zonal surface stress (N/m?)
meridional surface stress (N/m?)
latent heat (W/m?)

sensible heat (W/m?)

longwave radiation, upward (W/m?)

evaporation ((kg/s)/m?)

net shortwave radiation* (W/m?)

ice/ocn:

ice/ocn:
ice/ocn:
ice/ocn:
ice/ocn:

ice/ocn:

penetrating shortwave radiation (W/m?)
ocean heat used for melting (W/m?)
melt water ((kg/s)/m?)

salt flux ((kg/s)/m?)

zonal surface stress (N/m?)

meridional surface stress (N/m?)

Data received from Coupler
states

ocn: temperature (Kelvin)

ocn: salinity (g9/kg)

ocn: zonal velocity (m/s)

ocn: meridional velocity (m/s)

atm: layer height (m)

atm: zonal velocity (m/s)

atm: meridional velocity (m/s)

atm: potential temperature (Kelvin)

atm: temperature (Kelvin)

atm: specific humidity (kg/kg)

49

15 DATA EXCHANGED WITH COMPONENT MODELS 50

atm: density (kg/m?)
ocn: dh/dx: zonal surface slope (m/m)

ocn: dh/dy: meridional surface slope (m/m)

fluxes

ocn: @ > 0: heat of fusion (W/m?), or
@ < 0: melting potential (W/m?)

atm: shortwave radiation: downward, visible , direct (W/m?)

atm: shortwave radiation: downward, near-infrared, direct (W/m?)
atm: shortwave radiation: downward, visible , diffuse (W/m?)

atm: shortwave radiation: downward, near-infrared, diffuse (W/m?)
atm: longwave radiation, downward (W/m?)

atm: precipitation: liquid ((kg/s)/m?)

atm: precipitation: frozen ((kg/s)/m?)

15.3.3 Land Model

Data sent to Coupler (* = diagnostic)
states

surface temperature (Kelvin)

2 meter reference air temperature* (Kelvin)
2 meter reference specific humidity* (kg/kg)
albedo: visible , direct [0,1]

albedo: near-infrared, direct [0,1]

albedo: visible , diffuse [0,1]

albedo: near-infrared, diffuse [0,1]

snow depth (m)

fluxes

zonal surface stress (N/m?)
meridional surface stress (IN/m?)
latent heat (W/m?)

sensible heat (W/m?)

longwave radiation, upward (W/m?)
evaporation ((kg/s)/m?)

coastal runoff ((kg/s)/m?)

Data received from Coupler
states

atm layer height (m)

atm zonal velocity (m/s)

15 DATA EXCHANGED WITH COMPONENT MODELS 51

e atm meridional velocity (m/s)

e atm potential temperature (Kelvin)
e atm specific humidity (kg/kg)

e atm pressure (Pa)

e atm temperature (Kelvin)

fluxes
e precipitation: liquid, convective ((kg/s)/m?)
e precipitation: liquid, large-scale ((kg/s)/m?)

e precipitation: frozen, convective ((kg/s)/m?

m?)
e precipitation: frozen, large-scale ((kg/s)/m?)
e longwave radiation, downward (W/m?)
e shortwave radiation: downward, visible , direct (W/m?)
e shortwave radiation: downward, near-infrared, direct (W/m?)
e shortwave radiation: downward, visible , diffuse (W/m?)

e shortwave radiation: downward, near-infrared, diffuse (W/m?)

15.3.4 QOcean Model

Data sent to Coupler
states

e surface temperature (Kelvin)

salinity (g/kg)
zonal velocity (m/s)

meridional velocity (m/s)

dh/dx: zonal surface slope (m/m)

dh/dy: meridional surface slope (m/m)
fluxes

e () > 0: heat of fusion (W/m?), or
Q < 0: melting potential (W/m?)

Data received from Coupler
states

e equivalent sea level pressure (Pa)
e ice fraction [0,1]

e 10m wind speed squared (m/s)?
fluxes

e zonal surface stress (N/m?)

e meridional surface stress (IN/m?)

