
Glimmer-CISM 1.7.1 Documentation

Magnus Hagdorn1, Ian Rutt2, Tony Payne3 Felix Hebeler4 and Timothy R. Wylie

May 28, 2013

1Magnus.Hagdorn@ed.ac.uk
2I.C.Rutt@bristol.ac.uk
3A.J.Payne@bristol.ac.uk
4fhebeler@geo.unizh.ch

ii

Contents

I User Documentation 1

1 User Guide 3
1.1 Introduction . 3

1.1.1 Overview . 3
1.1.2 Climate Drivers . 4
1.1.3 Configuration, I/O and Visualisation . 4

1.2 Getting and Installing GLIMMER . 6
1.2.1 Prerequisites . 6
1.2.2 The GLIMMER Directory Structure . 6
1.2.3 Installing a Released Version of GLIMMER 7
1.2.4 Installing from CVS . 7
1.2.5 Profiling . 8
1.2.6 Restarts . 8

1.3 GLIDE . 8
1.3.1 Configuration . 8

1.4 Example Climate Drivers . 15
1.4.1 EISMINT Driver . 15
1.4.2 EIS Driver . 16
1.4.3 GLINT driver . 18

1.5 Supplied mass-balance schemes . 22
1.5.1 Overview . 22
1.5.2 Annual PDD scheme . 23
1.5.3 Daily PDD scheme . 25

2 Tutorial 27
2.1 Introduction . 27
2.2 EISMINT: using glimmer-example . 27
2.3 EIS: using glimmer-tests . 29

2.3.1 A short introduction to the EIS driver parameterisation 29
2.4 GLINT: using glint-example . 31

II Developer Documentation 33

3 Numerics 35
3.1 Ice Thickness Evolution . 35

3.1.1 Numerical Grid . 36
3.1.2 Ice Sheet Equations in σ–Coordinates . 38
3.1.3 Calculating the Horizontal Velocity and the Diffusivity 39
3.1.4 Solving the Ice Thickness Evolution Equation 39
3.1.5 Calculating Vertical Velocities . 42

iii

iv CONTENTS

3.2 Temperature Solver . 44

3.2.1 Vertical Diffusion . 45

3.2.2 Horizontal Advection . 45

3.2.3 Heat Generation . 46

3.2.4 Vertical Advection . 46

3.2.5 Boundary Conditions . 47

3.2.6 Putting it all together . 47

3.3 Basal Boundary Condition . 48

3.3.1 Mechanical Boundary Conditions . 49

3.3.2 Thermal Boundary Conditions . 49

3.3.3 Numerical Solution . 51

3.3.4 Basal Hydrology . 51

3.3.5 Putting It All Together . 51

3.4 Isostatic Adjustment . 53

3.4.1 Calculation of ice-water load . 53

3.4.2 Elastic lithosphere model . 54

3.4.3 Relaxing aesthenosphere model . 54

4 Developer Guide 55

4.1 Introduction . 55

4.2 Introduction to GLIMMER programming techniques 56

4.2.1 Fortran Modules . 56

4.2.2 Derived types . 58

4.2.3 Object-orientation with modules and derived types 58

4.2.4 Example of OOP in Glimmer . 59

4.2.5 Pointers . 60

4.3 GLIMMER structure and design . 62

4.3.1 Overview . 62

4.3.2 GLIDE structure . 63

4.3.3 GLINT structure . 66

4.4 Physics documentation . 68

4.4.1 Ice temperature evolution routines . 68

4.5 Configuration File Parser . 70

4.5.1 File Format . 70

4.5.2 Architecture Overview . 70

4.5.3 API . 71

4.6 netCDF I/O . 72

4.6.1 Data Structures . 72

4.6.2 The Code Generator . 72

4.6.3 Variable Definition File . 72

III Appendix 75

A netCDF Variables 77

A.1 Glide Variables . 77

A.2 EIS Variables . 79

A.3 GLINT Variables . 79

CONTENTS v

B The GLIMMER API 81
B.1 GLUM . 81

B.1.1 Subroutine open log . 81
B.1.2 Subroutine ConfigRead . 81
B.1.3 Subroutine CheckSections . 82

B.2 GLIDE . 82
B.2.1 Subroutine glide config . 82
B.2.2 Subroutine glide initialise . 82
B.2.3 Subroutine glide nc fillall . 82
B.2.4 Subroutine glide tstep p1 . 83
B.2.5 Subroutine glide tstep p2 . 83
B.2.6 Subroutine glide tstep p3 . 83
B.2.7 Subroutine glide finalise . 84

B.3 GLINT . 84
B.3.1 Subroutine initialise glint . 84
B.3.2 Subroutine glint . 85
B.3.3 Subroutine end glint . 87
B.3.4 Function glint coverage map . 87

vi CONTENTS

Part I

User Documentation

1

Chapter 1

User Guide

1.1 Introduction

GLIMMER1 is a set of libraries, utilities and example climate drivers used to simulate ice
sheet evolution. At its core, it implements the standard, shallow-ice representation of ice sheet
dynamics. This approach to ice sheet modelling is well-established, as are the numerical methods
used. What is innovative about GLIMMER is its design, which is motivated by the desire to
create an ice modelling system which is easy to interface to a wide variety of climate models,
without the user having to have a detailed knowledge of its inner workings. This is achieved
by several means, including the provision of a well-defined code interface to the model2, as well
as the adoption of a very modular design. The model is coded almost entirely in standards-
complient Fortran 95, and extensive use is made of the advances features of that language.
NOTE: Parts of this documentation are known to be out of date and will updated
as part of an upcoming, stand-alone model release. The model options discussed in
section 1.3.1 have been updated to be consistent with the version of CISM released
as part of CESM 1.2.

1.1.1 Overview

GLIMMER consists of several components:

• GLIDE: General Land Ice Dynamic Elements: the core of the model. This component is
the actual ice sheet model. GLIDE is responsible for calculating ice velocities, internal ice
temperature distribution, isostatic adjustment and meltwater production. GLIDE needs
some representation of the climate to run, provided by a driver program. The user may
write their own driver code, or may use one of the four supplied drivers (see section 1.1.2
below).

• SIMPLE: Simple climate drivers that implement the experiments of the first phase of
the EISMINT project, with idealised geometry.

• GLINT: GLIMMER Interface. Originally developed for the GENIE3 Earth Systems
Model, GLINT allows the core ice model to be coupled to a variety of global climate
models, or indeed any source of time-varying climate data on a lat-long grid. An example
driver is provided to illustrate the use of GLINT, which uses temperature and precipitation
data to drive a positive degree day (PDD) mass-balance model.

1GLIMMER was originally an acronym, reflecting the project’s origin within GENIE. The meaning of the
acronym is no longer important, however.

2The API, in computer-speak.
3Grid-ENabled Integrated Earth-system model

3

4 CHAPTER 1. USER GUIDE

• EIS: Edinburgh Ice Sheet climate driver based on a parameterisation of the equilibrium
line altitude, sea-level surface temperatures and eustatic sea-level change.

• EISMINT3: An implementation of a later part of the EISMINT project, concerning the
modelling of the Greenland ice sheet.

• GLUM: GLimmer Useful Modules, various utility procedures used by the other compo-
nents.

• Visualisation programs using GMT4.

GENIE
(or another

global climate
model)

GLIMMER

GLUM

GLIDE
GLINT

EIS

SIMPLE

Climate Drivers

EISMINT3

GLINT
Example

GLINT Drivers

Figure 1.1: Relationship between the various GLIMMER components.

The relationship between the GLIMMER components is illustrated in Figure 1.1.

1.1.2 Climate Drivers

The core ice sheet model, GLIDE, is connected to the climate via the surface mass balance and
temperature fields and (optionally) a scalar value for eustatic sea level. These drivers can be
derived from simple assumptions, e.g. uniform mass balance or EISMINT tests, or from climate
model output, e.g. GENIE or a regional climate model. These components, and how they relate
to each other, are outlined in Figure 1.2.

1.1.3 Configuration, I/O and Visualisation

In general terms, each component is configured using a configuration file similar to Windows
.ini files. At run-time, model configuration is printed to a log file.

2D and 3D data is read/written to/from netCDF files using the CF (Climate-Forecast)
metadata convention5. NetCDF is a scientific data format for storing multidimensional data in
a platform- and language-independent binary format. The CF conventions specify the metadata
used to describe the file contents.

Many programs can process and visualise netCDF data, e.g. OpenDX, Matlab, IDL, etc.
Additionally, the GLIMMER code bundle contains GMT scripts written in Python to visualise
the output.

4Generic Mapping Tools
5http://www.cgd.ucar.edu/cms/eaton/cf-metadata/

1.1. INTRODUCTION 5

The blue boxes indicate routines
supplied by the GLIDE library.

The ice sheet communicates with
the surrounding climate via surface
temperature and mass balance fields.
Although there is no reason why other
fields could not be modified.

It would be a good idea to split out the
isostasy calculations at some stage.

The green boxes indicate user supplied
routines dealing with the climate forcing
of the model.

Currently, there are two example drivers:
1. simple_glide: simple EISMINT type
climate forcing.
2. eis_glide: the ice sheet is forced using
the same functions as I used in my thesis

finalise Glide

start logging

finish logging

intialise Glide

intialise Climate

read climate
configuration

initialise climate
calculations

set surface
mass balance

set surface
temperature

write netCDF
climate variables

(optional)

read configuration

scale parameters

allocate arrays

load sigma file

configure I/O

read input netCDF

create output files

calculate initial
temperature
distribution

close all
open files

deallocate
arrays

calculate
derivatives

calculate
temperatures

calculate
velocities

write output

evolve ice
thickness

update Climate

step ice model
part 1

new time step

step ice model
part 2

write climate

step ice model
part 3

isostasy

handle marine
margin

Figure 1.2: Outline of the GLIDE and Climate components.

6 CHAPTER 1. USER GUIDE

1.2 Getting and Installing GLIMMER

GLIMMER is a relatively complex system of libraries and programs which build on other li-
braries. This section documents how to get GLIMMER and its prerequisites, compile and install
it. Please report problems and bugs to the GLIMMER mailing list6.

1.2.1 Prerequisites

GLIMMER is distributed as source code; a sane build environment is therefore required to
compile the model. On UNIX systems GNU make7 is suggested, since the Makefiles may rely
on some GNU make specific features. There are two ways of getting the source code:

1. download a released version from the GLIMMER website89, or

2. download the latest developers’ version of GLIMMER and friends from NeSCForge10 using
CVS11.

For beginners, the latest release is recommended. More experienced users may want to try the
CVS version, as it will have all the latest bug-fixes and new features.

In either case, a good f95 compiler is required. GLIMMER is known to work with the
NAGware f95, Intel ifort and later versions of GNU gfortran compilers. GLIMMER does not
compile with the SUNWS 7.0 f95 compiler due to a compiler bug. The current SUN f95 compiler
might work, but has not been tested yet.

The other important prerequisite is the netCDF12 library, which GLIMMER uses for data
I/O. You will most likely need to compile and install the netCDF library yourself, since the
binary packages usually do not contain the Fortran 90 bindings which are used by GLIMMER.

Additional packages are required if you want to build GLIMMER from CVS. You need GNU
autoconf and automake to generate the build system, as well as Python13, which is used for
analysing dependencies and for automatically generating parts of the code. Furthermore, the
Python scripts rely on language features which were only introduced with Python version 2.3.

1.2.2 The GLIMMER Directory Structure

The following commands describe the setup if you use the bash shell. The setup works sim-
ilarly for other shells. We suggest that you install glimmer and friends in its own directory,
e.g. /home/user/glimmer. Assign the shell variable $GLIMMER PREFIX to this directory, i.e.
export GLIMMER PREFIX=/home/user/glimmer. This directory will contain the following sub–
directories:

6http://forge.nesc.ac.uk/mailman/listinfo/glimmer-discuss
7http://www.gnu.org/software/make/
8http://glimmer.forge.nesc.ac.uk
9http://glimmer.forge.nesc.ac.uk

10http://forge.nesc.ac.uk/
11http://www.gnu.org/software/cvs/
12http://www.unidata.ucar.edu/packages/netcdf/index.html
13http://www.python.org

1.2. GETTING AND INSTALLING GLIMMER 7

$GLIMMER PREFIX/bin executables are installed in this directory. Set
your path to include this directory, i.e. export

PATH=$PATH:$GLIMMER PREFIX/bin.
$GLIMMER PREFIX/include include and f95 module files will be installed in this directory. If

you want to compile your own climate drivers set the compiler
search path to include this directory.

$GLIMMER PREFIX/lib the libraries get installed here. Set your linker to look in this
directory for the GLIMMER libraries if you want to compile
your own climate drivers.

$GLIMMER PREFIX/share data files get installed here.
$GLIMMER PREFIX/src this is the only directory you need to create yourself. Unpack

the GLIMMER sources here.

1.2.3 Installing a Released Version of GLIMMER

Download the GLIMMER tarball from the GLIMMER site and unpack it in the $GLIMMER PREFIX/src

directory using

tar -xvzf glimmer-VERS.tar.gz

where VERS is the package version.
The package is then compiled using the usual GNU sequence of commands:

./configure --prefix=$GLIMMER_PREFIX [other_options]

make

make install

The options and relevant environment variables are described in Table 1.1.

Variable Description
FC f95 compiler to be used
FCFLAGS flags passed to the f95 compiler
LDFLAGS linker flags
Option Description
--help print help
--prefix=prefix the installation prefix, e.g. GLIMMER
--with-netcdf=location prefix where the netCDF library is installed
--with-blas=location extra libraries used to provide BLAS functionality.

A built–in, non–optimised version of BLAS is used if
this option is not used.

--enable-doc build documentation.
--enable-profile enable profiling of GLIMMER (see Sec. 1.2.5)
--enable-restarts enable full restarts (see Sec. 1.2.6)

Table 1.1: Environment variables and configure options used by GLIMMER.

1.2.4 Installing from CVS

Revisions of GLIMMER are managed using CVS. You can download the latest development
version of GLIMMER using the following sequence of cvs commands:

cvs -d:pserver:anonymous@forge.nesc.ac.uk:/cvsroot/glimmer login

cvs -z3 -d:pserver:anonymous@forge.nesc.ac.uk:/cvsroot/glimmer co glimmer

8 CHAPTER 1. USER GUIDE

The cvs version does not include some automatically generated files. In order to be able
to compile the cvs version you need the GNU autotools and python. The build scripts are
generated by running

./bootstrap

in the $GLIMMER PREFIX/src directory. The package is then configured and built as described
in Section 1.2.3.

1.2.5 Profiling

If you run the configure script with the option --enable-profile you enable profiling of the
model. By default times are integrated over 100 time steps. You can cheange this behaviour
by setting the variable PROFILE PERIOD. The timing data is written to the file glide.profile
which contains 5 columns of data (see Table 1.2). A python script using the PyGMT library to

Column 1 total CPU time elapsed when data is written to file
Column 2 accumulated time spent on this block of calculations
Column 3 integer ID used to identify this block of calculations
Column 4 model year
Column 5 description of this block of calculations

Table 1.2: File format of profile data file.

visualise the profile is provided.

1.2.6 Restarts

GLIMMER allows for Restarts (also called Hotstarts), for initialising the state of the model
from results of a previous run, written to a file. A NetCDF file containing hotstart data may
be written as part of the regular output from the model, along with other output files. The
variables written to the hotstart file are limited to those describing the state of the ice sheet,
such as thickness, temperature distribution, etc — only those that are necessary to initialise
the model cleanly. The model may be initialised from any of the time-slices in the hotstart file
during the usual initialisation sequence. A full description of Hotstarts is given later in this
manual.

1.3 GLIDE

GLIDE is the actual ice sheet model. GLIDE comprises three procedures which initialise the
model, perform a single time step and finalise the model. The GLIDE configuration file is
described in Section 1.3.1. The GLIDE API is described in Appendix B.2. The simple example
driver explains how to write a simple climate driver for GLIDE. Download the example from
the GLIMMER website or from CVS:

cvs -d:pserver:anonymous@forge.nesc.ac.uk:/cvsroot/glimmer login

cvs -z3 -d:pserver:anonymous@forge.nesc.ac.uk:/cvsroot/glimmer co glimmer-example

1.3.1 Configuration

The format of the configuration files is similar to Windows .ini files and contains sections.
Each section contains key, values pairs.

• Empty lines, or lines starting with a #, ; or ! are ignored.

1.3. GLIDE 9

• A new section starts with the the section name enclose with square brackets, e.g. [grid].

• Keys are separated from their associated values by a = or :.

Sections and keys are case sensitive and may contain white space. However, the configuration
parser is very simple and thus the number of spaces within a key or section name also matters.
Sensible defaults are used when a specific key is not found.

For consistency, options for both the shallow-ice and higher-order dynamical cores (dycore)
are discussed. Currently, only the shallow ice dycore is scientifically supported. The higher-order
dycore will be supported as part of planned future releases of Glimmer CISM. Configuration
number options with a * after them are specific to the higher-order dycore.

[grid]

Define model grid. Maybe we should make this optional and read grid specifications from
input netCDF file (if present). Certainly, the input netCDF files should be checked (but
presently are not) if grid specifications are compatible.
ewn (integer) number of nodes in x–direction
nsn (integer) number of nodes in y–direction
upn (integer) number of nodes in z–direction
dew (real) node spacing in x–direction (m)
dns (real) node spacing in y–direction (m)
sigma method for specifying sigma coordinates:

0 Use Glimmer’s default spacing

σi =
1−(xi+1)−n

1−2−n with xi =
σi−1
σn−1 , n = 2.

1 use sigma coordinates defined in external file (named sigma file)
2 use sigma coordinates given in configuration file
3 use evenly spaced sigma levels (required by Glam 1st-order dycore)
4 use Pattyn sigma levels

[sigma]

Define the sigma levels used in the vertical discretization (option 2 above). This is an
alternative to using a separate file (specified in section [grid] above). If neither is used,
the levels are calculated as described above.
sigma levels (real) list of sigma levels, in ascending order, separated by spaces.

These run between 0.0 and 1.0

[time]

Configure time steps, etc. Update intervals should probably become absolute values rather
than related to the main time step when we introduce variable time steps.
tstart (real) Start time of the model in years
tend (real) End time of the model in years
dt (real) size of time step in years
ntem (real) time step multiplier setting the ice temperature update in-

terval
nvel (real) time step multiplier setting the velocity update interval
dt diag (real) writing diagnostic variables to log file every dt diag yrs
idiag (int) x direction grid index for diagnostic variables to be written

to log file
jdiag (int) y direction grid index for diagnostic variables to be written

to log file
continued on next page

10 CHAPTER 1. USER GUIDE

continued from previous page

[options]

Parameters set in this section determine how various components of the ice sheet model
are treated. Defaults are indicated in bold.
dycore 0 Glide (serial, 3d, Shallow-Ice-Approximation dynamical

core)
1* Glam (parallel, 3d, FDM, 1st-order-accurate dynamical

core)
2* Glissade (parallel, 3d, FEM, 1st-order-accurate dynam-

ical core)
evolution 0 pseudo-diffusion (Glide only)

1 ADI scheme (Glide only)
2 diffusion (Glide only)
3* incremental remapping (Glam/Glissade only)
4* first-order upwind (Glam/Glissade only)
5* evolve without changing ice thickness (Glam/Glissade only)

temperature 0 isothermal
1 evolve using Glide temperature scheme
2 held steady at inital value

temp init 0 initial temperatures isothermal at 0 deg. C
1 initial column temperatures set to atmos. temperature
2 initial column temperatures linearly interpolated from

atmos. temperature
flow law 0 constant (using the value of default flwa)

1 temp. dependent, Patterson and Budd (temp.=-
10degC)

2 temp. dependent, Patterson and Budd (function of vari-
able temp.)

basal water 0 none
1 local water balance
2 Compute the steady-state, routing-based, basal water

flux and water layer thickness
3 Use a constant basal water layer thickness everywhere,

to enforce T=T pmp everywhere
basal mass balance 0 ignore basal melt rate in mass balance calculation

1 include basal melt rate in mass balance calculation
slip coeff 0 zero (no sliding)

1 set to a non–zero constant everywhere
2 set to constant where basal water (bwat) is nonzero
3 set to constant where the ice base is melting
4 set proportional to basal melt rate
5 Tanh function of basal water (bwat)

continued on next page

1.3. GLIDE 11

continued from previous page

marine margin 0 ignore marine margin
1 Set thickness to zero if floating
2 Lose fraction of ice when edge cell
3 Set thickness to zero if relaxed bedrock is below a given

depth (variable ”mlimit” in glide types)
4 Set thickness to zero if present-day bedrock is below a

given depth (variable ”mlimit” in glide types)
vertical integration 0 standard integration

1 constrained so that upper boundary kinematic velocity
is obeyed

gthf 0 prescribed, uniform geothermal heat flux
1 read 2d geothermal heat flux field from input file
2 calculate geothermal heat flux using 3d diffusion model

isostasy 0 no isostatic adjustment
1 compute isostatic adjustment using lithosphere / as-

thenosphere model
topo is relaxed 0 relaxed topography is read from a separate variable

1 first time slice of input topography is assumed to be
relaxed

2 first time slice of input topography is assumed to be in
isostatic equilibrium with ice thickness.

periodic ew 0 switched off
1 periodic lateral EW boundary conditions (Glide SIA dy-

core only)
hotstart 0 normal start (initial guesses taken from input file or, if

absent, using default options)
1 restart model using input from previous run (do not

calc. temp., rate factor, or vel. fields)
ioparams (string) name of file containing netCDF I/O configuration. The

main configuration file is searched for I/O related sections if no
file name is given (default).

[ho options]

Parameters set in this section determine how various components of the higher-order ex-
tensions to the ice sheet model are treated. Defaults are indicated in bold. As noted above,
higher-order model options are currently NOT scientifically supported.
which ho nonlinear 0 treat nonlinearity in momentum balance using Picard

iteration
1 treat nonlinearity in momentum balance using Jacobian-

Free Newton-Krylov iteration
which ho sparse 0 Solve sparse linear system with incomplete LU-

preconditioned biconjugate gradient method
1 Solve sparse linear system with incomplete LU-

preconditioned GMRES method
2 Solve sparse linear system with incomplete LU-

preconditioned conjugate gradient method
3 Solve sparse linear system with conjugate gradient

method (parallel code only)
4 Solve sparse linear system using Trilinos, incomplete

LU-preconditioned GMRES method (Trilinos compat-
ible build only)

continued on next page

12 CHAPTER 1. USER GUIDE

continued from previous page

which ho efvs 0 use a constant value for the effective viscosity
1 use a multiple of the flow law rate factor for the effective

viscosity
2 use the effective strain rate for the calc. of the effective

viscosity (i.e., full nonlinear treatment)
which disp 0 calculate dissipation in temperature equation assuming

SIA ice dynamics
1* calculate dissipation in temperature equation assuming

1st-order ice dynamics
which ho babc Implementation of basal boundary condition in higher-order dy-

core
0 constant value of 10 Pa yr / m. Useful for debugging
1 specify some simple pattern (hardcoded). Useful for de-

bugging
2 treat ‘betasquared’ as yield stress (in Pa) to simulate

sliding over a plastic subglacial till (using Picard itera-
tion)

3 calculate betasquared field as required for circular shelf
test case

4 no slip everywhere in domain (betasquared set to very
large value)

5 read value of betasquared in from .nc input file using
standard i/o

4 no slip everywhere in domain (using Dirichlet basal BC)
7 Treat ‘betasquared’ as yield stress (in Pa) to simulate

sliding over a plastic subglacial till (using Newton iter-
ation - under devel.)

which ho resid Residual calculation method for the velocity solver in higher-order
dycore (iterations halt once residual falls below a specified abso-
lute or relative value)
0 use the maximum value of the normalized velocity vector

update, defined by r = |velk−1−velk|
velk

1 as in option 0 but omitting the basal velocities from the
comparison (useful in cases where an approx. no slip
basal BC is enforced)

2 as in option 0 but using the mean rather than the max
3 use the L2 norm of the system residual, defined by r =

Ax− b

[parameters]

Set various parameters.
log level (integer) set to a value between 0, no messages, and 6, all messages

are displayed to stdout. By default messages are only logged to
file.

ice limit (real) below this limit ice is only accumulated; ice dynamics are
switched on once the ice thickness is above this value.

continued on next page

1.3. GLIDE 13

continued from previous page

marine limit (real) all ice is assumed lost once water depths reach this value
(for marine margin=2 or 4 in [options] above). Note, water
depth is negative.

calving fraction (real) fraction of ice lost due to calving (applies to ”ma-
rine margin” option 2).

geothermal (real) constant geothermal heat flux.
flow factor (real) the flow law is enhanced with this factor
hydro time (real) basal hydrology time constant
isos time (real) isostasy time constant
basal tract const constant basal traction parameter. You can load a nc file with a

variable called soft if you want a specially variying bed softness
parameter.

basal tract (real(5)) basal traction factors. Basal traction
is set to B = tanh(W) where the parameters
(1) width of the tanh curve
(2) W at midpoint of tanh curve [m]
(3) B minimum [ma−1Pa−1]
(4) B maximum [ma−1Pa−1]
(5) multiplier for marine sediments

default flwa * Flow law parameter A to use in isothermal experiments (flow law
set to 2). Default value is 10−16.

[isostasy]

Isostatic adjustment is only enabled if this section is present in the configuration file. The
options described control isostasy model.
lithosphere 0 local lithosphere, equilibrium bedrock depression is found

using Archimedes’ principle
1 elastic lithosphere, flexural rigidity is taken into account

asthenosphere 0 fluid mantle, isostatic adjustment happens instantaneously
1 relaxing mantle, mantle is approximated by a half-space

relaxed tau characteristic time constant of relaxing mantle (default: 4000.a)
update lithosphere update period (default: 500.a)

[projection]

Specify map projection. The reader is referred to Snyder J.P. (1987) Map Projections - a
working manual. USGS Professional Paper 1395.
type This is a string that specifies the projection type (LAEA, AEA, LCC

or STERE).
centre longitude Central longitude in degrees east
centre latitude Central latitude in degrees north
false easting False easting in meters
false northing False northing in meters
standard parallel Location of standard parallel(s) in degrees north. Up to two stan-

dard parallels may be specified (depending on the projection).
scale factor non-dimensional. Only relevant for the Stereographic projection.
flexural rigidity flexural rigidity of the lithosphere (default: 0.24e25)

[GTHF]

Switch on lithospheric temperature and geothermal heat calculation.
continued on next page

14 CHAPTER 1. USER GUIDE

continued from previous page

num dim can be either 1 for 1D calculations or 3 for 3D calculations.
nlayer number of vertical layers (default: 20).
surft initial surface temperature (default 2◦C).
rock base depth below sea-level at which geothermal heat gradient is applied

(default: -5000m).
numt number time steps for spinning up GTHF calculations (default:

0).
rho The density of lithosphere (default: 3300kg m−3).
shc specific heat capcity of lithosphere (default: 1000J kg−1 K−1).
con thermal conductivity of lithosphere (3.3 W m−1 K−1).

NetCDF I/O can be configured in the main configuration file or in a separate file (see
ioparams in the [options] section). Any number of input and output files can be specified.
Input files are processed in the same order they occur in the configuration file, thus potentially
overwriting priviously loaded fields.

[CF default]

This section contains metadata describing the experiment. Any of these parameters can
be modified in the [output] section. The model automatically attaches a time stamp and
the model version to the netCDF output file.
title Title of the experiment
institution Institution at which the experiment was run
references References that might be useful
comment A comment, further describing the experiment

[CF input]

Any number of input files can be specified. They are processed in the order they occur in
the configuration file, potentially overriding previously loaded variables.
name The name of the netCDF file to be read. Typically netCDF files end

with .nc.
time The time slice to be read from the netCDF file. The first time slice is

read by default.

[CF output]

This section of the netCDF parameter file controls how often selected variables are written
to file.
name The name of the output netCDF file. Typically netCDF files end with

.nc.
start Start writing to file when this time is reached (default: first time slice).
stop Stop writin to file when this time is reached (default: last time slice).
frequency The time interval in years, determining how often selected variables are

written to file.
xtype Set the floating point representation used in netCDF file. xtype can be

one of real, double (default: real).
variables List of variables to be written to file. See Appendix A for a list of known

variables. Names should be separated by at least one space. The variable
names are case sensitive. Variable hot selects all variables necessary for
a hotstart.

continued on next page

1.4. EXAMPLE CLIMATE DRIVERS 15

continued from previous page

1.4 Example Climate Drivers

GLIMMER comes with three climate drivers of varying complexity:

1. simple glide: an EISMINT type driver

2. eis glide: Edinburh Ice Sheet driver.

3. libglint: Interface to global climate data or model

These drivers are described in some detail here.

1.4.1 EISMINT Driver

Configuration

[EISMINT-1 fixed margin]

EISMINT 1 fixed margin scenario.
temperature (real(2)) Temperature forcing

Tsurface = t1 + t2d

where
d = max{|x− xsummit|, |y − ysummit|}

massbalance (real) Mass balance forcing
period (real) period of time–dependent forcing (switched off when set to 0)

∆T = 10 sin
2πt

T

and

∆M = 0.2sin
2πt

T

[EISMINT-1 moving margin]

EISMINT 1 moving margin scenario.
temperature (real(2)) Temperature forcing

Tsurface = t1 − t2H

where H is the ice thickness
massbalance (real(3)) Mass balance forcing

M = min{m1,m2(m3 − d)}

where

d =
√
(x− xsummit)

2 + (y − ysummit)
2

continued on next page

16 CHAPTER 1. USER GUIDE

continued from previous page

period (real) period of time–dependent forcing (switched off when set to 0)

∆T = 10 sin
2πt

T

and

M = min

{
m1,m2

(
m3 + 100sin

2πt

T
− d

)}

1.4.2 EIS Driver

Configuration

[EIS ELA]

Mass balance parameterisation of the EIS driver. The Equilibrium Line Altitude is param-
eterised with

zELA = a+ bλ+ cλ2 +∆zELA,

where λ is the latitude in degrees north. The mass balance is then defined by

M(z∗) =

{
2Mmax

(
z∗

zmax

)
−Mmax

(
z∗

zmax

)2
for z∗ ≤ zmax

Mmax for z∗ > zmax

,

where z∗ is the vertical distance above the ELA.
ela file name of file containing ELA variation with time, ∆zELA

ela ew name of file containing longitudinal variations of ELA field. File contains
list of longitude, ELA pairs. The ELA perturbations are calculated by
linearly interpolating values from file.

ela a ELA factor a
ela b ELA factor b
ela c ELA factor c
zmax mar The elevation at which the maximum mass balance is reached, zmax for

marine conditions
bmax mar The maximum mass balance, Mmax for marine conditions
zmax cont The elevation at which the maximum mass balance is reached, zmax for

continental conditions
bmax cont The maximum mass balance, Mmax for continental conditions

[EIS CONY]

The mass balance function can be modified with a continentality value. The continentality
value is determined by finding the ratio between points below sea level and the total
number of points in a circle of given search radius. This value between 0 (maritime) and 1
(continental) is used to interpolate between continental and maritime mass balance curves.
period how often continentality is updated (default 500a).
radius the search radius (default 600000m).
file set to 1 to load continentality from file.

[EIS Temperature]

Temperature is also assumed to depend on latitude and the atmospheric lapse rate.
temp file name of file containing temperature forcing time series.

continued on next page

1.4. EXAMPLE CLIMATE DRIVERS 17

continued from previous page

type

0 polynomial: T (t) =
∑N

i=0 ai(t)λ
i + bz. where λ is the latitude.

1 exponential: T (t) = a0 + a1 exp (a2(λ− λ0))

lat0 λ0 (only used when exponential type temperature)
order order of polynomial, N (only used when using polynomial type temper-

ature).
lapse rate lapse rate, b.

[EIS SLC]

Global sea–level forcing
slc file name of file containing sea–level change time series.

18 CHAPTER 1. USER GUIDE

1.4.3 GLINT driver

Overview

GLINT is the most complex of the drivers supplied as part of GLIMMER. It was originally
developed as an interface between GLIDE and the GENIE Earth-system model, but is designed
to be flexible enough to be used with a wide range of global climate models. Perhaps the
most distinctive feature of GLINT is the way it uses the object-oriented GLIDE architecture to
enable multiple ice models to be coupled to the same climate model. This means that regional
ice models can be run at high resolution over several parts of the globe, but without the expense
of running a global ice model.

GLINT automates the processes required in coupling regional models to a global model,
particularly the down- and up-scaling of the fields that form the interface between the two
models. The user may specify map projection parameters for each of the ice models (known as
instances), and choose one of several alternative mass-balance schemes to use in the coupling.
The differing time-steps of global model, mass-balance scheme, and ice model are handled
automatically by temporal averaging or accumulation of quantities (as appropriate). This is
illustrated schematically in figure 1.3.

Prerequisites

If you plan to use GLINT, the following should be borne in mind:

• Global input fields must be supplied on a latitude-longitude grid. The grid does not have
to be uniform in latitude, meaning that Gaussian grids may be used. Irregular grids (e.g.
icosahedral grids) are not supported currently. The boundaries of the grid boxes may be
specified; if not, they are assumed to lie half-way between the grid-points in lat-lon space.

• In the global field arrays, latitude must be indexed from north to south – i.e. the first row
of the array is the northern-most one. Again, some flexibility might be introduced into
this in the future.

• The global grid must not have grid points at either of the poles. This restriction is not
expected to be permanent, but in the meantime can probably be overcome by moving the
location of the polar points to be fractionally short of the pole (e.g. at 89.9◦ and -89.9◦).

Initialising and calling

The easiest way to learn how GLINT is used is by way of an example. GLINT should be
built automatically as part of GLIMMER, and we assume here that this has been achieved
successfully.

Typically, GLINT will be called from the main program body of a climate model. To make
this possible, the compiler needs to be told to use the GLINT code. Use statements appear at
the very beginning of f90 program units, before even implicit none:

use glint_main

The next task is to declare a variable of type glint params, which holds everything relating to
the model, including any number of ice-sheet instances:

type(glint_params) :: ice_sheet

Before the ice-sheet model may be called from the climate model, it must be initialised. This
is done with the following subroutine call:

call initialise_glint(ice_sheet,lats,lons,time_step,paramfile)

In this call, the arguments are as follows:

1.4. EXAMPLE CLIMATE DRIVERS 19

Time

Climate model Mass-balance GLIDE

Figure 1.3: Relationship between the timesteps in GLINT. The filled circles represent timesteps,
the rectangles represent averaging/accumulation, and the arrows, flow of coupling fields.

20 CHAPTER 1. USER GUIDE

• ice sheet is the variable of type glint params defined above;

• lats and lons are one-dimensional arrays giving the locations of the global grid-points
in latitude and longitude, respectively;

• time step is the intended interval between calls to GLINT, in hours. This is known as
the forcing timestep.

• paramfile is the name of the GLINT configuration file.

The contents of the configuration file will be dealt with later. Having initialised the model, it
may now be called as part of the main climate model time-step loop:

call glint(ice_sheet,time,temp,precip,orog)

The arguments given in this example are the compulsory ones only; a large number of optional
arguments may be specified – these are detailed in the reference section below. The compulsory
arguments are:

• ice sheet is the variable of type glint params defined above;

• time is the current model time, in hours;

• temp is the daily mean 2m global air temperature field, in ◦C;

• precip is the global daily accumulated precipitation field, in mm (water equivalent, mak-
ing no distinction between rain, snow, etc.);

• orog is the global orography field, in m.

Two mass-balance schemes, both based on the positive degree day (PDD) method, are supplied
with GLIMMER, and are available through GLINT. One of these calculates the mass-balance for
the whole year (the Annual PDD scheme), while the other calculates on a daily basis (the Daily
PDD scheme). The annual scheme incorporates a stochastic temperature variation to account
for diurnal and other variations, which means that if this scheme is to be used, GLINT should be
called such that it sees a seasonal temperature variation which has had those variations removed.
In practice, this means calling GLINT on a monthly basis, with monthly mean temperatures.
For the daily scheme, no such restriction exists, and the scheme should be called at least every
6 hours.

Finishing off

After the desired number of time-steps have been run, GLINT may have some tidying up to do.
To accomplish this, the subroutine end glint must be called:

call end_glint(ice_sheet)

API

A detailed description of the GLINT API may be found in the appendices.

Configuration

GLINT uses the same configuration file format as the rest of GLIMMER. In the case where
only one GLIDE instance is used, all the configuration data for GLINT and GLIDE can reside
in the same file. Where two or more instances are used, a top-level file specifies the number
of model instances and the name of a configuration file for each one. Possible configuration
sections specific to GLINT are as follows:

1.4. EXAMPLE CLIMATE DRIVERS 21

[GLINT]

Section specifying number of instances.
n instance (integer) Number of instances (default=1)

[GLINT instance]

Specifies the name of an instance-specific configuration file. Unnecessary if we only have one
instance whose configuration data is in the main config file.
name Name of instance-sepcific config file (required).