16 CALCULATIONS PERFORMED IN THE COUPLER 52

e shortwave radiation, net (W/m?)

e latent heat (W/m?)

e sensible heat (W/m?)

e longwave radiation, upward (W/m?)

e longwave radiation, downward (W/m?)
e ocean heat used for melting (W/m?)

o salt flux ((kg/s)/m?)

e precipitation: rain ((kg/s)/m?)

e precipitation: snow ((kg/s)/m?)

e precipitation: rain + snow ((kg/s)/m?)
e evaporation ((kg/s)/m?)

o melt water ((kg/s)/m?)

e coastal runoff ((kg/s)/m?)

16 Calculations Performed in the Coupler

The Coupler performs crucial scientific calculations which, by design of the hub-
and-spoke system, are not or can not be handled by the component models but
are essential to the coupled integration. This section provides a description of
these calculations.

16.1 Mapping

The Coupler is responsible for mapping (also called interpolation or regridding)
data from one model’s grid to another. The Coupler implements this mapping
as a matrix-vector multiply which in case of mapping atmosphere data to the
ocean grid would be:

n atmosphere grid points Wip Wiz ... Wim m ocean grid points
- % ~ w21 W22 ... W2m - A\ ~
(a1 az ... ap) . .) . =(o1 02 ... Om)

Wn1 Wn2 ... Wnm

The 1xN matrix A contains all of the atmosphere grid points in a 2D horizontal
plane unrolled into a single vector while the Mx1 matrix O contains all the
points in a 2D horizontal slice of the ocean grid. For a T42 atmosphere and x1
ocean grid, the matrix W would contain (64 x 128) = 8192 rows and (320 x
384) = 122800 columns! Luckily most of the elements of W are zero and this is
really a sparse matrix multiply. The Coupler only stores the non-zero elements
and their (i,7) locations and performs the multiply with the corresponding it"
element from the atmosphere grid and j** element from the ocean using the
cpl_map_bun and the underlying MCT method, sMatAvMult.

The mapping weights in W are stored in files and pre-calculated using
the Spherical Coordinate Remapping and Interpolation Package (SCRIP). See
http://climate.lanl.gov/Software/SCRIP/. Two methods for calculating the

16 CALCULATIONS PERFORMED IN THE COUPLER 53

weights are used in the Coupler. All state data is mapped with weights cal-
culated using SCRIP’s bilinear interpolation scheme while all fluxes are mapped
with weights calculated using SCRIP’s second-order conservative remapping
scheme.

Given the assumptions of only 3 grids (Sec. 9.2), there are 5 sets of map-
ping weights read in by the Coupler: bilinear and conservative mappings for
atmosphere to ocean grids, bilinear and conservative mappings for ocean to at-
mosphere and a conservative remapping for the river to the ocean grid (ocean
to river is obviously not needed).

Note that the grid point numbering scheme mentioned in Section 10.2 is
also present in the calculation of the mapping weights: the number of a model’s
grid point corresponds to the number of the row or column of that point in the
mapping matrix W.

16.2 Atmosphere/Ocean Surface Fluxes

The Coupler calculates the fluxes between the atmosphere and ocean for the
following reasons: By convention, fluxes between two models with different res-
olutions are calculated on the grid with the higher resolution. The atmosphere
model can not calculate the fluxes since that would require it to know the ocean’s
grid. The ocean only communicates with the Coupler once per day so to update
the fluxes as often sub-diurnally, the fluxes are calculated in the Coupler. The
Coupler receives ocean state data and holds it constant while calculating new
fluxes with each receive of new atmosphere data. The new fluxes are mapped
back to the atmosphere grid and sent to the atmosphere. The Coupler also
keeps a running sum of the fluxes and sends the time average to the ocean. The
atmosphere-ocean fluxes are calculated using the formulas below.

16.2.1 General Expressions

The fluxes across the interface are calculated from bulk formulae and general
expressions are

(16.1)
= *2 7 r71—1
T pa u** AU |AU|
E = PA u* Q*
H = pa Cpsg u* 0"
Lt = -6 T* ~ —¢eo0 T + of L,
where the turbulent velocity scales are given by
(16.2)
uw* = CDY? |AU]
Q* = CE |AU| (Ag) u* !

0* = CH |AU| (A8) vt

16 CALCULATIONS PERFORMED IN THE COUPLER 54

where p 4 is atmospheric surface density, Cp4 is the specific heat, o = 5.67 x
1078W/m?/K* is the Stefan-Boltzmann constant, € is the emissivity of the
interface, and o is the surface albedo for incident longwave radiation, L |. In
(16.2) the differences AU, Aq and Af are defined at each interface in accord
with the convention of fluxes being positive down. The reflected downward
incident longwave radiation is simply accounted for by assuming an emissivity,
€ = 1, and the water surface albedo for incident longwave radiation, o = 0.0.