[GLINT climate]

GLINT climate configuration
evolve ice specify whether or not the ice sheet evolves in time:

0 Do not evolve ice sheet (hold fixed in time)
1 Allow the ice sheet to evolve

precip mode Method of precipitation downscaling:
1 Use large-scale precipitation rate
2 Use parameterization of Roe and Lindzen

acab mode Mass-balance model to use:
1 Annual PDD mass-balance model (see section

1.5.2)
2 Annual accumulation only
3 Hourly energy-balance model (RAPID - not

yet available)
4 Daily PDD mass-balance model (no docs yet)

ice albedo Albedo of ice — used for coupling to climate model (default=0.4)
lapse rate Atmospheric temperature lapse-rate, used to correct the atmospheric

temperature onto the ice model orography. This should be positive for
temperature falling with height (Kkm−1) (default=8.0)

data lapse rate Atmospheric temperature vertical lapse rate, to be used in the calcula-
tion of temperature at sea-level. The variable lapse rate is then used
to adjust the temperature to the surface of the local ice sheet topogra-
phy. If data lapse rate is not set, it is set to the value of lapse rate

by default.
ice tstep multiply Ice time-step multiplier: allows asynchronous climate-ice coupling. See

below for full explanation of GLINT time-stepping. (default = 1)
mbal accum time Mass-balance accumulation time (in years, default is equal to mass-

balance timestep). See below for full explanation of GLINT time-
stepping.

GLINT timestepping — an explanation

By default, the model accepts input on each forcing timestep (as specified in the call to
initialise glint, above). These are accumulated over the course of a mass-balance time-
step, whereupon the mass-balance model is called. The output from the mass-balance model is
accumulated over the course of an ice model time-step, and finally the ice model is called.

This default behaviour can be altered, in two ways:

1. The number of ice sheet time-steps executed for each accumulated mass-balance field
may be increased - thus accelerating the icesheet relative to the forcing. To do this, set
ice tstep multiply in the [GLINT climate] config section - must be an integer. This
is only possible if the mass-balance is accumulated over an integer number of years.

2. The mass-balance accumulation period can be altered by setting mbal accum time in the
[GLINT climate] config section — this is a floating-point value in years.

The interaction of these two parameters is fairly complex, and permits a reasonably sophisti-
cated control of how the ice sheet model is forced. Various checks are made at run-time to make

22 CHAPTER 1. USER GUIDE

sure sensible/possible values are selected. Most importantly, all relevant time-steps must divide
into one another appropriately - the model will (should. . .) stop if an un-sensible combination
of values is detected.

GLINT timestepping — further examples

To aid understanding of the time-stepping controls, here are some examples. First, suppose we
have these time-step values:

forcing time-step: 6 hours
mass-balance time-step: 1 day
ice time-step: 0.5 year

By default, the model will accumulate 6 months’ worth of mass-balance calculations, and
force the ice sheet model based on that. This might not be desirable, so you could set:

mbal_accum_time = 1.0

This would make GLINT accumulate 1 year’s worth of mass-balance output before forcing
the ice sheet (at which point it would execute two ice sheet time-steps of 0.5 years each).

Having done that, you could accelerate the ice model by a factor of ten, by setting:

ice_tstep_multiply = 10

In this scenario, 20 ice sheet time-steps of 0.5 years each would be done after each 12-month
accumulation of mass-balance data.

For the second example, we consider the contrasting situation where we don’t want to
calculate a mass-balance on all the available data (perhaps to save time). Consider these time-
step values:

forcing time-step: 6 hours
mass-balance time-step: 1 day
ice time-step: 10 years

(Clearly this a fairly numerically stable and/or low-resolution ice sheet).
To avoid running the daily PDD scheme c.3600 times (depending on the value of days in year),

we can set to only use the first two years of data:

mbal_accum_time = 2.0

GLINT accumulates mass-balance for 2 years, then waits for 8 years (incoming data are
ignored during this time), before calling the ice sheet. Ice sheet acceleration may be enabled
with ice tstep multiply as before.

1.5 Supplied mass-balance schemes

1.5.1 Overview

The user is, of course, free to supply their own mass-balance model for use with GLIDE. However,
GLIMMER includes within it a annual positive-degree-day model for mass balance, shortly to
be augmented by a similar daily model and an hourly energy balance model. This section gives
details of how to configure and call these models.

1.5. SUPPLIED MASS-BALANCE SCHEMES 23

1.5.2 Annual PDD scheme

The annual PDD scheme is contained in the f90 module glimmer pdd, and the model parameters
are contained in the derived type glimmer pdd params. Configuration data is contained in a
standard GLIMMER config file, which needs to be read from file before initialising the mass-
balance model. The model is initialised by calling the subroutine glimmer pdd init, and the
mass-balance may be calculated annually by calling glimmer pdd mbal.

Example of use:

use glimmer_pdd

use glimmer_config

...

type(glimmer_pdd_params) :: pdd_scheme

type(ConfigSection),pointer :: config

...

call glimmer_pdd_init(pdd_scheme,config)

...

call glimmer_pdd_mbal(pdd_scheme,artm,arng,prcp,ablt,acab)

In the subroutine call to glimmer pdd mbal, apart from the parameter variable pdd scheme,
there are three input fields (artm, arng and prcp), which are, respectively, the annual mean
air temperature, annual temperature half-range, and annual accumulated precipitation fields.
The final two arguments are output fields — annual ablation (ablt) and annual mass-balance
(acab). All arrays are of type real(sp). Temperatures are degrees Celcius, and precipitation,
ablation and mass-balance are measured in m of water equivalent.

Day-degree calculation

The greater part of the information held in the glimmer pdd params derived type comprises a
look-up table (the PDD table). The model is implemented this way for computational efficiency.

The table has two dimensions: mean annual air temperature (Ta) (as the second index) and
annual air temperature half range (i.e., from July’s mean to the annual mean ∆Ta) (as the first
index). Following Huybrechts and others [1991], daily air temperatures (T ′

a) are assumed to
follow a sinusoidal cycle

T ′
a = Ta +∆Ta cos

(
2πt

A

)
+R(0, σ) (1.1)

where A is the period of a year and R is a random fluctuation drawn from a normal distribution
with mean 0 ◦C and standard deviation σ ◦C. Huybrechts and others [1991] indicate that the
number of positive degree days (D, ◦C days) for this temperature series can be evaluated as

D =
1

σ
√
2π

A∫
0

T ′
a+2.5σ∫
0

Ta × exp

(
−(Ta − T ′

a)
2

2σ2

)
dTdt (1.2)

where t is time. The table is completed by evaluating this integral using a public-domain
algorithm (Romberg integration), by Bauer [1961]. The inner and outer integrals are coded

24 CHAPTER 1. USER GUIDE

as two subroutines (inner integral and pdd integrand), which call the Romburg integration
recursively.

The main parameter needed is the assumed standard deviation of daily air temperatures,
which can be set in the configuration file (the default is 5 ◦C).

The positive-degree days are then looked up in the table (as a function of Ta and ∆Ta). We
take care to check that this look up is in done within the bounds of the table. The final value
of P is determined using bi-linear interpolation given the four nearest entries in the table to the
actual values of Ta and ∆Ta.

The remainder of the loop completes the calculation of the ablation and accumulation given
this value for P .

Mass balance calculation

We use the following symbols: a is total annual ablation; as is potential snow ablation; b0 is the
capacity of the snowpack to hold meltwater by refreezing; the total number of positive degree
days (D); day-degree factors for snow and ice (fs and fi); and the fraction of snowfall that can
be held in the snowpack as refrozen meltwater (Wmax). Note that the day-degree factors have
been converted from ice to water equivalents using the ratio of densities.

First, determine the depth of superimposed ice (b0) that would have to be formed before
runoff (mass loss) occurs as a constant fraction (Wmax) of precipitation (P)

b0 = WmaxP. (1.3)

Now determine the amount of snow melt by applying a constant day-degree factor for snow to
the number of positive day-degrees

as = fsD. (1.4)

We now compare the potential amount of snow ablation with the ability of the snow layer to
absorb the melt. Three cases are possible. First, all snow melt is held within the snowpack and
no runoff occurs (a = 0). Second, the ability of the snowpack to hold meltwater is exceeded but
the potential snow ablation is still less than the total amount of precipitation so that a = as−b0.
Finally, the potential snow melt is greater than the precipitation (amount of snow available), so
that ice melt (ai) has to be considered as well. The total ablation is therefore the sum of snow
melt (total precipitation minus meltwater held in refreezing) and ice melt (deduct from total
number of degree days, the number of degree days needed to melt all snowfall and convert to
ice melt)

a = as + ai = P − b0 + fi

(
D − P

fs

)
. (1.5)

We now have a total annual ablation, and can find total net mass balance as the difference
between the total annual precipitation and the total annual ablation.

Note that this methodology is fairly standard and stems from a series of Greenland papers
by Huybrechts, Letreguilly and Reeh in the early 1990s.

Configuration

The annual PDD scheme is configured using a single section in the configuration file:

[GLIMMER annual pdd]

Specifies parameters for the PDD table and mass-balance calculation
dx Table spacing in the x-direction (◦C) (default=1.0)
dy Table spacing in the y-direction (◦C) (default=1.0)
ix Lower bound of x-axis (◦C) (default=0.0)

continued on next page

1.5. SUPPLIED MASS-BALANCE SCHEMES 25

continued from previous page

iy Lower bound of y-axis (◦C) (default=-50.0)
nx Number of values in x-direction (default=31)
ny Number of values in x-direction (default=71)
wmax Fraction of melted snow that refreezes (default=0.6)
pddfac ice PDD factor for ice (m day−1 ◦C−1) (default=0.008)
pddfac snow PDD factor for snow (m day−1 ◦C−1) (default=0.003)

References

Bauer (1961) Comm. ACM 4, 255.
Huybrechts, Letreguilly and Reeh (1991) Palaeogeography, Palaeoclimatology, Palaeoecology
(Global and Planetary Change) 89, 399-412.
Letreguilly, Reeh and Huybrechts (1991) Palaeogeography, Palaeoclimatology, Palaeoecology
(Global and Planetary Change) 90, 385-394.
Letreguilly, Huybrechts and Reeh (1991) Journal of Glaciology 37, 149-157.

1.5.3 Daily PDD scheme

The other PDD scheme supplied with GLIMMER is a daily scheme. This is simpler than the
annual scheme in that it does not incorporate any stochastic variations. The mass-balance is
calculated on a daily basis, given the daily mean temperature and half-range, and assuming
a sinusoidal diurnal cycle. Consequently, the firn model is more sophisticated than with the
annual scheme, and includes a snow-densification parameterization.

Configuration

The daily PDD scheme is configured using a single section in the configuration file:

[GLIMMER daily pdd]

Specifies parameters for the PDD table and mass-balance calculation
wmax Fraction of melted snow that refreezes (default=0.6)
pddfac ice PDD factor for ice (m day−1 ◦C−1) (default=0.008)
pddfac snow PDD factor for snow (m day−1 ◦C−1) (default=0.003)
rain threshold Temperature above which precipitation is held to be rain (◦C) (de-

fault=1.0)
whichrain Which method to use to partition precipitation into rain and snow:

1 Use sinusoidal diurnal temperature variation
2 Use mean temperature only

tau0 Snow densification timescale (s) (default=10 years)
constC Snow density profile factor C (m−1) (default=0.0165)
firnbound Ice-firn boundary as fraction of density of ice (default=0.872)
snowdensity Density of fresh snow (kgm−3) (default=300.0)

26 CHAPTER 1. USER GUIDE

Chapter 2

Tutorial

2.1 Introduction

This tutorial section aims to provide a set of more practical, step-by-step instructions on how
to first get GLIMMER started after the successful installation and familiarise yourself with the
different climate driver options. In general, this tutorial is intended to address the question:

’I have successfully compiled GLIMMER, now what? Do I have to write my own config files,
climate drivers etc? I want to see some ice sheet modelling pronto!’

The really short version of an answer to this is type

glide_launch.py myconfig.config

where myconfig.config is a configuration file for GLIMMER as described in the documenta-
tion. If you have a config file and all the necessary data ready, this is how you get GLIMMER
started.

Assuming that if you are reading this, you probably won’t yet have your own config file
ready, so you might want to read on:

2.2 EISMINT: using glimmer-example

As you hopefully already know, the heart of GLIMMER is the actual ice sheet model GLIDE.
This is where ice physics are resolved etc. To model an ice sheet using GLIDE, you at least
need to provide it with information about the mass balance. To get you started with a real
simple example climate driver, download glimmer-example from the project homepage or via
CVS, cd into the directory and type

glide_launch.py example.config

this will kick off a simple EISMINT-1 moving margin type model run. The results are written
to example.nc, use a viewer like ncview to visualise them. Take a look at the example.config
file printed below and read the documentation on the EISMINT type climate driver (section
1.4.1) to better understand what is happening:

configuration for the EISMINT-1 test-case # moving margin

[EISMINT-1 moving margin]

[grid]

grid sizes

ewn = 31

27

28 CHAPTER 2. TUTORIAL

nsn = 31

upn = 11

dew = 50000

dns = 50000

[options]

temperature = 1

flow_law = 2

isostasy = 0

sliding_law = 4

marine_margin = 2

stress_calc = 2

evolution = 2

basal_water = 2

vertical_integration = 0

[time]

tend = 200000.

dt = 10.

ntem = 1.

nvel = 1.

niso = 1.

[parameters]

flow_factor = 1

geothermal = -42e-3

[CF default]

title: EISMINT-1 moving margin

[CF output]

name: example.nc

frequency: 1000

variables: thk uflx vflx bmlt temp

uvel vvel wvel

The line [EISMINT-1 moving margin] sets the model type for this run to be EISMINT
(simple glide binary). This can also be achieved by specifying the correct binary using the -m

flag, e.g.

glide_launch.py -m simple_glide example.config

It is probably advisable to use the -m option instead of specifying the binary using a keyterm,
as this will only work for EIS and EISMINT model types. For ease of use, the option was
integrated in the config file for this example.

The [grid] section sets up the topography for the model run.
As this is an EISMINT testcase, there is no ’real’ input topography, but ice is building up

on a flat surface, which is why nothing more but the grid dimensions need to be specified. Be
aware that this only works for EISMINT type model runs using simple glide. In this case, the
mass balance is parameterised as a function of distance from the grid center, resulting in a point
symmetric ice sheet. The grid used here has a size of 31x31 cells (ewn x nsn), comprises of 11
vertical layers (upn = 11) and an internal cell spacing of 5000 (dew and dns).

The [options] sections determines the basic behaviour of the model:

2.3. EIS: USING GLIMMER-TESTS 29

temperature = 1 resolves the temperature over the whole of the 11 layers of ice (instead
of assuming ice to be isothermal), isostasy = 0 turns off the isostasy component, etc. (check
the documentation).

In the [time] section, the end time of the model run is set to 200000 with a timestep size
of 10 and keeping all internal update processes (temperature and velocity) in line with the
timesteps by setting their multiplier to 1.

Flow factor and geothermal heat flux parameters are set in the [parameters] section.
Finally, in the [CF output] section, the name of the file to store the results is given, together

with the variables that should be dumped to the file and the frequency with which they are
written to it (every 1000 years). In this example, ice thickness (thk), basal melt temperature
bmlt, ice temperature temp etc is output to the result file every 1000 years. Note that this
output frequency is independent of the modelling timesteps.

You might want to try and change some of the parameters, e.g. speed up ice flow by
increasing the flow factor, and re-run the model to see what happens. This is fairly simple and
straight forward example of how to get GLIMMER to do some basic modelling. If you want to
see a bit more of what GLIMMER can do, try the next section.

2.3 EIS: using glimmer-tests

glimmer-tests provides more example configurations, that include both the EISMINT and EIS
climate drivers. If you have not already done so, download glimmer-tests via the nescforge
page or CVS, and do the usual

./configure -with-glimmer-prefix=/path/to/GLIMMER/installation

(e.g. /usr/local/GLIMMER)

(if you updated GLIMMER via CVS, you need to do ./bootstrap first.)
glimmer-tests is not (yet) a test suite, but will exemplarily show what GLIMMER can do

(see the glimmer-tests README file for detailed information on the tests).
Basically glimmer-tests runs GLIMMER using the EISMINT 1 and 2 (and 3) climate

driver (fixed and moving margin type ice sheets with no external mass balance forcing), as well
as the Edinburgh Ice Sheet (EIS) climate driver, using mass balance parameterisation via ELA
and temperature forcing. There are a couple of other tests running besides this, e.g. some
benchmarks. If you want to run all the examples, simply do a make in the glimmer-tests

directory, but be aware that running all tests will take a good 12+ hours on a single CPU 3
GHZ machine. If you’re too impatient for this, simply do a make in one of the subdirectories,
e.g. EISMINT1 and GLIDE will be launched using the EISMINT climate driver, which should
deliver you a number of netcdf files with the model results, eg. e1.fm.1.nc containing the
EISMINT1 fixed margin results 1, etc. Again, to visualise the results use a viewer like ncview.

If you want a more sophisticated results, try make in the eis directory, which will repeat
the results of ? reconstructing the Fennoscandian ice sheet during the last glacial maximum,
using the EIS driver.

2.3.1 A short introduction to the EIS driver parameterisation

Again, check the config file fenscan.config to see the basic parameters for this model run.
Have a look at the mb2.data (mass balance forcing via ELA), temp-exp.model (exponential
type temperature forcing) and specmap.data (sealevel change) data files and compare them to
the EIS driver documentation (section 1.4.2) to get an idea of how things are done.

The first column in every data file is the model time at which the new parameter values are
applied. For the temperature model, the records in the temp-exp.model file

...

30 CHAPTER 2. TUTORIAL

-97000.000000 -17.858964 23.158964 -0.051329

-96000.000000 -20.074036 24.674036 -0.051329

...

correspond to the timesteps -97000 and -96000 (first column - model usually ends at time
0) where the parameters a0 (2nd column), a1 (3rd column) and a2 (last column) of the expo-
nential temperature model T (t) = a0 + a1 exp (a2(λ− λ0)) (page 16) are updated to reflect an
approximate change in temperature of -2 degrees Celsius.

For EIS, the mass balance is parameterised via the ELA, according to

zELA = a+ bλ+ cλ2 +∆zELA,

given the parameters in the according config file section:

...

[EIS ELA]

ela_file = mb2.data

bmax_mar = 4.

ela_a = 14430.069930

ela_b =-371.765734

ela_c = 2.534965

...

Factors a, b and c are specified together with the maximum mass balance of 4. The latitude λ
in degrees North is read from the input topography grid. In order to do the ELA forcing over
time, the parameter ∆zELA is varied over time using the ela file mb2.data:

...

-109000 225

-105000 350

...

Similar to the temperature forcing, ∆zELA (column 2) is changed at timestep -10900 (column
1), to reflect an ELA 225m above the altitude value calculated using the factors a, b, c and the
latitude λ. At timestep -10500, ELA is rising to 350m above the calculated value.

Where a globally changing ∆zELA is insufficient to reflect disparities in ELA, there are two
options to fine tune ELA behaviour. First, continentality can be used to introduce a dependency
of mass balance with distance to oceans. The according settings are supplied using the [EIS

CONY] section of the config file (see section 1.4.2). In short, an index is calculated for every grid
cell reflecting the ratio of below sealevel cells to land cells within a certain range (defaults to
600km). Maximum mass balance values are then scaled between the values given in the [EIS

ELA] section for bmax mar (marine conditions, all cells within range are below sea level) and
bmax cont (continenal conditions, all cells within range are above sea level). Alternatively,
continentality values between 0 and 1 can be input using a file. Set the according flag file to
1 and specify the file containing the cony data using a [CF input] section in the configuration
file (see example for ELA file below). .

In case a more detailed spatial distribution of ELA altitudes is needed, e.g. to reflect special
orographic effects, a map of ∆zELA can be input to the model using a netcdf file, containing a
variable ’ela’ on a grid the same size and coordinates as the input topography grid the model
is running on. This ela file is coupled using a [CF input] section in the configuration file

[CF input]

name: ela_1k.nc

resulting in a spatial distribution of ∆zELA being applied to the model. The variation of ELA
over time using a global ∆zELA is still applied on top of this ELA forcing file.

2.4. GLINT: USING GLINT-EXAMPLE 31

Note: (Maybe an example containing an ELA forcing file should be added to GLIMMER
test/examples?)

Sealevel changes are forced upon the model in an according way using the specmap.data

file.

2.4 GLINT: using glint-example

If finally you want to see what GLIMMER can do using the GLINT climate driver, download
the glint-example and try one of the provided example setups. CD into the directory and try
any of the config examples. Start glint example by typing

glint_example

You will then be asked for a climate configuration file and an ice model configuration file. For
the climate file, a global example including precipitation and temperature timeseries is provided.
To let glint know about it, type

glint_example.config

For the ice model config, there are two examples, Greenland and North America. To chose
either one, type

gland20.config

or

namerica20.config

respectively at the prompt asking for the config file, to start the model. Both models are out-
putting three files each, containing different variables. Every 100 years, a file namerica20.hot.nc
or gland20.hot.nc, respectively is output, which can be used to hotstart the model later from
any of the recorded stages.

As mentioned above, the model type (binary) to use can be stated in the configuration file,
or given using the -m option. Currently, the three model binaries that come with GLIMMER are
simple glide, eis glide and glint example. The simple glide and eis glide drivers that are
started using the glide launch.py Python script, which needs to know which binary to address.
The model binary can also be set as an environment variable $GLIDE MODEL. However, as
glint is called directly using the compiled binary glint example here, it is not necessary to
further specify the model.

32 CHAPTER 2. TUTORIAL

Part II

Developer Documentation

33

Chapter 3

Numerics

This part describes the numerical implementation of GLIMMER in some detail. It is hoped
that more parts will be added in the future.

3.1 Ice Thickness Evolution

The evolution of the ice thickness, H, stems from the continuity equation and can be expressed
as

∂H

∂t
= −∇ · (uH) +B, (3.1)

where u is the vertically averaged ice velocity, B is the surface mass balance and ∇ is the
horizontal gradient operator (?).

For large–scale ice sheet models, the shallow ice approximation is generally used. This
approximation states that bedrock and ice surface slopes are assumed sufficiently small so that
the normal stress components can be neglected (?). The horizontal shear stresses (τxz and τyz)
can thus be approximated by

τxz(z) = −ρg(s− z)
∂s

∂x
,

τyz(z) = −ρg(s− z)
∂s

∂y
,

(3.2)

where ρ is the density of ice, g the acceleration due to gravity and s = H + h the ice surface.
Strain rates ε̇ij of polycrystalline ice are related to the stress tensor by the non–linear flow

law:

ε̇iz =
1

2

(
∂ui

∂z
+

∂uz

∂i

)
= A(T ∗)τ

(n−1)
∗ τiz i = x, y, (3.3)

where τ∗ is the effective shear stress defined by the second invariant of the stress tensor, n the
flow law exponent and A the temperature–dependent flow law coefficient. T ∗ is the absolute
temperature corrected for the dependence of the melting point on pressure (T ∗ = T + 8.7 ·
10−4(H + h− z), T in Kelvin, ?). The parameters A and n have to be found by experiment. n
is usually taken to be 3. A depends on factors such as temperature, crystal size and orientation,
and ice impurities. Experiments suggest that A follows the Arrhenius relationship:

A(T ∗) = fae−Q/RT∗
, (3.4)

where a is a temperature–independent material constant, Q is the activation energy for creep
and R is the universal gas constant (?). f is a tuning parameter used to ‘speed–up’ ice flow
and accounts for ice impurities and the development of anisotropic ice fabrics (????).

35

36 CHAPTER 3. NUMERICS

Integrating (3.4) with respect to z gives the horizontal velocity profile:

u(z)− u(h) = −2(ρg)n|∇s|n−1∇s

z∫
h

A(s− z)ndz, (3.5)

where u(h) is the basal velocity (sliding velocity). Integrating (3.5) again with respect to z
gives an expression for the vertically averaged ice velocity:

uH = −2(ρg)n|∇s|n−1∇s

s∫
h

z∫
h

A(s− z)ndzdz′. (3.6)

The vertical ice velocity stems from the conservation of mass for an incompressible material:

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0. (3.7)

Integrating (3.7) with respect to z gives the vertical velocity distribution of each ice column:

w(z) = −
z∫

h

∇ · u(z)dz + w(h), (3.8)

with lower, kinematic boundary condition

w(h) =
∂h

∂t
+ u(h) ·∇h+ S, (3.9)

where S is the melt rate at the ice base given by Equation (3.55). The upper kinematic boundary
is given by the surface mass balance and must satisfy:

w(s) =
∂s

∂t
+ u(s) ·∇s+B. (3.10)

3.1.1 Numerical Grid

The continuous equations descrining ice physics have to be discretised in order to be solved by a
computer (which is inherently finite). This section describes the finite–difference grids employed
by the model.

Horizontal Grid

The modelled region (x ∈ [0, Lx], y ∈ [0, Ly]) is discretised using a regular grid so that xi =
(i − 1)∆x for i ∈ [1, N] (and similarly for yj). The model uses two staggered horizontal grids
in order to improve stability. Both grids use the same grid spacing, ∆x and ∆y, but are off-set
by half a grid (see Fig. 3.1). Quantities calculated on the (r, s)–grid are denoted with a tilde,
i.e. F̃ . Quantities are transformed between grids by averaging over the surrounding nodes, i.e.
a quantity in the (i, j)–grid becomes in the (r, s) grid:

F̃r,s = F̃i+ 1
2 ,j+

1
2
=

1

4
(Fi,j + Fi+1,j + Fi+1,j+1 + Fi,j+1) (3.11a)

and similarly for the reverse transformation:

Fi,j = Fr− 1
2 ,s−

1
2
=

1

4
(F̃r−1,s−1 + F̃r,s−1 + F̃r,s + F̃r−1,s) (3.11b)

3.1. ICE THICKNESS EVOLUTION 37

(N − 1,M − 1)

(r, s)

(i, j)

(N,M)

(1, 1)

Figure 3.1: Horizontal Grid.

In general, horizontal velocities and associated quantities like the diffusivity are calculated
on the (r, s) grid, ice thickness, temperatures and vertical velocities are calculated on the (i, j)–
grid.

Horizontal gradients are calculated on the (r, s)–grid, i.e. surface gradients are:(
∂s

∂x

)
r,s

= s̃xr,s =
si+1,j − si,j + si+1,j+1 − si,j+1

2∆x
(3.12a)(

∂s

∂y

)
r,s

= s̃yr,s =
si,j+1 − si,j + si+1,j+1 − si+1,j

2∆y
(3.12b)

Ice thickness gradients, H̃x
r,s and H̃y

r,s, are formed similarly. Gradients in the (r, s)–grid are
formed in a similar way, e.g.(

∂u

∂x

)
i,j

= ux
i,j =

ũr,s−1 − ũr−1,s−1 + ũr,s − ũr−1,s

2∆x
(3.13)

Periodic Boundary Conditions

The model can be run with horizontal periodic boundary conditions, i.e. the western edge of
the modelled region is joined with the eastern edge. Figure 3.2 illustrates the numeric grid when
the model is run in torus mode.

Figure 3.2: A row of the numeric grid when the model is used in torus mode. Circles indicate
points in (i, j)–grid and squares indicate points in the (r, s)–grid. Points with the same colour
are logically the same.

These boundary conditions are enforced by exchanging points for the temperature and ver-
tical velocity calculations. The ice thicknesses are calculated explicitly at the ghostpoints.

σ–Coordinate System

The vertical coordinate, z, is scaled by the ice thickness analogous to the s–coordinate in
numerical weather simulations (e.g. ?). A new vertical coordinate, σ, is introduced so that the

38 CHAPTER 3. NUMERICS

ice surface is at σ = 0 and the ice base at σ = 1 (see Fig. 3.3), i.e.

σ =
s− z

H
. (3.14)

x

z

y

x̃

σ

ỹ

Figure 3.3: Vertical scaling of the ice sheet model. The vertical axis is scaled to unity. The
horizontal coordinates are not changed.

The derivatives of a function f in (x, y, z, t) become in the new (x̃, ỹ, σ, t̃) system:

∂f

∂x
=

∂f

∂x̃
+

1

H
∆x̃

∂f

∂σ
, (3.15a)

∂f

∂y
=

∂f

∂ỹ
+

1

H
∆ỹ

∂f

∂σ
, (3.15b)

∂f

∂t
=

∂f

∂t̃
+

1

H
∆t̃

∂f

∂σ
, (3.15c)

∂f

∂z
= − 1

H

∂f

∂σ
, (3.15d)

where the geometric factors, ∆x̃, ∆ỹ and ∆t̃, are defined by

∆x̃ =

(
∂s

∂x̃
− σ

∂H

∂x̃

)
, (3.16a)

∆ỹ =

(
∂s

∂ỹ
− σ

∂H

∂ỹ

)
, (3.16b)

∆t̃ =

(
∂s

∂t̃
− σ

∂H

∂t̃

)
. (3.16c)

The integral of z becomes in the σ–coordinate system:

z∫
h

fdz = −H

σ∫
1

fdσ (3.17)

The vertical coordinate is discretised using an irregular grid spacing to reflect the fact that
ice flow is more variable at the bottom of the ice column. In the vertical the index k is used.

3.1.2 Ice Sheet Equations in σ–Coordinates

The horizontal velocity, Equation (3.5), becomes in the σ–coordinate system

u(σ) = −2(ρg)nHn+1|∇s|n−1∇s

σ∫
1

Aσndσ + u(1) (3.18)

3.1. ICE THICKNESS EVOLUTION 39

and the vertically averaged velocity

uH = H

1∫
0

udσ + u(1)H (3.19)

The vertical velocity, Equation (3.8), becomes

w(σ) = −
σ∫

1

(
∂u

∂σ
· (∇s− σ∇H) +H∇ · u

)
dσ + w(1) (3.20)

and lower boundary condition

w(1) =
∂h

∂t
+ u(1) ·∇h+ S. (3.21)

3.1.3 Calculating the Horizontal Velocity and the Diffusivity

Horizontal velocity and diffusivity calculations are split up into two parts:

u(σ) = c∇s+ u(1) (3.22a)

D = H

1∫
0

cdσ (3.22b)

q = D∇s+Hu(1) (3.22c)

with

c(σ) = −2(ρg)nHn+1|∇s|n−1

σ∫
1

Aσndσ (3.22d)

Quantities u and D are found on the velocity grid. Integrating from the ice base (k = N−1),
the discretised quantities become

c̃r,s,N = 0 (3.23a)

c̃r,s,k = −2(ρg)nHn+1
r,s

(
(s̃xr,s)

2 + (s̃yr,s)
2
)n−1

2

k∑
κ=N−1

Ar,s,κ +Ar,s,κ+1

2

(
σκ+1 + σκ

2

)n

(σκ+1 − σκ) (3.23b)

D̃r,s = Hr,s

N−1∑
k=0

c̃r,s,k + c̃r,s,k+1

2
(σk+1 − σk) (3.23c)

Expressions for ui,j,k and qi,j are straight forward.

3.1.4 Solving the Ice Thickness Evolution Equation

Equation (3.1) can be rewritten as a diffusion equation, with non–linear diffusion coefficient D:

∂H

∂t
= −∇ ·D∇s+B = −∇ · q +B (3.24)

40 CHAPTER 3. NUMERICS

This non–linear partial differential equation can be linearised by using the diffusion coefficient
from the previous time step. The diffusion coefficient is calculated on the (r, s)–grid, i.e. stag-
gered in both x and y direction. Figure 3.4 illustrates the staggered grid. Using finite differences,
the fluxes in x direction, qx become

qxi+ 1
2 ,j

= −1

2
(D̃r,s + D̃r,s−1)

si+1,j − si,j
∆x

(3.25a)

qxi− 1
2 ,j

= −1

2
(D̃r−1,s + D̃r−1,s−1)

si,j − si−1,j

∆x
(3.25b)

and the fluxes in y direction

qy
i,j+ 1

2

= −1

2
(D̃r,s + D̃r−1,s)

si,j+1 − si,j
∆y

(3.25c)

qy
i,j− 1

2

= −1

2
(D̃r,s−1 + D̃r−1,s−1)

si,j − si,j−1

∆y
. (3.25d)

Hi−1,j
Hi+1,j

Hi,j+1

Hi,j−1

Hi,j

qx
i− 1

2
,j

qx
i+ 1

2
,j

q
y

i,j+ 1

2

q
y

i,j− 1

2

D̃r−1,s−1 D̃r,s−1

D̃r,sD̃r−1,s

Figure 3.4: Illustration of the staggered grid used to calculate ice thicknesses, diffusivities and
mass fluxes.

ADI Scheme

The alternating–direction implicit method (ADI) uses the concept of operator splitting where
Equation (3.24) is first solved in the x–direction and then in the y–direction, (?). The time step
∆t is devided into two time steps ∆t/2. The descretised version of Equation (3.24) becomes
(?):

2
H

t+ 1
2

i,j −Ht
i,j

∆t
= −

q
x,t+ 1

2

i+ 1
2 ,j

− q
x,t+ 1

2

i− 1
2 ,j

∆x
−

qy,t
i,j+ 1

2

− qy,t
i,j− 1

2

∆y
+Bi,j (3.26a)

2
Ht+1

i,j −H
t+ 1

2
i,j

∆t
= −

q
x,t+ 1

2

i+ 1
2 ,j

− q
x,t+ 1

2

i− 1
2 ,j

∆x
−

qy,t+1

i,j+ 1
2

− qy,t+1

i,j− 1
2

∆y
+Bi,j (3.26b)

3.1. ICE THICKNESS EVOLUTION 41

Gathering all t+ 1
2 terms on the left side, Equation (3.26a) can be expressed as a tri–diagonal

set of equations for each row j:

−αi,jH
t+ 1

2
i−1,j + (1− βi,j)H

t+ 1
2

i,j − γi,jH
t+ 1

2
i+1,j = δi,j (3.27)

with

αi,j =
D̃r−1,s + D̃r−1,s−1

4∆x2
∆t (3.28a)

βi,j = −D̃r,s + 2D̃r−1,s + D̃r−1,s−1

4∆x2
∆t = −(αi,j + γi,j) (3.28b)

γi,j =
D̃r,s + D̃r,s−1

4∆x2
∆t (3.28c)

and the RHS,

δi,j = Ht
i,j −

∆t

2∆y

(
qy,t
i,j+ 1

2

− qy,t
i,j− 1

2

)
+

∆t

2
Bi,j + αi,jhi−1,j − βi,jhi,j + γi,jhi+1,j . (3.28d)

A similar tri–diagonal system is found for each column, i of Equation (3.26b).

Linearised Semi–Implicit Scheme

Using the Crank–Nicolson scheme, the semi–implicit temporal discretisation of (3.24) is then:

Ht+1
i,j −Ht

i,j

∆t
=

qx,t+1

i+ 1
2 ,j

− qx,t+1

i− 1
2 ,j

2∆x
+

qy,t+1

i,j+ 1
2

− qy,t+1

i,j− 1
2

2∆y

+
qx,t
i+ 1

2 ,j
− qx,t

i− 1
2 ,j

2∆x
+

qy,t
i,j+ 1

2

− qy,t
i,j− 1

2

2∆y
+Bi,j (3.29)

The superscripts t and t+1 indicate at what time the ice thickness H is evaluated. Collecting all
Ht+1 terms of (3.29) on the LHS and moving all other terms to the RHS we can rewrite (3.29)
as

−αi,jH
t+1
i−1,j − βi,jH

t+1
i+1,j − γi,jH

t+1
i,j−1 − δi,jH

t+1
i,j+1 + (1− εi,j)H

t+1
i,j = ζi,j (3.30)

with the RHS,

ζi,j = αi,jH
t
i−1,j + βi,jH

t
i+1,j + γi,jH

t
i,j−1 + δi,jH

t
i,j+1 + (1 + εi,j)H

t
i,j

+ 2(αi,jhi−1,j + βi,jhi+1,j + γi,jhi,j−1 + δi,jhi,j+1 + εi,jhi,j) +Bi,j∆t (3.31)

with the elements of the sparse matrix

αi,j =
D̃r−1,s + D̃r−1,s−1

4∆x2
∆t (3.32a)

βi,j =
D̃r,s + D̃r,s−1

4∆x2
∆t (3.32b)

γi,j =
D̃r,s−1 + D̃r−1,s−1

4∆y2
∆t (3.32c)

δi,j =
D̃r,s + D̃r−1,s

4∆y2
∆t (3.32d)

εi,j = −(αi,j + βi,j + γi,j + δi,j) (3.32e)

This matrix equation is solved using an iterative matrix solver for non-symmetric sparse
matrices. The solver used here is the bi–conjugate gradient method with incomplete LU de-
composition preconditioning provided by the SLAP package.

42 CHAPTER 3. NUMERICS

Non–Linear Scheme

The non–linearity of Equation (3.24) arises from the dependance ofD on s. A non–linear scheme
for (3.24) can be formulated using Picard iteration, which consists of two iterations: an outer,
non–linear and an inner, linear equation. The scheme is started off with the diffusivity from
the previous time step, i.e.