The transfer coefficients in (16.2), shifted to a height, Z, and considering
the appropriate stability parameter, ¢, are :

(16.3)
- 12

CD = k%l|in (%) —VYm
- 7 1-1 7 ~1

CE = &«? _ln (Z—) —1/)m_ [ln (Z—) —1/15]
- 11 -1
CH = &? _ln (;) —1/1m_ [ln (%) —¢s])

where k = 0.4 is von Karman’s constant and the integrated flux profiles, ,,
for momentum and s for scalars, are functions of the stability parameter, (.
These functions as used in the coupler are:

@bm(o = ws(o = =5¢ ¢ >0
Ym(() = 2In[0.5(1+ X)] +In[0.5(1+ X?)] —2tan ' X + 057 ¢ < 0
¥s(¢) = 2in][0.5(1+ X?)] (<0

X (1—16¢)H/*

Above the atmospheric interfaces ¢ = 1, 2 and 3 the stability parameter

L 0
¢ = EZ’&A(E (Z7;1+QA)) ;

where virtual potential temperature is computed as 6, = 04(1 + Z,q4), qa
and 64 are the lowest level atmospheric humidity, and potential temperature,
respectively, and Z, = (o(water)/o(air)) — 1 = 0.606.

In addition to surface fluxes, the atmospheric model requires effective surface
albedos for both direct a(dir), and diffuse, a(di f), radiation at each wavelength.
They are used in a single call to the computationally demanding atmospheric
radiation routines. This call gives downward atmospheric albedo for diffuse
radiation, a,(dif). If direct and diffuse albedos, o™ (dir) and o™ (dif) for m =
1, M different surfaces below an atmospheric grid cell are known, the multiple
scattering coefficients, R™ = (1 — aq(dif) a™(dif))™" are computed, and with
f™ the fractional coverage of each surface type, then the albedos are given by

R
~
&
)
p—
|

(1-F) /(1 - Fa.(dif))
Fi (1 - a.(dif)a(dif))

R
~~
&
3
S—r
|

16 CALCULATIONS PERFORMED IN THE COUPLER 55

M
F = Z ™ R™a™(dir)
m=1

M
F=Y f"R™(1-a™(dif))
m=1

Use of these albedos ensures that the solar radiation exiting the bottom of
the atmosphere is identical to the sum of M radiation calculations, each using an
a™(dif) and o™ (dir). At present, however, the albedo calculations are greatly
simplified by assuming a,(dif) = 0, such that R™ = 1. This albedo then does
not need to be passed from the atmosphere to the coupler, and the coupler
simply computes the effective albedos to be passed to the atmosphere as

M

a(dif) = > fma™(dif)
mj\zl

a(dir) = Z ™ a™(dir)

In general the partition of radiation among the M surfaces is a function of
R™, a™(dif), and o™ (dir), and hence of wavelength. Hence, correct partition-
ing would need to be performed for each wavelength band within the radiation
transfer code of the atmospheric model. This procedure is greatly simplified by
partitioning the net solar radiation within the Coupler.

16.2.2 Specific Expressions

At the atmosphere-ocean interface the near-surface air is also assumed to be
saturated,
q=0.98 p;' Cs exp(Cq/T),

where the sea surface temperature is T = SST, Cs = 640380.0 kg/m® and
Cs = —5107.4 K, and the factor 0.98 accounts for the salinity of the ocean. The
differences (16.2) become

—

AU = Us-U
Ag = qa—gq
A6 = 04—T,

where the surface current, U , is presently assumed to be negligible.
The roughness length for momentum, Z° in meters, is a function of the
atmospheric wind at 10 meters height, Usg:

o ~1/2
Z° =10 exp — [KZ (—1 +Cy + C3U10> ‘| ;
Uio

where C; = 0.0027 m/s, Co = 0.000142, and C3 = 0.0000764 m~'s. The
corresponding drag coefficient at 10m height and neutral stability is

C{V() = 611[]1_01 + Cy + C3Upg -

16 CALCULATIONS PERFORMED IN THE COUPLER 56

The roughness length for heat, Z", is a function of stability, and for evaporation,
Z¢, is a different constant:

Zh = 22x10% (>0
= 49x10°m (<0
Z¢ = 9.5x10°m.