D(0),t+1 = Dt (3.33a)

and Equation (3.30) becomes

− α
(ξ),t+1
i,j Ht+1

i−1,j − β
(ξ),t+1
i,j H

(ξ+1),t+1
i+1,j − γ

(ξ),t+1
i,j H

(ξ+1),t+1
i,j−1

− δ
(ξ),t+1
i,j H

(ξ+1),t+1
i,j+1 + (1− ε

(ξ),t+1
i,j)H

(ξ+1),t+1
i,j = ζ

(0),t
i,j (3.33b)

Equation (3.33b) is iterated over ξ until the maximum ice thickness residual is smaller than
some threshold:

max
(∣∣∣H(ξ+1),t+1 −H(ξ),t+1

∣∣∣) < Hres (3.34)

calculate horizontal
velocity field

vertically integrate
Glen’s A

vertically integrate
Glen’s A

calculate diffusivity calculate diffusivity

calculate new
ice distribution

calculate new
ice distribution

calculate horizontal
velocity field

res(H)<limit

True

False

Figure 3.5: Flow diagram showing how the linearised solver (on the left) and the non–linear
solver work. The inner, linear iteration is contained within the box labeled “calculate new ice
distribution”.

3.1.5 Calculating Vertical Velocities

Grid Velocity

The vertical grid moves as a consequence of using a σ–coordinate system. The grid velocity is

wgrid(σ) =
∂s

∂t
+ u ·∇s− σ

(
∂H

∂t
+ u ·∇H

)
(3.35)

The numerical implementation of Equation (3.35) is straight–forward.

3.1. ICE THICKNESS EVOLUTION 43

Vertical Velocity

The discretised version of the vertical velocity equation (3.20) is slightly more compilicated
because the horizontal velocities are calculated on the (r, s) grid. The vertical velocity at the

ice base is wi,j,N = wgrid
i,j,N − bi,j , where bi,j is the basal melt rate. Integrating from the bottom,

the vertical velocity is then

wi,j,k = −
1∑

k̃=N−1

{
Hi,j

(
ux
i,j,k + ux

i,j,k+1

2
+

vyi,j,k + vyi,j,k+1

2

)
(σk+1 − σk)

+(ũi,j,k+1 − ũi,j,k)

(
s̃xi,j −

1

2
(σk+1 + σk)H̃

x
i,j

)
+(ṽi,j,k+1 − ṽi,j,k)

(
s̃yi,j −

1

2
(σk+1 + σk)H̃

y
i,j

)}
+ wi,j,N

(3.36)

with the weighted ice thickness

Hi,j =
4Hi,j + 2(Hi−1,j +Hi+1,j +Hi,j−1 +Hi,j+1)

16

+
Hi−1,j−1 +Hi+1,j−1 +Hi+1,j+1 +Hi−1,j+1

16

This scheme produces vertical velocities at the ice divide which are too small. The vertical
velocities on the ice surface are given by the upper kinematic boundary condition, Equation
(3.10). Equation (3.36) can be corrected with:

w∗
i,j,k = wi,j,k − (1− σk)(wi,j,k − wsi,j), (3.37)

where wsi,j is the vertical velocity at the ice surface given by (3.10). Figure 3.6 shows the
different vertical velocities at the ice surface. The difference between the vertical velocities

corrected
uncorrected

upper kinetic BC

distance along profile [km]

v
er
ti
ca
l
v
el
o
ci
ty

[m
a
−
1
]

1400120010008006004002000

1.5

1

0.5

0

-0.5

-1

Figure 3.6: Vertical ice surface velocities of the EISMINT-1 moving margin experiment.

calculated by the model and the vertical velocities given by (3.10) at the ice margin are due

44 CHAPTER 3. NUMERICS

to the fact that temperatures and velocities are only calculated when the ice is thicker than a
certain threshold value which is not met at the ice margin.

Figure 3.7 shows vertical profiles of the vertical velocity at the ice divide and a point half–
way between the divide and the domain margin. A corresponding temperature profile is also
shown since the vertical velocity determines the vertical temperature advection (see Section
3.2.4).

corrected

temperature [◦C]

n
o
rm

a
li
se
d
h
ei
g
h
t

0-5-10-15-20-25-30-35

1

0.8

0.6

0.4

0.2

0

uncorrected

vertical velocity [ma−1]

n
o
rm

a
li
se
d
h
ei
g
h
t

0-0.2-0.4-0.6-0.8-1

1

0.8

0.6

0.4

0.2

0

Figure 3.7: Vertical velocity and temperature distribution for columns at the ice divide and a
point half–way between the divide and the domain margin.

3.2 Temperature Solver

The flow law, Equation (3.3), depends on the temperature of ice. It is, therefore, necessary to
determine how the distribution of ice temperatures changes with a changing ice sheet configu-
ration. The thermal evolution of the ice sheet is described by

∂T

∂t
=

k

ρc
∇2T − u ·∇T +

Φ

ρc
− w

∂T

∂z
, (3.38)

where T is the absolute temperature, k is the thermal conductivity of ice, c is the specific heat
capacity and Φ is the heat generated due to internal friction. In the σ–coordinate system,
Equation (3.38), becomes

∂T

∂t
=

k

ρcH2

∂2T

∂σ2
− u ·∇T +

σg

c

∂u

∂σ
·∇s+

1

H

∂T

∂σ
(w − wgrid) (3.39)

The terms represents (1) vertical diffusion, (2) horizontal advection, (3) internal heat generation
due to friction and (4) vertical advection and a correction due to the sigma coordinate system.
Let’s rewrite (3.39) to introduce some names:

∂T

∂t
= a

∂2T

∂σ2
+ b(σ) + Φ(σ) + c(σ)

∂T

∂σ
, (3.40)

3.2. TEMPERATURE SOLVER 45

where

a =
k

ρcH2
(3.41a)

b(σ) = −u ·∇T (3.41b)

Φ(σ) =
σg

c

∂u

∂σ
·∇s (3.41c)

c(σ) =
1

H
(w − wgrid) (3.41d)

3.2.1 Vertical Diffusion

Discretisation of ∂2T/∂σ2 is slightly complicated because the vertical grid is irregular. Using
Taylor series the central difference formulas are

∂T

∂σ

∣∣∣∣
σk−1/2

=
Tk − Tk−1

σk − σk−1
(3.42a)

and

∂T

∂σ

∣∣∣∣
σk+1/2

=
Tk+1 − Tk

σk+1 − σk
(3.42b)

The second partial derivative is then, also uning central differences:

∂2T

∂σ2

∣∣∣∣
σk

=
∂T/∂σ|σk+1/2

− ∂T/∂σ|σk−1/2

1/2 (σk+1 − σk−1)
(3.42c)

Inserting (3.42a) and (3.42b) into (3.42c), we get:

=
2(Tk+1 − Tk)

(σk+1 − σk)(σk+1 − σk−1)
− 2(Tk − Tk−1)

(σk − σk−1)(σk+1 − σk−1)
(3.42d)

Finally, the terms of equation (3.42d) are rearranged:

∂2T

∂σ2

∣∣∣∣
σk

=
2Tk−1

(σk − σk−1)(σk+1 − σk−1)
− 2Tk

(σk+1 − σk)(σk − σk−1)

+
2Tk+1

(σk+1 − σk)(σk+1 − σk−1)
(3.43)

3.2.2 Horizontal Advection

The horizontal advection term, −u ·∇T is solved using an upwinding scheme. Let’s start with
the 1–dimensional case. The method discussed can be straightforwadly extented to 2D. As
always, the temperature function is expressed as a Taylor series.

T (x+∆x) = T (x) + ∆xT ′(x) +
∆x2

2
T ′′(x) + . . . (3.44a)

If we subsitute ∆x with 2∆x, Equation (3.44a)

T (x+ 2∆x) = T (x) + 2∆xT ′(x) + 2∆x2T ′′(x) + . . . (3.44b)

46 CHAPTER 3. NUMERICS

From (3.44a) and (3.44b) we can construct a difference formula where the O(∆x2) error is
cancelled, by multiplying (3.44a) with 4 and substracting the result from (3.44b):

T ′
+(x) =

4T (x+∆x)− T (x+ 2∆x)− 3T (x)

2∆x
(3.45a)

and similarly for the backward difference:

T ′
−(x) = −4T (x−∆x)− T (x− 2∆x)− 3T (x)

2∆x
(3.45b)

So the horizontal advection term in one dimensions becomes:

bx = −ux
∂T

∂x
=

−ux

2∆x

{
−(4Ti−1 − Ti−2 − 3Ti) when ux > 0

4Ti+1 − Ti+2 − 3Ti when ux < 0
(3.46)

A similar expression is found for by by simply substituting y for x. Finally, the combined
horizontal advection term, is simply

b = −u ·∇T = −
(
ux

∂T

∂x
+ uy

∂T

∂y

)
= bx + by = b1 + b2Ti (3.47)

3.2.3 Heat Generation

Taking the derivative of (3.18) with respect to σ, we get

∂ux

∂σ
= −2(ρg)nHn+1|∇s|n−1 ∂s

∂x
A(T ∗)σn (3.48)

Thus,

Φ(σ) =
σg

c

∂u

∂σ
·∇s =

σg

c

(
∂ux

∂σ

∂s

∂x
+

∂uy

∂σ

∂s

∂y

)
= −2(ρg)nHn+1|∇s|n−1σg

c
A(T ∗)σn

((
∂s

∂x

)2

+

(
∂s

∂y

)2
)

= − 2

cρ
(gσρ)n+1 (H|∇s|)n+1

A(T ∗)

(3.49)

The constant factor 2
cρ (gσρ)

n+1 is calculated during initialisation in the subroutine init temp.
This factor is assigned to array c1(1:upn). c1 also includes various scaling factors and the factor
1/16 to normalise A.

The next factor, (H|∇s|)n+1
is calculated in the subroutine finddisp:

c2i,j =

(
H̃i,j

√
S̃x

2

i,j + S̃y
2

i,j

)n+1

, (3.50)

The final factor is found by averaging over the neighbouring nodes:

Ai,j = 4Ai,j +2(Ai−1,j +Ai+1,j +Ai,j−1+Ai,j+1)+(Ai−1,j−1+Ai+1,j−1+Ai+1,j+1+Ai−1,j+1)
(3.51)

3.2.4 Vertical Advection

The vertical advection term, ∂T/∂σ is solved using the central difference formula for unevenly
spaced nodes:

∂T

∂σ
=

Tk+1 − Tk−1

σk+1 − σk−1
(3.52)

3.2. TEMPERATURE SOLVER 47

3.2.5 Boundary Conditions

At the upper boundary, ice temperatures are set to the surface temperature, Tsurf. The ice at
the base is heated by the geothermal heat flux and sliding friction:

∂T

∂σ

∣∣∣∣
σ=1

= −GH

k
− Hτ b · u(1)

k
, (3.53)

where τ b = −ρgH∇s is the basal shear stress and u(1) is the basal ice velocity. Ice temperatures
are held constant if they reach the pressure melting point of ice, i.e.

T ∗ = Tpmp if T ≥ Tpmp. (3.54)

Excess heat is then used to formulate a melt rate, S:

S =
k

ρL

(
∂T ∗

∂z
− ∂T

∂z

)
, (3.55)

where L is the specific latent heat of fusion. Finally, basal temperatures are held constant, if
the ice is floating:

∂T (1)

∂t
= 0. (3.56)

3.2.6 Putting it all together

Equation (3.39) is solved for each ice column. The horizontal dependency of the horizontal
advection term, (3.41b), is resolved by iterating the vertical solution. Putting the individual
terms together using a fully explicit finite differences scheme, Equation (3.40) becomes

Tk,t+1 − Tk,t

∆t
=

(
2aTk−1,t

(σk − σk−1)(σk+1 − σk−1)
− 2aTk,t

(σk+1 − σk)(σk − σk−1,t)

+
2aTk+1,t

(σk+1 − σk)(σk+1 − σk−1)

)
+ b1k,t + b2kTk,t +Φk + ck

Tk+1,t − Tk−1,t

σk+1 − σk−1
(3.57a)

and similarly the fully implicit scheme

Tk,t+1 − Tk,t

∆t
=

(
2aTk−1,t+1

(σk − σk−1)(σk+1 − σk−1)
− 2aTk,t+1

(σk+1 − σk)(σk − σk−1,t+1)

+
2aTk+1,t+1

(σk+1 − σk)(σk+1 − σk−1)

)
+ b1k,t+1 + b2kTk,t+1 +Φk + ck

Tk+1,t+1 − Tk−1,t+1

σk+1 − σk−1
(3.57b)

Taking the average of Equations (3.57a) and (3.57b) gives the Crank–Nicholson scheme. The
resulting equation is then rearranged and terms of Tk−1,t+1, Tk,t+1 and Tk+1,t+1 are combined
to give the tri–diagonal system

αkTk−1,t+1 + βkTk,t+1 + γkTk+1,t+1 = δk (3.58)

where, for k = 2, N − 1

αk = −1

2

2a∆t

(σk − σk−1)(σk+1 − σk−1)
+

1

2

ck∆t

σk+1 − σk−1
(3.59a)

βk = 1 +
1

2

2a∆t

(σk+1 − σk)(σk − σk−1)
− 1

2
b2k∆t = 1− αk − γk − 1

2
b2k∆t (3.59b)

γk = −1

2

2a∆t

(σk+1 − σk)(σk+1 − σk−1)
− 1

2

ck∆t

σk+1 − σk−1
(3.59c)

δk = −αkTk−1,t + (2− βk)Tk,t − γkTk+1,t +
1

2
(b1k,t + b1k,t+1)∆t+Φk∆t (3.59d)

48 CHAPTER 3. NUMERICS

Boundary Conditions

At the upper boundary:

α1 = 0, β1 = 1, γ1 = 0, δ1 = Tsurf (3.59e)

The lower boundary condition is somewhat more complicated. Here we only look at the
case when the temperature is below the pressure melting point of ice. BC for floating ice and
temperatures at the pressure melting point of ice are trivial. The geothermal heat flux is applied
at the lower boundary, i.e. Equation (3.42b) becomes

∂T

∂σ

∣∣∣∣
σk+1/2

= −GH

k
(3.60)

Assuming that σk − σk−1 = σk+1 − σk = ∆σ and inserting (3.42a) and (3.60) into (3.42c), the
second partial derivative becomes

∂2T

∂σ2

∣∣∣∣
σN

=

(
−GH

k
− TN − TN−1

∆σ

)
/∆σ = − GH

k∆σ
− TN − TN−1

∆σ2
(3.61)

Inserting the new conduction term and replacing the derivative of the vertical advection term
with the Neuman boundary condition, Equation (3.57a) becomes

TN,t+1 − TN,t

∆t
= −a

(
GH

k∆σ
+

TN,t − TN−1,t

∆σ2

)
+ b1N,t + b2NTN,t +ΦN − cN

GH

k
(3.62a)

and similarly for Equation (3.57b)

TN,t+1 − TN,t

∆t
= −a

(
GH

k∆σ
+

TN,t+1 − TN−1,t+1

∆σ2

)
+ b1N,t+1 + b2NTN,t+1

+ΦN − cN
GH

k
(3.62b)

The elements of the tri–diagonal system at the lower boundary are then

αN = − a∆t

2(σN − σN−1)2
(3.63a)

βN = 1− αN +
1

2
b2N∆t (3.63b)

γN = 0 (3.63c)

δN =− αNTN−1,t + (2− βN)TN,t − a
GH∆t

k(σN − σN−1)

+
1

2
(b1N,t + b1N,t+1)∆t+ΦN∆t− cN

GH∆t

k

(3.63d)

3.3 Basal Boundary Condition

The Section describes the formulation of the basal boundary condition. An interface for the
upper boundary condition (atmospheric BC) is easily defined by the surface temperature and
mass balance. Similarly, the basal boundary consists of mechanical and thermal boundary
conditions. The complications arise because the thermal and mechanical boundary conditions
depend on each other. The interface of the basal boundary can be described with the following
fields (see also Fig.3.8):

1. basal traction: this field specifies a parameter which is used to allow basal sliding.

3.3. BASAL BOUNDARY CONDITION 49

2. basal heat flux: heat flux entering the ice sheet from below.

3. basal water depth: the presence of basal melt water affects the basal ice temperature

Additionally, the ice sheet model calculates a melt/freeze rate based on the temperature gradient
and basal water depth. This is handled by GLIDE.

temperature
in the mantle

pressure melting
point of ice

basal heat
fluxbasal water

layer

melting/freezing
traction

heating due to friction

Figure 3.8: Basal boundary condition.

3.3.1 Mechanical Boundary Conditions

If the ice is not frozen to the bed, basal décollement may occur. This can be parameterised
by a traction factor, tb. Within the ice sheet model tb is used to either calculate basal sliding
velocities, ub, in the case of zeroth order physics, i.e.

ub = tbτ b (3.64)

where τb is the basal shear stress. Alternatively, tb can be used as part of the stress–balance
calculations when the model is used with higher order physics. In simple models tb may be uni-
form or prescribed as a spatial variable. More complex models may wish to make tb dependant
on other variables, e.g. basal melt rate. Typically tb will depend on the presence of basal water.

The second mechanical boundary condition, basal melting/freeze–on Ḃ, is handled within
the ice sheet model. The details are described in Section 3.3.2.

3.3.2 Thermal Boundary Conditions

The thermal boundary condition at the ice base is more complicated than the mechanical
BC. The ice is heated from below by the geothermal heat flux. Heat is generated by friction
with the bed. Furthermore, the ice temperature is constrained to be smaller or equal to the
pressure melting point of ice. The thermal boundary is set to the basal heat flux if there is no
water present. If there is water, the thermal boundary condition is set to the pressure melting
temperature1.

1if it was lower there would be no water, if it was higher than there would be no ice

50 CHAPTER 3. NUMERICS

Basal Melting and Freezing

At the ice base, z = h, we can define outgoing and incoming heat fluxes, Ho and Hi:

Ho = −kice
∂T

∂z

∣∣∣∣
z=h+

(3.65a)

and

Hi = −krock
∂T

∂z

∣∣∣∣
z=h−

+ ub · τ b +

{
ρiceḂ/L when Ḃ < 0

0 otherwise
(3.65b)

where kice and krock are the thermal conductivities of ice and rock, ub · τ b is the heat generated
by friction with the bed and L is the latent heat of fusion of pure water. The basal melt/freeze–
on rate, Ḃ can then be calculated from the difference between the incoming and outgoing heat
fluxes:

Ḃ =
Ho −Hi

ρiceL
(3.66)

Freeze–on occurs if Ḃ is negative, basal melting occurs if Ḃ is positive.