Since (is itself a function of the turbulent scales (16.2), and hence the
fluxes, an iterative procedure is generally required to solve (16.1). First, € is set
incrementally greater than zero when the air—sea temperature difference suggests
stable stratification, otherwise it is set to zero. In either case, ¥, = ¥s = 0, and
the initial transfer coefficients are then found from the roughness lengths at this
¢ and U9 = Us. As with sea—ice, these coefficients are used to approximate
the initial flux scales (16.2) and the first iteration begins with an updated ¢ and
calculations of 9,,, and ;. The wind speed, U4, is then shifted to its equivalent
neutral value at 10m height :

/ON —
Uio=Ua (1+ fl"ln(f—g—wm(o)) 1

This wind speed is used to update the transfer coefficients and hence the flux
scales. The second and final iteration begins with another update of (. The
final flux scales then give the fluxes calculated by (16.1).

16.3 Surface Albedo and Net Absorbed Solar Radiation

For the ice, land, and ocean components there are four surface albedos that are
used by the atmosphere component to compute four corresponding components
of downward shortwave. Subsequently, the four albedos, together with the four
downward shortwave fields, are used to compute net absorbed shortwave flux
from the atmosphere to the surface components:

4
SWoet = > SWik,, (1—a™)
m=1

where m = 1, ...,4 corresponds to near-infrared/diffuse, visible/diffuse, near-
infrared/direct, and visible/direct shortwave components.

The ice and land components each compute their own surface albedos and,
given the downward shortwave fields, compute their own net absorbed shortwave
radiation. For the ocean component, it is the Coupler that computes the ocean
surface albedo and computes net absorbed shortwave radiation. The Coupler
then sends the net absorbed shortwave field to the ocean component.

16.3.1 Land Surface Albedos

The land surface albedos are computed by the land component and passed on to
the atmosphere component. These albedos are not altered by the Coupler in any
way. Note that the atmosphere component may be an active model computing
downward shortwave once per hour, or it may be a data model feeding the
Coupler a daily average downward shortwave. It is the user’s responsibility to

16 CALCULATIONS PERFORMED IN THE COUPLER 57

ensure that the albedos the land model sends are appropriate considering what
type of downward shortwave fields the atmosphere component is providing.

16.3.2 Ice Surface Albedo

The ice surface albedos are computed by the ice component and passed through
the Coupler and on to the atmosphere component. These albedos are “60 degree
reference albedos” that have no diurnal cycle. Based on an input namelist
variable, £1x_albav (see the Section 4 of the User’s Guide), the Coupler will
either pass these albedos on to the atmosphere component unaltered (in which
case they are considered daily average albedos), or impose a diurnal cycle on
the albedos (in which case they are considered instantaneous albedos). When
the Coupler does add a diurnal cycle to the ice albedo, this consists of merely
setting the albedos to 1.0 on the dark side of the earth.

16.3.3 Ocean Surface Albedos

Unlike the ice and land components, the Coupler computes the ocean compo-
nent’s surface albedo. There are two ways the Coupler can compute the ocean
albedo: with a diurnal cycle (instantaneous) or without a diurnal cycle (daily
average). An input namelist variable (the f1x_albav namelist variable) selects
which option the Coupler implements.

If the albedos are computed as daily average albedos, then all four ocean
albedos are set to 0.06 everywhere, regardless of time of day or time of year.

If the albedos are computed as instantaneous albedos, then all four ocean
will be set to 1.0 on the dark side of the earth, and where the solar angle is
greater than zero, the albedos are set to a value which has both an annual and a
diurnal cycle. Ocean albedo distinguishes between direct and diffuse radiation.
The direct albedo is solar zenith angle dependent, while the diffuse is not. There
is no spectral dependence of the albedo, nor dependence on surface wind speed.
The expressions for both direct and diffuse albedo are taken from Briegleb et
al. (1986), based on fits to observations of ocean albedo, good to within +0.3%.
The albedo expressions are valid for open ocean, and do not include the effects
of suspended hydrosols in near-surface waters.

For complete details see Briegleb, B.P., P.Minnis, V.Ramanathan, and E.Harrison,
1986. “Comparison of regional clear-sky albedos inferred from satellite obser-
vations and model comparisons.” Journal of Climate and Applied Meteorology,
Vol. 25, pp.214-226.

16.4 Area normalizing

Area normalizing is done in the Coupler to correct for slight differences be-
tween the total area of the sphere assumed by a model and the SCRIP program
(Sec. 16.1). SCRIP calculates area weights for each grid as well as the mapping
weights between two grids. However each model may have its own method for
calculating the area of a grid cell. Thus when the conservative remapping is
performed to interpolate a flux from one grid to another, it preserves the total
flux over the sphere but the sphere may have a slightly different total area in the
Coupler compared to each model. This will in turn effect global conservation of
fluxed quantities. To correct for this effect, the Coupler multiplies all received

17 PHYSICAL CONSTANTS 58

fluxes by the ratio of the two areas immediately after receiving fluxes from a

component:

Areamodel
Fluxzn coupler = Flumfrom modelAi
T'€asCRIP

The corrected flux, Fluz, coupter is then used within the coupler for mapping
and any other calculations.

The Coupler receives Area,,oqe; from each model during the CONTRACT ini-
tialization (Sec. 10.2) and stores it in a DOMAIN (Sec. 8.1) under the “area”
attribute while Areagcrrp is read from the SCRIP mapping weight files dur-
ing the MAP initialization and stored in the DOMAIN under the “aream” at-
tribute. The area fractions are calculated using the areafact_init method
from areafact_mod.F90. Before calculated or mapped fluxes are sent to a

model from the Coupler, they are multiplied by ’mic’sz.

16.5 Merging and Fractional Weights

When two or more model’s supply input to another model, the input field is
formed by merging the two outputs. An example is the atmosphere where a
atmosphere grid cell may overly both open ocean and sea ice covered ocean.
In that case in CCSM3, the atmosphere-ice flux is calculated by the ice model
while the atmosphere-ocean flux is calculated by the Coupler. Before sending
to the atmosphere, these fluxes must be merged:

Fa = fz'a,-Fz'2a, + flaF1l2a + fanOZa

where
fia + fla + foa =1

F, is the total flux into the atmosphere, f;, is the fraction of ice on the at-
mosphere grid, an example of a surface fractional weight, and Fjs, is an ice-
to-atmosphere flux calculated by the ice model. The other terms or for the
land-atmosphere and ocean-atmosphere fluxes. States, such as surface temper-
ature, are also merged this way. Note that this merge is performed after all
fluxes have been mapped to the atmosphere grid. In that case fj, is always 1.
Ocean fluxes must also be merged for ocean grid cells that are only partially ice
covered. For example, the total momentum flux into the ocean is the weighted
sum of the wind stress and the sea-ice drag.

The Coupler calculates all the time-invariant surface fractions using frac_init
and updates the ice surface fractions to account for the time-varying extent of
sea ice after each receive of data from the sea ice model using frac_set. Both
methods are in frac_mod.F90.

17 Physical Constants

The CCSM code has a mechanism for facilitating the consistent use of constants
among the various CCSM components — this is the "shared constants" module
of the CCSM shared code library. The Coupler always uses shared constants
whenever possible and only defines a constant locally if no such constant is
available from the shared constants module.

17 PHYSICAL CONSTANTS 59

The Coupler source code itself (found in .. ./models/cpl/cpl6/) is incom-
plete and cannot be compiled (due to missing subroutines) unless it is compiled
along with CCSM shared code (found in . . ./models/csm_share/). This shared
code includes the shared constants module.