Geothermal Heat Flux

The heat flux accross the basal boundary depends on past temperature variations since tem-
perature perturbations penetrate the bed rock if the ice is frozen to the ground (?). The heat
equation for the bed rock layer is given by the diffusion equation

∂T

∂t
=

krock
ρrockcrock

∇2T =
krock

ρrockcrock

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
, (3.67)

where krock is the thermal conductivity, ρrock the density and crock the specific heat capacity of
the bed rock layer.

Initial conditions for the temperature field T are found by applying the geothermal heat
flux, G to an arbitrary surface temperature T0:

T (x, y, z) = T0 +
G

krock
z. (3.68)

This ensures that initially the geothermal heat flux experienced by the ice sheet is equal to the
regional heat flux. The basal boundary condition of the bedrock layer is kept constant, i.e.

T (x, y,Hrock) = T0 +
G

krock
Hrock. (3.69)

Lateral boundary conditions are given by

∂T

∂x

∣∣∣∣
x=0

=
∂T

∂x

∣∣∣∣
x=Lx

=
∂T

∂y

∣∣∣∣
y=0

=
∂T

∂y

∣∣∣∣
y=Ly

= 0. (3.70)

At the upper boundary, the heat flux of the rock layer has to be matched with the heat flux in
the basal ice layer when the ice is frozen to the bed, i.e.

krock
∂T

∂z

∣∣∣∣
z=−0

= kice
∂T

∂z

∣∣∣∣
z=+0

. (3.71)

Otherwise the temperature of the top bedrock layer is set to the surface temperature (if the
cell has been occupied by ice, but there is no ice present) or the basal ice temperature (if there
is ice). Equation (3.71) is automatically fulfilled if we set the top bedrock temperature to the
basal ice temperature everywhere and then calculate the geothermal heat flux to be used as
boundary condition for Equation (3.38).

3.3. BASAL BOUNDARY CONDITION 51

3.3.3 Numerical Solution

The horizontal grid is described in Section 3.1.1. The vertical grid is irregular like the vertical
grid of the ice sheet model. However, it is not scaled. Also for now, I have ignored topography
or isostatic adjustment, i.e. the bedrock layer is assumed to be flat and constant.

The horizontal second derivative in Equation (3.67) becomes using finite–differences

∂2T

∂x2

∣∣∣∣
xi,yi,zi

= Txx,i,j,k =
Ti+1,j,k − 2Ti,j,k + Ti−1,j,k

∆x
(3.72)

and similarly for ∂2T/∂y2. The vertical second derivative ∂2T/∂z2 is similar to Equation (3.43):

∂2T

∂z2

∣∣∣∣
xi,yi,zi

= Tzz,i,j,k =
2Ti,j,k−1

(zk − zk−1)(zk+1 − zk−1)
− 2Ti,j,k

(zk+1 − zk)(zk − zk−1)

+
2Ti,j,k+1

(zk+1 − zk)(zk+1 − zk−1)
(3.73)

Using the Crank-Nicholson scheme, Equation (3.67) becomes

T t+1
i,j,k − T t

i,j,k

∆t
= D

{
T t+1
xx,i,j,k + T t

xx,i,j,k

2
+

T t+1
yy,i,j,k + T t

yy,i,j,k

2
+

T t+1
zz,i,j,k + T t

zz,i,j,k

2

}
, (3.74)

with D = krock/(ρrockcrock). Equation (3.74) is solved by gathering all T t+1 terms on the LHS
and all other terms on the RHS. The index (i, j, k) is linearised using ι = i+(j−1)N+(k−1)NM .
The resulting matrix system is solved using the same bi–conjugate gradient solver as for the ice
thickness evolution.

3.3.4 Basal Hydrology

It is clear from the discussion above that the presence of basal water plays a crucial role in
specifying both the mechanical and thermal boundary conditions. However, the treatment of
basal water can vary greatly. Basal water is, therefore, left as an unspecified interface. GLIDE
does provide a simple local water balance model which can be run in the absence of more
complex models.

3.3.5 Putting It All Together

The basal boundary consists of the individual components described in the previous sections.
All components are tightly linked with each other. Figure 3.9 illustrates how the modules are
linked and in what order they are resolved. The order of executions is then:

1. Find the basal heat flux by either solving the equation describing the thermal evolution
of the lithosphere, Eq. (3.67), or by using the geothermal heat flux directly. The upper
boundary condition of (3.67) is the same as the lower boundary condition of the thermal
evolution of the ice sheet.

2. The lower boundary condition for the thermal evolution of the ice sheet is either given by
the basal heat flux from Step 1 ; or if melt water is present the basal temperature is set
to the pressure melting point of ice.

3. Calculate the temperature distribution within the ice sheet given the boundary condition
found during Step 2 and the atmospheric BC.

4. Calculate a melt/freeze–on rate using Equation (3.66) given the outgoing heat flux calcu-
lated during Step 3, friction with the bed (calculated during the previous Step 7) and the
incoming heat flux from Step 1. Freezing only occurs when there is basal water.

52 CHAPTER 3. NUMERICS

1

2

3

4

5

7

user supplied modules

glide modules

forcing fields

internal fields

6 basal melt rate

calculate
thermal boundary

conditions
calculate basal

traction

basal traction

heat flux due to
friction with bed

solve mechanical
evolution of ice sheet

basal water

track basal
water

calculate melt and
freeze-on rate

basal heat flux
from ice sheet

solve thermal
evolution of ice sheet

basal heat flux

solve thermal
evolution of bedrock

geothermal heat
gradient

Figure 3.9: Flow diagram illustrating how the various modules communicate with each other
by exchanging data fields.

3.4. ISOSTATIC ADJUSTMENT 53

5. Track basal water. This is a user supplied module which can take any complexity. Inputs
will typically be the melt/freeze–on rate determined during Step 4.

6. Calculate the basal traction parameter. Again, this is a user supplied module which
typically will involve the presence of basal melt water (calculated during Step 5).

7. Solve the mechanical ice equations given basal traction parameter from Step 6.

Clearly, this scheme has the problem that heat is lost if the basal heat flux is such that more
water could be frozen than is available. This might be avoided by iterating the process. On the
other hand if time steps are fairly small this might no matter to much.

3.4 Isostatic Adjustment

The ice sheet model includes simple approximations for calculating isostatic adjustment. These
approximations depend on how the lithosphere and the mantle are treated. For each subsystem
there are two models. The lithosphere can be described as a

local lithosphere: the flexural rigidity of the lithosphere is ignored, i.e. this is equivalent to
ice floating directly on the asthenosphere;

elastic lithosphere: the flexural rigidity is taken into account;

while the mantle is treated as a

fluid mantle: the mantle behaves like a non-viscous fluid, isostatic equilibrium is reached
instantaneously;

relaxing mantle: the flow within the mantle is approximated by an exponentially decaying
hydrostatic response function, i.e. the mantle is treated as a viscous half space.

3.4.1 Calculation of ice-water load

At each isostasy time-step, the load of ice and water is calculated, as an equivalent mantle-depth
(L). If the basal elevation is above sea-level, then the load is simply due to the ice:

L =
ρi
ρm

H, (3.75)

whereH is the ice thickness, with ρi and ρm being the densities of the ice and mantle respectively.
In the case where the bedrock is below sea-level, the load is calculated is that due to a change in
sea-level rise and/or the presence of non-floating ice. When the ice is floating (ρiH < ρo(z0−h)),
the load is only due to sea-level changes

L =
ρo
ρm

z0, (3.76)

whereas when the ice is grounded, it displaces the water, and adds an additional load:

L =
ρiH + ρoh

ρm
. (3.77)

here, ρo is the density of sea water, z0 is the change in sea-level relative to a reference level and
h is the bedrock elevation relative to the same reference level. The value of h will be negative
for submerged bedrock, hence the plus sign in (3.77).

54 CHAPTER 3. NUMERICS

3.4.2 Elastic lithosphere model

This is model is selected by setting lithosphere = 1 in the configuration file. By simulatuing
the deformation of the lithosphere, the deformation seen by the aesthenosphere beneath is
calculated. In the absence of this model, the deformation is that due to Archimedes’ Principle,
as though the load were floating on the aesthenosphere.

The elastic lithosphere model is based on work by ?, and its implementation is fully described
in ?. The lithosphere model only affects the geometry of the deformation — the timescale for
isostatic adjustment is controlled by the aesthenosphere model.

The load due to a single (rectangular) grid point is approximated as being applied to a disc
of the same area. The deformation due to a disc of ice of radius A and thickness H is given by
these expressions. For r < A:

w(r) =
ρiH

ρm

[
1 + C1 Ber

(
r

Lr

)
+ C2 Bei

(
r

Lr

)]
, (3.78)

and for r ≥ A:

w(r) =
ρiH

ρm

[
D1 Ber

(
r

Lr

)
+D2 Bei

(
r

Lr

)
+D3 Ker

(
r

Lr

)
+D4 Kei

(
r

Lr

)]
, (3.79)

where Ber(x), Bei(x), Ker(x) and Kei(x) are Kelvin functions of zero order, Lr = (D/ρmg))1/4

is the radius of relative stiffness, and D is the flexural rigidity. The constants Ci and Di are
given by

C1 = aKer′(a)
C2 = −aKer′(a)
D1 = 0
D2 = 0
D3 = aBer′(a)
D4 = −aBer′(a).

(3.80)

Here, the prime indicates the first spatial derivative of the Kelvin functions.

3.4.3 Relaxing aesthenosphere model

If a fluid mantle is selected, it adjusts instantly to changes in lithospheric loading. However, a
relaxing mantle is also available.

Chapter 4

Developer Guide

4.1 Introduction

Everyone with an interest in ice sheet modelling is encouraged to contribute to GLIMMER.
However, the structure of the model is complex, and the coding style is more object-oriented
than is generally common in geosciences models. The aim of this chapter is to introduce these
characteristics of the model and to suggest some approaches to GLIMMER development. Detail
is then provided on some of the modules present within the GLIMMER code base.

In developing new code, several important principles should be borne in mind. These are
useful ideas when developing any code, but are especially important when contributing to an
established collaborative project like GLIMMER:

• Modularise/objectify. Divide the code up into logically self-contained tasks. In a
numerical model of a set of physical processes, this usually means taking each process
separately, though of course the numerical techniques used will have a bearing on how the
division is done — implicit solutions of systems of equations require a more integrated
approach. Objectification is covered in more detail below.

• Don’t duplicate. At all costs, avoid duplicating code within a model, as it makes bug-
fixing and other maintenance nightmarish. Put it in a subroutine and call it from different
places. Consider doing this even if the duplicated code is slightly different — write the
subroutine so it will do these different things.

• Don’t reinvent the wheel. If an existing piece of code in the model does what you
need already, use it. If it nearly does what you need, extend it.

• Respect the hierarchy of the code. Some parts of the model are ‘core’, some are
shared utility code, some are extensions/drivers/models of boundary conditions. Avoid
creating a birds-nest of dependencies. If a piece of code from an extension acquires general
usefulness, consider moving it to one of the shared utility modules.

• Write for flexibility. The is almost never any justification for using static arrays (i.e.
fixed sizes at compile-time), and certainly the size of an array should be defined at only one
point in the code. Likewise, physical and other numerical parameters should be organised
in a central place, and made configurable at runtime if there is a chance someone might
want to change them. Think beyond what you’re doing now to what you might want to
do in the future, and write code accordingly.

• Be conservative. Although radical restructuring or rewriting can sometimes be nec-
essary, it should only be done after careful consideration of the potential consequences.

55

56 CHAPTER 4. DEVELOPER GUIDE

Usually, incremental, gradual change is best. Also, when making changes, it’s very impor-
tant to retain the existing functionality and the form of the user interfaces (code interfaces
and configuration options) if at all possible. Extend rather than alter.

• Write comments. It’s almost impossible to write too many comments in your code. It’s
especially important to document subroutine arguments, including the units of quantities,
temporal validity, etc. Remember, in a few weeks’ time, you’ll probably have forgotten
half of it, and will be glad of the comments. . .

• Lay out your code neatly. Indentation of code blocks and leaving blank lines between
different sections of code are important ways to make code more readable. Most good
editors have an automatic indentation facility — Emacs is a good editor in this respect1.

• Use long, meaningful names. There’s not much virtue these days in making variable
and subroutine names short and opaque — we don’t have issues with memory, and Fortran
90/95 allows names to be up to 31 characters. It may involve a bit more typing to use
long names, and care must be taken to ensure they don’t get too long, but the extra time
spent typing is worth it if the code actually means something when you look at it again
a few weeks later.

• Use version control. Although it takes a little time to learn to use a version control
system, it really does make life easier. If you’ve ever got confused about which version of
the code you or your collaborators have, or wished you could revert the changes you’ve just
made, then you need version control. We use CVS for GLIMMER, but other systems are
available. Of these, Subversion is generally seen as a promising alternative and successor
to CVS.

The sections that follow cover some of these topics in more detail, but much that passes for
good-practice in code development is best learnt from experience, and by looking at existing
code.

4.2 Introduction to GLIMMER programming techniques

Although GLIMMER is written in Fortran, a very widely used language in the geosciences,
many of the techniques employed in the model will be unfamiliar to even seasoned Fortran
programmers. What follows is a brief description of some of these more advanced techniques.
For further information about the topics covered, the reader is directed to ? and ?.

4.2.1 Fortran Modules

Module definition

The basic building block of the GLIMMER structure is the Fortran 90/95 module, which is
a way of collecting together subroutines, functions type definitions and variables into a single
scope2. The module may then be used within another piece of code, so that the names in the
modules scope are available in the other piece of code. A module block is defined like this:

module module-name

module variable declarations

1Hint: if emacs doesn’t enter the F90 edit mode immediately upon opening a file, you need to type Alt-x,
followed by f90-mode, and press <enter>.

2A scope or namespace is the term for the program unit where a given name, such as a variable or subroutine
name, is valid. For instance, if a variable is declared at the beginning of a subroutine, the body of the subroutine
is that variable’s scope; outside the scope, the name is undefined, or may be defined differently.

4.2. INTRODUCTION TO GLIMMER PROGRAMMING TECHNIQUES 57

derived-type definitions

contains

function and subroutine declarations

end module

The contains is omitted if no subroutines or functions are present. It is good practice to put
each module in a separate file, and give the filename the same name as the module.

Using modules

A module is accessed by another piece of code with the use statement. Thus, if the module foo
contains the subroutine bar, another piece of code may make use of it in this way:

program program-name

use foo

implicit none

variable declarations

call bar

end program program-name

Of course, subroutines, functions and modules can all contain use statements as well.

Privacy in modules

By default, all the names in a module’s scope become available to any program element that
references it with a use statement. There are circumstances where this is undesirable, and so
Fortran 90/95 provides a way to define names as public or private. The public and private

statements may both be present in the first block of a module (i.e. before the contains, if
present). The list of variable and/or subroutine names follows. For example:

private :: foo, bar, blah

It is good practice to be clear about what parts of a module form a public interface, and define
this formally. A good way of doing this is to set the default to private, and then set specific
names as public:

private

public :: foo, bar

This technique is useful for avoiding name conflicts when two modules might define inter-
nal variables or subroutines with the same name (e.g. pi for the value of π). Also, public
subroutines are best named in an un-generic way, by prefixing their names with the name
of the module. For instance, the module glimmer daily pdd contains the public subroutines
glimmer daily pdd init and glimmer daily pdd mbal.

58 CHAPTER 4. DEVELOPER GUIDE

4.2.2 Derived types

A derived type is a way of collecting together an arbitrary set of variables and arrays into a
composite variable type, instances of which can be addressed with a single name. The concept
of derived types takes us some way towards so-called object-oriented programming (OOP) tech-
niques, though there are some important OOP techniques that are not implemented in Fortran
90/95.

A derived type is defined in this kind of way:

type typename

real :: realvar

integer :: intvar

real,pointer,dimension(:,:) :: realarr => null()

end type typename

So, a derived type can contain any scalar variables, and also pointers (either scalar pointers or
array pointers). Fortran 90/95 does not permit derived type elements to be allocatable arrays,
but since the behaviour of pointer arrays is very similar, this isn’t a serious problem.

The type definition doesn’t actually create any variables though. To do that, you need to
use the type declaration to create an instance of the derived type (known as a structure), just
as with any other type of variable:

type(typename) :: fred, jim, bob

This creates three structures of type typename, called fred, jim and bob. Structures can be
handled like ordinary variables, and passed to subroutines in argument lists, etc. The individual
elements may be addressed using the % operator:

fred%realvar = 4.5

jim%intvar = fred%intvar + 7

allocate(bob%realarr(nx,ny))

Note that by default, mathematical operators have no meaning when applied to derived
types; writing bob = fred + jim isn’t allowed. If you want to add the elements of fred to the
elements of jim, it’s necessary to write a function to do so, so that you would, for example,
write bob = typename add(fred,jim) It is possible to define the meaning of the + operator so
that it uses the function typename add to perform the addition (a process known as operator
overloading), but describing how is beyond the scope of this document. In any case, derived
types in GLIMMER are not generally used in a way such that arithmetic operations would
make sense.

Usually, derived type definitions are put into modules (before contains), so that they can
easily be used in different pieces of code. The power that this combination of type definitions
and modules gives is described in the next section.

4.2.3 Object-orientation with modules and derived types

As the name implies, the object is the central concept of object-oriented programming. In
traditional OOP terminology, a class defines a type of object. The class has particular attributes,
which might be numerical values, strings or whatever (i.e. they’re variables that are part of the
class), and methods, which are things you can ask an object to do to itself (i.e. methods are
functions or subroutines which are part of a class).

Explaining OOP with examples is notoriously tricky because the easiest examples of classes
are those that mirror classes of objects in the real world, but this inevitably seems a bit contrived.
So, although it seems a bit ridiculous, here’s one such example. . . Imagine a class which describes
a domestic oven. What are the attributes of an oven, that differentiate one oven from another?
These could be the size of the oven, it’s type (electric or gas), as well those things that describe

4.2. INTRODUCTION TO GLIMMER PROGRAMMING TECHNIQUES 59

its present state: the thermostat setting, the actual oven temperature, whether the heating
element is on or off, and whether the door is open or not

Secondly, what kind of actions can we perform on the oven? Most likely, we want to be able
to open and close the oven door, check the present temperature, and set the thermostat. These
actions are the methods.

In terms of Fortran 90, we can use the mechanism of modules and derived types to implement
a somewhat limited form of OOP:

module domestic_oven

type oven

real :: width,height,depth

real :: thermostat

real :: temperature

logical :: element ! .true. for no, .false. for off

logical :: door ! .true. for open, .false. for closed

character(10) :: oven_type

end type oven

contains

subroutine oven_set_thermostat(self,temp)

type(oven) :: self

real :: temp

self%temperature = temp

end subroutine oven_set_thermostat

. . . plus other functions/subroutines

end module domestic_oven

A module like this will usually include a subroutine to initialise objects; in this case, you would
expect to be able to specify the size of the oven, its type, initial temperature, etc.

So much for computer models of domestic ovens; what use is OOP to ice modellers? Well,
using the technique described above is what allows GLIMMER to be used to run several regional
ice models simultaneously. It also makes adding new mass-balance models to GLINT much
easier. In fact, the principles of OOP are used all over the GLIMMER code, so it is worth
getting to grips with them.

4.2.4 Example of OOP in Glimmer

A good, self-contained example of GLIMMER programming style, and the use of OOP is the way
that the daily PDD mass-balance scheme (in glimmer daily pdd.F90) has been implemented.
Here, the parameters of the scheme are stored in the derived type glimmer daily pdd params,
and the public interface of the module is limited to this derived type, and two subroutines
(glimmer daily pdd init and glimmer daily pdd mbal). Everything else is kept private within
the module. The initialisation subroutine uses the standard GLIMMER configuration file reader
to get input parameters, and the GLIMMER logging mechanism to output data to the screen
and/or file. The object-like structure means that it is easy to use the daily PDD model within
some other piece of code: all one needs to do is declare an instance of glimmer daily pdd params,
initialise it appropriately, and then call the glimmer daily pdd mbal subroutine. Also, although

60 CHAPTER 4. DEVELOPER GUIDE

the PDD model is currently initialised from file, it would be easy to write an alternative ini-
tialisation routine within the module to get the parameters from a subroutine argument list,
extending the capabilities of the module rather than changing the present interface.

4.2.5 Pointers

The final more advanced topic covered here is the Fortran pointer. Thankfully, the name is
self-explanatory — a pointer is a thing that points to another thing. This might not sound like
much use, but since pointers can be made to point at different things as the program runs, and
can have memory allocated for them to point to, they can be used to create flexible, dynamic
data structures. The thing that a pointer points to is called a target.

Pointer basics

Pointers are declared much like an ordinary variable, but with the pointer attribute. For
example, to declare an integer pointer, one would write this:

integer, pointer :: foo => null()

The second part of this statement (=>null()) initialises the pointer to null (i.e. pointing to
nothing). This is only available in Fortran 95, but it is highly desirable to use it, as otherwise
the pointer’s target is undefined3.

Note that although we have declared a pointer with this statement, we can’t use it as a
variable yet, as it isn’t pointing at an integer-sized chunk of memory. There are two ways
of rectifying this: either the pointer can be made to point to an existing variable, or a new
block of memory can be allocated to hold the target. These two methods are known as pointer
assignment and pointer allocation, respectively.

Pointer assignment

Pointing a pointer at something is very simple. The pointer assignment statement uses the =>

operator:

a => b

This statement sets pointer a to point to target b. For this to be valid Fortran, a must have
the pointer attribute, while b must be either a variable with the target attribute, or another
pointer. If the target is a pointer, then the first pointer is set to point at the second pointer’s
target. This means that

a => b

c => a

is equivalent to

a => b

c => b

Pointer allocation

A pointer can be made to point to a newly-allocated chunk of memory using the allocate

statement, in the same way as an allocatable array is handled:

allocate(a)

3Undefined is not the same thing as pointing at nothing. Undefined pointers can cause a program to crash
very easily; the lack of null initialisation in Fortran 90 is one of the more serious omissions that Fortran 95 sought
to address.

4.2. INTRODUCTION TO GLIMMER PROGRAMMING TECHNIQUES 61

By using the pointer assignment described above, other pointers may be made to point at the
same piece of memory:

b => a

Un-pointing pointers, and avoiding memory leaks.

A pointer can be nullified (made to point to nothing) in two ways: using the null function, or
the nullify statement:

p => null()

nullify(p)

Care has to be taken with this, however. Recall the memory allocation example given above:

allocate(a)

b => a

It is significant that the memory location that a and b now point to doesn’t have a name of its
own, which means that if a and b are subsequently both made to point to something else, or
to nothing, the target variable becomes impossible to recover. Consider this sequence of two
statements:

allocate(a)

a => null()

Here, a block of memory is allocated, and a is made to point to it. Then, a is made to point to
nothing. However, the block of memory allocated in the first statement hasn’t been deallocated,
and is now unrecoverable — and unusable — since we don’t have a name to refer to it by. This
is known as a memory leak, and it is a Bad Thing. It’s not disastrous if a few integer-sized
blocks of memory suffer this fate, but if large amounts of memory are lost like this, it is quite
possible for the program to crash or become very slow as a result.

The proper way to avoid memory leaks is to deallocate memory before it becomes derefer-
enced, using the deallocate statement4:

allocate(a)

deallocate(a)

a => null()

The reason that this isn’t done automatically when a pointer is nullified is because there may be
other pointers still pointing to that memory location. The process of working out which chunks
of memory have been ‘orphaned’ and so need to be deallocated (known as garbage collection)
is complex, and compiled languages like Fortran don’t usually do it automatically. Avoiding
memory leaks therefore depends on careful program design.

Linked lists

A major use for pointers is the linked list, a flexible data structure whose size and structure can
be changed dynamically, without having to reallocate it from scratch (which is the case with
allocatable arrays).

The principle of the linked list is that each element of the list points to the next element.
Extra elements can be added to the end of the list by allocating more memory, and making the
final element point to it. Other actions can be done by manipulating the pointers of the various
elements.

A typical linked list might use the following derived type:

4It’s not clear to me whether the assignment of a to null is necessary in this example. Some compilers take
it as read that if a block of memory that a pointer points to is deallocated, that pointer is also nullified, but I
am not sure if this is universal.

62 CHAPTER 4. DEVELOPER GUIDE

type list

type(list) :: next => null()

type(list) :: previous => null()

integer :: value

end type list

So, the type contains pointers that point to the next and previous elements of the list. Describing
how to implement subroutines and functions to construct, read and modify the list is beyond
the scope of this document, but a full example is provided in ?.

GLIMMER makes several uses of linked lists and pointer techniques, most notably in the
handling of configuration and output files.

4.3 GLIMMER structure and design

4.3.1 Overview

The ‘design’ of GLIMMER is a consequence of the way it has been developed. Initially, as a
stand-alone model with a single domain, module variables were used to hold all model fields and
parameters. With the move to use GLIMMER as the ice model component within GENIE, and
the desire to enable several active regions to be run simultaneously, the module variables were
converted into components of derived types, and an extra layer added on top of the existing
structure to deal with global fields and parameters, and deal with the downscaling/interpolation
of input fields. A subsequent major reorganisation then allowed the use of the ice model in
stand-alone mode again, and the present GLINT-GLIDE structure was born. Doubtlessly, the
resulting structure is more complex than necessary, but hopefully it is still reasonably logical.

Currently (July 2006), the fortran directory in the GLIMMER source tree contains 83 .F90
files, including automatically generated NetCDF IO files (more on this below). Figure 1.1 indi-
cates the general relationship between the various parts of GLIMMER; a more comprehensive
overview, with filename patterns, is shown in figure 4.1. The various parts of GLIMMER shown

GLINT Drivers

Climate Drivers

GLIDE

glide*.F90

Isostasy model

isostasy*.F90

GLUM
glimmer*.F90

kelvin.F90 profile.F90

Edinburgh Driver (EIS)

eis*.F90

EISMINT 3 Greenland

eismint3*.F90

GLINT

glint*.F90

(except glint_example*.F90)

SIMPLE driver

simple*.F90

GLINT example

glint_example*.F90

GLINT EBM example

glex_ebm*.F90

Figure 4.1: Relationship between the various GLIMMER components, giving filenames and
dependencies. The modules in GLUM are used by all other elements of the diagram.

in the diagram are as follows:

4.3. GLIMMER STRUCTURE AND DESIGN 63

• GLIDE (GLIMMER Ice Dynamics Element). This is the core ice model, whose core in-
terface consists of a derived type definition, and a small number of subroutines to initialise
the model, perform time steps and tidy up at the end. In the most basic set up, all that
needs to be supplied to GLIDE is the surface mass-balance and surface air temperature
fields.

• GLUM (GLIMMER Useful Modules). These are modules that contain code which is
used by all the other parts of GLIMMER. Some of these (for instance, the configuration
parser, NetCDF IO and logging system) are of general use to any model built on top of
GLIMMER.

• Isostasy model. Although currently only used by GLIDE, the isostasy model is written
in such a way as to be easily coupled to another ice model if necessary. Probably this
should be moved to within GLUM, though?

• Climate drivers. The flexibility of GLIMMER comes from the ease with which GLIDE
may be coupled to a custom climate driver. A number of these are provided as part of
the GLIMMER code base:

– Simple driver. This is essentially an example driver, almost as simple as possible
in design. It is used to implement the idealised EISMINT 1 tests.

– Edinburgh Ice Sheet driver (EIS). This is a driver based on the Edinburgh
Model (see ?, for example).

– EISMINT 3 Greenland. This driver implements the Greenland test cases from
the second phase of the EISMINT project (termed EISMINT 3 to distinguish it from
the second part of the first EISMINT project. . .)

– GLINT (GLIMMER Interface). This complex driver is designed to form an in-
terface between GLIDE and a global climate model. Originally developed for the
GENIE project, it can be used in conjunction with any global model defined on
a lat-lon grid. GLINT has its own complex structure of derived types, described
below, and is itself supplied with two example climate drivers, glint example and
glex ebm.

4.3.2 GLIDE structure

GLIDE is the heart of GLIMMER, the ice dynamics model. The top-level class or derived type
is glide global type, and this contains instances of other derived types, some defined within
GLIDE, others within GLUM. The situation is summarised in figure 4.2. All GLIDE derived
types are defined in glide types.F90; the others are defined within various GLUM files as
shown.

In addition to the relationships illustrated in figure 4.2, there is a web of dependencies based
on module use statements. This structure is too complex to be illustrated in a dependency
diagram; figure 4.3 shows the direct module dependencies of module glide.

A brief description of the modules and files that comprise GLIDE is given here:

Module name Filename Description

glide glide.F90 Top-level GLIDE module. Contains subrou-
tines to read a config file, initialise the model,
and perform time-steps.

glide io glide io.F90 NetCDF IO routines for GLIDE. This file is
auto-generated (see below).

continued on next page

64 CHAPTER 4. DEVELOPER GUIDE

GLUM

glide_global_type

in glide_types.F90

+general: glide_general

+options: glide_options

+geometry: glide_geometry

+geomderv: glide_geomderv

+velocity: glide_velocity

+climate: glide_climate

+temper: glide_temper

+lithot: glide_lithot_type

+funits: glide_funits

+numerics: glide_numerics

+velowk: glide_velowk

+pcgdwk: glide_pcgdwk

+thckwk: glide_thckwk

+tempwk: glide_tempwk

+paramets: glide_paramets

+projection: CFproj_projection

+profile: profile_type

+glide_prof: glide_prof_type

+isos: isos_type

glide_lithot_type

in glide_types.F90

+fd_coeff: sparse_matrix_type

+fd_coeff_slap: sparse_matrix_type

CFproj_projection

in glimmer_CFproj.F90

+laea: CFproj_laea

+aea: CFproj_aea

+lcc: CFproj_lcc

+stere: CFproj_stere

glide_funits

in glide_types.F90

+out_first: glimmer_nc_output

+in_first: glimmer_nc_input

glide_general

in glide_types.F90

+ice_grid: coordsystem_type

+velo_grid: coordsystem_type

profile_type

in profile.F90

isos_type

in isostasy_types.F90

+rbel: isostasy_elastic

isostasy_elastic

in isostasy_types.F90

CFproj_laea

in glimmer_CFproj.F90

CFproj_aea

in glimmer_CFproj.F90

CFproj_lcc

in glimmer_CFproj.F90

CFproj_stere

in glimmer_CFproj.F90

glimmer_nc_input

in glimmer_ncdf.F90

+nc: glimmer_nc_stat

+next: glimmer_nc_input

+previous: glimmer_nc_input

glimmer_nc_output

in glimmer_ncdf.F90

+nc: glimmer_nc_stat

+next: glimmer_nc_output

+previous: glimmer_nc_output
glimmer_nc_stat

in glimmer_ncdf.F90

sparse_matrix_type

in glimmer_sparse.F90

coordsystem_type

in glimmer_coordinates.F90

+origin: coord_point

+delta: coord_point

+delta_r: coord_point

+size: coord_ipoint

coord_point

in glimmer_coordinates.F90

coord_ipoint

in glimmer_coordinates.F90

Figure 4.2: Main ‘Class Diagram’ for GLIDE, in quasi-UML notation. Only derived type com-
ponents which are themselves derived types are shown; intrinsic type components are omitted.
Also omitted are derived types which are defined within GLIDE but which contain no derived
type components. Derived types in GLUM are coloured to show which file they are defined in.

4.3. GLIMMER STRUCTURE AND DESIGN 65

module glide

in file glide.F90

module glide_types

in file glide_types.F90

module glide_stop

in file glide_stop.F90

module glide_nc_custom

in file glide_nc_custom.F90

module glide_io

in file glide_io.F90

module glide_lithot

in file glide_lithot.F90

module glide_profile

in file glide_profile.F90

module glide_temp

in file glide_temp.F90

module glide_thck

in file glide_thck.F90

module glide_velo

in file glide_velo.F90

module glide_mask

in file glide_mask.F90

module glide_setup

in file glide_setup.F90

module glimmer_ncparams

in file glimmer_ncparms.F90

module glimmer_config

in file glimmer_config.F90

module glimmer_ncio

in file glimmer_ncio.F90

module glimmer_scales

in file glimmer_ncdf.F90

module glimmer_log

in file glimmer_log.F90

GLUM

module glimmer_global

in file glimmer_global.F90

Figure 4.3: Direct module dependency diagram for module glide only, illustrating the com-
plexity of module dependencies.

66 CHAPTER 4. DEVELOPER GUIDE

continued from previous page

glide lithot glide lithot.F90 Top-level module for lithosphere
temperature/heat-flux model.

glide lithot1d glide lithot1d.F90 One-dimensional model for lithosphere tem-
perature calculations. Used by glide lithot.

glide lithot3d glide lithot3d.F90 Three-dimensional model for lithosphere tem-
perature calculations. Used by glide lithot.

glide mask glide mask.F90 Contains code to determine the properties
of each grid-box — whether ice is present,
whether it is floating, is a marine margin cell,
etc. The output for each cell is a number
whose bits each represent a different property.

glide nc custom glide nc custom.F90 Code to write contents of dimension variables
(x1, x0, etc.) to output NetCDF file.

glide profile glide profile.F90 Wrapper for profile.F90 (determines how
much processor time is devoted to each task)
with GLIDE-specific configuration. Useful for
debugging/analysis.

glide setup glide setup.F90 Subroutines used in GLIDE initialisation
(reading configuration files, etc). Also
contains a few bits of code used by the
model each time step, that should properly
be located somewhere else (glide maskthck,
glide marinlim and glide calclsrf).

glide stop glide stop.F90 Module for tidying up at the end of
a model run (contains only subroutine
glide finalise).

glide temp glide temp.F90 GLIDE ice thermodynamics code.
glide thck glide thck.F90 Thickness evolution code.
glide types glide types.F90 Definitions of all GLIDE derived types (see

figure 4.2).
glide velo glide velo.F90 Code for GLIDE ice velocity calculations.

4.3.3 GLINT structure

As the most complex of the driver programs supplied as part of GLIMMER, the structure of
GLINT is described next. As with GLIDE, on which it is built, the GLINT structure uses a
hierarchy of derived types, shown in figure 4.4. The most significant aspect of this diagram is
that the top-level type (glint params) contains the parameters that are relevant to the coupling
on a global level, including an array (instances) of type glint instance. Each element of this
array contains a single GLIDE model instance. The reason for using a wrapper type, rather
than having an array of type glide global type, is that there is a lot of instance-specific
information (the mass-balance model, downscaling/upscaling, etc.) that isn’t contained in the
GLIDE derived type.

There is some redundancy in this data structure, which should be corrected at some point
in the future. Most significant is the presence in both GLIDE and GLINT of data structures
describing the map projection of the model. (types projection and CFproj projection).
GLINT uses the former to work out where the model instance is on the globe, and obtains the
information from the configuration file; GLIDE reads and writes the latter from the NetCDF
files, but doesn’t use the information for calculation. Currently, there is no coordination between
the two sets of information.

The modules comprising GLINT are as follows:

4.3. GLIMMER STRUCTURE AND DESIGN 67

glide_global_type

in glide_types.F90

+general: glide_general

+options: glide_options

+geometry: glide_geometry

+geomderv: glide_geomderv

+velocity: glide_velocity

+climate: glide_climate

+temper: glide_temper

+lithot: glide_lithot_type

+funits: glide_funits

+numerics: glide_numerics

+velowk: glide_velowk

+pcgdwk: glide_pcgdwk

+thckwk: glide_thckwk

+tempwk: glide_tempwk

+paramets: glide_paramets

+projection: CFproj_projection

+profile: profile_type

+glide_prof: glide_prof_type

+isos: isos_type

glint_params

in glint.F90

+g_grid: global_grid

+g_grid_orog: global_grid

+instances(:): glint_instance

global_grid

in glint_global_grid.F90

glint_instance

in glint_type.F90

+proj: projection

+downs: downscale

+ups: upscale

+ups_orog: upscale

+model: glide_global_type

+mbal_accum: glint_mbc

projection

in glint_proj.F90

+gmt_params: gmt_pinf

gmt_pinf

in glint_gmt.F90

downscale

in glint_interp.F90

upscale

in glint_interp.F90

glint_mbal_params

in glint_mbal.F90

+annual_pdd: glimmer_pdd_params

+daily_pdd: glimmer_daily_pdd_params

+smb: smb_params

glint_mbc

in glint_mbal_coupling.F90

+mbal: glint_mbal_params

glimmer_pdd_params

in glimmer_pdd.F90

glimmer_daily_pdd_params

in glimmer_daily_pdd.F90

GLUM

Figure 4.4: GLINT ‘class diagram’, in quasi-UML notation. Only derived type components
which are themselves derived types are shown; intrinsic type components are omitted. The
top-level GLIDE type is shown in yellow.