Constants in the Coupler whose actual values come from the shared con-
stants...

cpl_const_pi
cpl_const_rearth
cpl_const_g
cpl_const_cpdair
cpl_const_cpwv
cpl_const_cpvir
cpl_const_zvir
cpl_const_latvap
cpl_const_latice
cpl_const_stebol

SHR_CONST_PI
SHR_CONST_REARTH
SHR_CONST_G
SHR_CONST_CPDAIR
SHR_CONST_CPWV

pi

radius of earth " m
acceleration of gravity
specific heat of dry air
specific heat of water vapor

cpl_const_cpwv/cpl_const_cpdair - 1.0

SHR_CONST_ZVIR

SHR_CONST_LATVAP
SHR_CONST_LATICE
SHR_CONST_STEBOL
SHR_CONST_KARMAN

rh2o/rair - 1.0
latent heat of evaporation
latent heat of fusion

Stefan-Boltzmann

cpl_const_karman =
cpl_const_ocn_ref_sal =
cpl_const_ice_ref_sal = SHR_CONST_ICE_REF_SAL
cpl_const_spval = SHR_CONST_SPVAL

HFLXtoWFLX = -(So-Si)/(So*latice) ! converts

SHR_CONST_OCN_REF_SAL ! ocn reference salinity
ice reference salinity
special value

heat to water for diagnostics

!
!
!
! Von Karman constant
!
!
!

The actual values for the shared constants above...

SHR_CONST_PI 3.14159265358979323846 !

pi

SHR_CONST_REARTH = 6.37122e6 ! radius of earth " m

SHR_CONST_G = 9.80616 ! acceleration of gravity ~ m/s"2
SHR_CONST_CPDAIR = 1.00464e3 ! specific heat of dry air ~ J/kg/K
SHR_CONST_CPWV = 1.810e3 ! specific heat of water vap ~ J/kg/K

SHR_CONST_ZVIR = (SHR_CONST_RWV/SHR_CONST_RDAIR)-1.0 ! RWV/RDAIR - 1.0

SHR_CONST_LATVAP = 2.501e6 ! latent heat of evaporation ~ J/kg
SHR_CONST_LATICE = 3.337e5 ! latent heat of fusion ~ J/kg
SHR_CONST_STEBOL = 5.67e-8 ! Stefan-Boltzmann constant ~ W/m~2/K~4
SHR_CONST_KARMAN = Von Karman constant

SHR_CONST_OCN_REF_SAL = 3 ! ocn ref salinity (psu)

1
1
0.4 !
!
SHR_CONST_ICE_REF_SAL !

4.7
4.0 ! ice

ref salinity (psu)

SHR_CONST_RWV =
SHR_CONST_RGAS/SHR_CONST_MWWV !
SHR_CONST_RDAIR =

Water vapor gas constant ~ J/K/kg

SHR_CONST_RGAS/SHR_CONST_MWDAIR ! Dry air gas constant ~ J/K/kg
SHR_CONST_RGAS =

SHR_CONST_AVOGAD*SHR_CONST_BOLTZ ! Universal gas constant ~ J/K/mole
SHR_CONST_MWWV = 18.016 ! molecular weight water vapor
SHR_CONST_MWDAIR = 28.966 ! molecular weight dry air ~ kg/kmole
SHR_CONST_BOLTZ = 1.38065e-23 ! Boltzmann’s constant ~ J/K/molecule
SHR_CONST_AVOGAD = 6.02214e26 ! Avogadro’s number ~ molecules/kmole

Constants in the Coupler whose values do not come from the shared con-

stants...

17 PHYSICAL CONSTANTS 60

albdif =

albdir
umin
zref
ztref
spval

60 deg reference albedo, diffuse for ocn albedo
60 deg reference albedo, direct for ocn albedo
minimum wind speed (m/s) for atm/ocn flux
reference height (m) for atm/ocn flux
reference height for air T (m) for atm/ocn flux
flags special value (missing value)

calc
calc
calc
calc
calc

61

Part IV
Appendix

18 Glossary

combine
Add together two or more fields that are on the same domain; e.g., latent
heat flux plus sensible heat flux on a T42 grid with the same land mask

communication interval
The time interval at which a component model exchanges data with the
coupler.

concurrent execution
When two or more coupled system components are executing at the same time.

domain
A grid together with a domain mask.

domain mask
A mask that indicates which grid cells are active or inactive.

grid
Coordinate arrays without a mask, cell area, decomposition information;
e.g., a T42 grid.
map
Same as "regrid"; interpolate data from one domain to another.
mask
True/false flags associated with a specific grid; e.g., a land mask.
merge
Combining two or more fields into one unified field.
regrid

Same as "map"; interpolate data from one domain to another.

sequential execution
When two or more coupled system components execute in turn.

timestep
A model’s internal integration increment in time. Note: the Coupler does
not know a model’s internal timestep, it only knows a model’s communication
interval.