68 CHAPTER 4. DEVELOPER GUIDE

Module name Filename Description

glint main glint.F90 Top-level GLINT module - public subroutines
initialise model, perform a time step, and fi-
nalise the model at a global level. Other mod-
ules deal with individual GLINT instances.
Temporal averaging of global input fields and
collation of upscaled output takes place in this
module.

glint climate glint climate.F90 Various subroutines used to process the
GLINT climate. Includes climate field down-
scaling and lapse-rate correction.

glint constants glint constants.F90 Various constants used by GLINT but not
GLIDE. Mostly relate to sub-year timescales.

glint global grid glint global grid.F90 Derived type that defines a global lat-lon grid,
and subroutines to handle it.

glint global interp glint global interp.F90 Utility code to regrid data from one global grid
to another, taking into account spherical ge-
ometry.

glint gmt glint gmt.F90 Code adapted from the Generic Mapping
Tools (GMT), used for map projection han-
dling.

glint initialise glint initialise.F90 Module used to initialise a GLINT instance
(type glint instance).

glint interp glint interp.F90 Code to upscale and downscale between global
and local grids.

glint io glint io.F90 GLINT NetCDF IO routines. Automatically-
generated (see below).

glint mbal coupling glint mbal coupling.F90 This module coordinates the temporal accu-
mulation of mass-balance quantities.

glint mbal glint mbal.F90 A wrapper for different mass-balance schemes
— gives them a common interface.

glint mbal io glint mbal io.F90 Auto-generated NetCDF IO routines for
GLINT mass-balance calculations.

glint precip param glint precip param.F90 Implementation of the precipitation downscal-
ing parameterization of Roe & Lindzen.

glint proj glint proj.F90 Derived type definition and handling code for
map projections.

smb dummy glint smb.F90 Dummy module in place of externally-
connected RAPID energy-balance mass-
balance model.

glint timestep glint timestep.F90 GLINT instance timestep code.
glint type glint type.F90 Definition of GLINT instance type.

4.4 Physics documentation

4.4.1 Ice temperature evolution routines

Summary

Call structure (filenames in brackets).

• subroutine testinisthk [glimmer setup] and

• subroutine glimmer i tstep [glimmer object] call

4.4. PHYSICS DOCUMENTATION 69

• subroutine timeevoltemp [glimmer temp] calls

• subroutine calcartm [glimmer temp] and

• subroutine timeders [glimmer thck] and

• subroutine gridwvel [glimmer velo] and

• subroutine wvelintg [glimmer velo] and

• subroutine chckwvel [glimmer velo] and

• subroutine finddisp [glimmer temp] and

• subroutine hadvall [glimmer temp] and

• subroutine hadvpnt [glimmer temp] and

• subroutine findvtri [glimmer temp] and

• subroutine tridag [glimmer temp] and

• subroutine corrpmpt [glimmer temp] and

• subroutine swapbndt [glimmer temp] and

• subroutine calcbmlt [glimmer temp] and

• subroutine calcflwa [glimmer temp]

Modules used.

•

Introduction

The section describes the routines that are concerned with calculating the three-dimensional
distribution of temperature within the ice mass. They can be broken down into five groups.

• determining air temperature (upper boundary condition) [calcartm];

• determining vertical velocity field from existing horizontal velocity fields (normally only
needed if temperature is being calculated) [wvelintg, chckwvel];

• routines associated with vertical grid coordinate system [gridwvel, timeders];

• the main temperature solver [finddisp, hadvall, hadvpnt, findvtri, tridag, corrpmpt,

swapbndt];

• ancillary calculations that only make sense if temperature is being calculated [calcbmlt,
calcflwa].

The basic quantity returned is a three-dimensional grid of temperature in ◦−1C (uncorrected
for variations in pressure melting point and unscaled). Temperature is held in the array temp

and will be referred to here using the symbol T .
In addition to temperature a number of other quantities are calculated by these routines.

They include: basal melt rate (m bmlt m yr−1 scaled using thk0/tim0); basal water depth (W
bwat m scaled using thk0); vertical velocity (w wvel m yr−1 scaled using thk0/tim0); vertical
velocity of numerical grid (w0 wgrd m yr−1 scaled using thk0/tim0); Glen’s A (A flwa Pa−3

yr−1 scaled using vis0); air temperature (Ta ◦−1C unscaled). All scales are held in the module
paramets in glimmer paramets.

Three options are currently available for calculating T . The particular option chosen is
controlled by the input parameter whichtemp (gln file).

70 CHAPTER 4. DEVELOPER GUIDE

0 Set whole column to the appropriate surface air temperature (Ta).

1 This option is the main solver that determines temperature at the new time step from the
appropriate three-dimensional advection-diffusion equation.

2 Set the upper surface temperature to Ta and do a linear interpolation from this value to 0
◦C at the lower surface. Check for pressure melting and adjust any temperatures that are
above melting point.

The subroutine timeevoltemp controls calculation of the T etc. It is called in the main time
loop in glimmer object and resides in glimmer temp.

4.5 Configuration File Parser

The run–time behaviour of the ice sheet model is controlled by configuration files. The old file
format is based on Fortran namelists. The new configuration file format is loosely based on
the format of Windows .ini files with sections containing name/value pairs. The new format
is more flexible and can be easily understood by reading the configuration files. This section
contains a description of the configuration file parser API.

4.5.1 File Format

The parser assumes a maximum number of 250 characters per line. Leading and trailing white
space is ignored. Names are case sensitive.

Comments: Empty lines and lines starting with !, ; or # are ignored.

Sections: Section names are enclosed with square prackets, [] and can be 20 character long.

Parameters: Parameter names are separated from their associated values with either : or =.
The names can be 20 characters long. Values can be 200 characters long.

An example configuration file:

;a comment

[a section]

an_int : 1

a_float = 2.0

a_char = hey, this is rather cool

an_array = 10. 20. -10. 40. 100.

[another section]

! more comments

foo : bar

4.5.2 Architecture Overview

The configuration data is stored as linked list. Each section is described by the following list
element:

type ConfigSection

character(len=namelen) :: name

type(ConfigValue), pointer :: values=>NULL()

type(ConfigSection), pointer :: next=>NULL()

end type ConfigSection

4.5. CONFIGURATION FILE PARSER 71

The parameter name/value pairs defined in each section are stored in another linked list:

type ConfigValue

character(len=namelen) :: name

character(len=valuelen) :: value

type(ConfigValue), pointer :: next=>NULL()

end type ConfigValue

These linked lists are setup and read using subroutines.

4.5.3 API

Reading configuration files Configuration files are read using ConfigRead. This subroutine
parses the configuration file and populates the linked lists.

subroutine ConfigRead(fname,config)

character(len=*), intent(in) :: fname

type(ConfigSection), pointer :: config

end subroutine ConfigRead

The pointer config contains the first section of the configuration file.

Dumping configuration The subroutine PrintConfig traverses the linked lists and prints
them to standard output.

subroutine PrintConfig(config)

type(ConfigSection), pointer :: config

end subroutine PrintConfig(config)

Searching for a Section The subroutine GetSection can be used to find a specific section.

subroutine GetSection(config,found,name)

type(ConfigSection), pointer :: config

type(ConfigSection), pointer :: found

character(len=*),intent(in) :: name

end subroutine GetSection

On exit the pointer found will point to the first section called name. found points to
NULL() if the section name is not found.

Reading parameters Paramter name/value pairs are found using the GetValue family of
subroutines. GetValue provides an interface to the individual subroutines GetValueChar,
GetValueInt, GetValueReal, GetValueIntArray and GetValueRealArray.

subroutine GetValue(section,name,val)

type(ConfigSection), pointer :: section

character(len=*),intent(in) :: name

sometype :: val

integer,intent(in), optional :: numval

end subroutine GetValue

section is the section that should be searched for the parameter name. On exit val

contains the parameter value if it is found, otherwise it is unchanged.

The array versions of GetValue expect value to be a pointer to a one–dimensional array.
val is deallocated if it was allocated on entry. The array versions of GetValue also accept
an optional value, numval, with which the maximum number of array elements can be set.
The default is 100. Array elements are separated by white space.

72 CHAPTER 4. DEVELOPER GUIDE

4.6 netCDF I/O

The netCDF5 library is used for platform independent, binary file I/O. GLIMMER makes use
of the f90 netCDF interface. The majority of the source files are automatically generated from
template files and a variable definition file using a python script. The netCDF files adhere to
the CF6 convention for naming climatic variables. The netCDF files also store parameters used
to define the geographic projection.

The netCDF related functionality is split up so that other subsystems of the model can easily
define their own variable sets without the need to recompile the main model. These subsystems
can also define their own dimensions and access the dimensions defined by other subsystems.
The only restriction is that names should not clash. Have a look at the implementation of the
eis climate driver.

4.6.1 Data Structures

Information associated with each dataset is stored in the glimmer nc stat type. Variable and
dimension ids are retrived from the data set by using the relevant netCDF library calls. Meta
data (such as title, institution and comments) is stored in the derived type glimmer nc meta.

Input and output files are managed by two separate linked lists. Elements of the input file
list contain the number of available time slices and information describing which time slice(s)
should be read. Output file elements describe how often data should be written and the current
time.

4.6.2 The Code Generator

Much of the code needed to do netCDF I/O is very repetative and can therefore be automatically
generated. The code generator, generate ncvars.py, is written in python and produces source
files from a template ncdf template.in and the variable definition file, see Section 4.6.3. The
templates are valid source files, all the generator does is replace special comments with the
code generated from the variable file. For further information check the documentation of
generate ncvars.py7.

4.6.3 Variable Definition File

All netCDF variables are defined in control files, MOD vars.def, where MOD is the name of the
model subsystem. Variables can be modified/added by editing these files. The file is read
using the python ConfigParser module. The format of the file is similar to Windows .ini

files, lines beginning with # or ; or empty lines are ignored. These files must have a definition
section [VARSET] (see Table 4.1).A new variable definition block starts with the variable name
in square brackets []. Variables are further specified by parameter name/value pairs which are
separated by : or =. Parameter names and their meanings are summarised in Table 4.2. All
parameter names not recognised by the code generator (i.e. not in Table 4.2) are added as
variable attributes.

5http://www.unidata.ucar.edu/packages/netcdf/
6http://www.cgd.ucar.edu/cms/eaton/cf-metadata/index.html
7run pydoc generate ncvars.py

4.6. NETCDF I/O 73

name description

name Name of the model subsystem, e.g. glide. The f90 file is renamed
based on this name. The f90 module and module procedures are
prefixed with this name.

datatype The name of the f90 type on which the netCDF variables depend.
datamod The name of f90 module in which the f90 type, datatype, is de-

fined.

Table 4.1: Each variable definition file must have a section, called [VARSET], containing the
parameters described above.

name description

dimensions List of comma separated dimension names of the variable. C
notation is used here, i.e. the slowest varying dimension is listed
first.

data The variable to be stored/loaded. The f90 variable is assumed to
have one dimension smaller than the netCDF variable, i.e. f90
variables are always snapshots of the present state of the model.
Variables which do not depend on time are not handled automat-
ically. Typically, these variables are filled when the netCDF file
is created.

factor Variables are multiplied with this factor on output and divided by
this factor on input. Default: 1.

load Set to 1 if the variable can be loaded from file. Default: 0.
hot Set to 1 if the variable should be saved for hot–starting the model

(implies load=1)
average Set to 1 if the variable should also be available as a mean over

the write–out interval. Averages are only calculated if they are
required. To store the average in a netCDF output file append
tavg to the variable.

units UDUNITS compatible unit string describing the variable units.
long name A more descriptive name of the variable.
standard name The corresponding standard name defined by the CF standard.

Table 4.2: List of accepted variable definition parameters.

74 CHAPTER 4. DEVELOPER GUIDE

Part III

Appendix

75

Appendix A

netCDF Variables

The following list shows all the variable names used by GLIMMER. Only variables marked with
∗ are loaded by the input routines.

A.1 Glide Variables

Name Description Units

level sigma layers 1
CF name: land ice sigma coordinate

lithoz vertical coordinate of lithosphere layer meter
staglevel stag sigma layers 1

CF name: land ice stag sigma coordinate

stagwbndlevel stag sigma layers with boundaries 1
CF name: land ice stag sigma coordinate with bnd

x0 Cartesian x-coordinate, velocity grid meter
x1∗ Cartesian x-coordinate meter
y0 Cartesian y-coordinate, velocity grid meter
y1∗ Cartesian y-coordinate meter
acab∗ accumulation, ablation rate meter/year

CF name: land ice surface specific mass balance

acab tavg accumulation, ablation rate (time average) meter/year
CF name: land ice surface specific mass balance

age ice age year
CF name: land ice age

artm∗ annual mean air temperature degree Celsius
CF name: surface temperature

beta∗ higher-order bed stress coefficient unknown
bheatflx∗ upward basal heat flux watt/meter2
bmlt∗ basal melt rate meter/year

CF name: land ice basal melt rate

bmlt tavg basal melt rate (time average) meter/year
CF name: land ice basal melt rate

btemp basal ice temperature degree Celsius
CF name: land ice temperature

continued on next page

77

78 APPENDIX A. NETCDF VARIABLES

continued from previous page

Name Description Units

btractx consistent basal traction (x-direction comp) Pa
btracty consistent basal traction (y-direction comp) Pa
btrc basal slip coefficient meter/pascal/year
bwat∗ basal water depth meter
bwatflx basal water flux meter3/year
calving ice margin calving meter
diffu apparent diffusivity meter2/year
dthckdtm tendency of ice thickness meter/year
dusrfdtm rate of upper ice surface elevation change meter/year
dynbcmask 2d array of higher-order model boundary condition

mask values
1

efvs effective viscosity Pascal * years
eus global average sea level meter

CF name: global average sea level change

flwa∗ Pre-exponential flow law parameter pascal/year
flwastag∗ Pre-exponential flow law parameter pascal/year
gl ew grounding line movement in ew directions meter
gl ns grounding line movement in ns directions meter
gline flux grounding line flux meter2/year
iarea area covered by ice km2
iareaf area covered by ice km2
iareag area covered by ice km2
ivol ice volume km3
kinbcmask∗ Mask of locations where uvel, vvel value should be

held
1

lat∗ latitude degreeN
CF name: latitude

litho temp∗ lithosphere temperature degree Celsius
lon∗ longitude degreeE

CF name: longitude
lsurf ice lower surface elevation meter
relx∗ relaxed bedrock topography meter
slc isostatic adjustment meter

CF name: bedrock altitude change due to isostatic adjustment

soft∗ bed softness parameter meter/pascal/year
stagthk staggered ice thickness meter

CF name: stag land ice thickness

surftemp∗ annual mean surface temperature degree Celsius
CF name: surface temperature

tau xz X component vertical shear stress kPa
tau yz Y component vertical shear stress kPa
tauf∗ higher-order basal yield stress Pa
taux basal shear stress in x direction kilopascal
tauy basal shear stress in y direction kilopascal
temp∗ ice temperature degree Celsius

CF name: land ice temperature

continued on next page

A.2. EIS VARIABLES 79

continued from previous page

Name Description Units

tempstag∗ ice temperature on staggered vertical levels with
boundaries

degree Celsius

CF name: land ice temperature stag

thk∗ ice thickness meter
CF name: land ice thickness

thkmask∗ mask 1
topg∗ bedrock topography meter

CF name: bedrock altitude

ubas∗ basal slip velocity in x direction meter/year
CF name: land ice basal x velocity

ubas tavg basal slip velocity in x direction (time average) meter/year
CF name: land ice basal x velocity

uflx flux in x direction meter2/year
usurf∗ ice upper surface elevation meter

CF name: surface altitude

uvel∗ ice velocity in x direction meter/year
CF name: land ice x velocity

uvel icegrid ice velocity in x direction meter/year
CF name: land ice x velocity

vbas∗ basal slip velocity in y direction meter/year
CF name: land ice basal y velocity

vbas tavg basal slip velocity in y direction (time average) meter/year
CF name: land ice basal y velocity

velnorm Horizontal ice velocity magnitude meter/year
vflx flux in x direction meter2/year
vvel∗ ice velocity in y direction meter/year

CF name: land ice y velocity

vvel icegrid ice velocity in y direction meter/year
CF name: land ice y velocity

waterfrac∗ internal water fraction unitless [0,1]
wgrd∗ Vertical grid velocity meter/year
wvel∗ vertical ice velocity meter/year

A.2 EIS Variables

Name Description Units

cony∗ continentality 1
ela∗ equilibrium line altitude meter

CF name: equilibrium line altitude

A.3 GLINT Variables

Name Description Units

ablt ablation meter (water)/year
arng air temperature half-range degreeC
global orog orographic elevation provided by global model meter

continued on next page

80 APPENDIX A. NETCDF VARIABLES

continued from previous page

Name Description Units

CF name: surface altitude

inmask downscaling mask 1
local orog orographic elevation provided by local model meter

CF name: surface altitude

outmask∗ upscaling mask 1
prcp precipitation meter (water)/year

CF name: lwe precipitation rate

siced∗ superimposed ice depth meter
snowd∗ snow depth meter

CF name: surface snow thickness

Appendix B

The GLIMMER API

B.1 GLUM

GLUM provides some utility subroutines which are shared by all components of GLIMMER.

B.1.1 Subroutine open log

Purpose open and initialise log file

Name and mandatory arguments

subroutine open_log

Arguments

Mandatory

Optional
unit integer intent(in) file unit to use (defualt: 6)
fname character(len=*) intent(in) name of log file (default:

glide.log)

B.1.2 Subroutine ConfigRead

Purpose Read configuration file and store config options.

Name and mandatory arguments

subroutine ConfigRead(fname,config)

Arguments

Mandatory
fname character(len=*) intent(in) name of configuration file to be read
config type(ConfigSection), pointer pointer to first element of linked list

containing configuration

Additional Notes Each section within the configuration file is stored as an element of a
linked list. These elements contain another linked list storing the key–value pairs.

81

82 APPENDIX B. THE GLIMMER API

B.1.3 Subroutine CheckSections

Purpose To check if all sections within a configuration file were subsequently used. Report
unused sections to the log.

Name and mandatory arguments

subroutine CheckSections(config)

Arguments

Mandatory
config type(ConfigSection), pointer pointer to first element of linked list

containing configuration

B.2 GLIDE

B.2.1 Subroutine glide config

Purpose To parse configuration file and print configuration to log

Name and mandatory arguments

subroutine glide_config(model,config)

Arguments

Mandatory
model type(glide global type) intent(inout) f95 type containing all variables as-

sociated with an instance of the
model.

config type(ConfigSection), pointer pointer to first element of linked list
containing configuration

B.2.2 Subroutine glide initialise

Purpose To initialise the basic ice sheet model

Name and mandatory arguments

subroutine glide_initialise(model)

Arguments

Mandatory
model type(glide global type) intent(inout) f95 type containing all variables as-

sociated with an instance of the
model.

Additional Notes This subroutine initialises the model. Memory for all variables is allocated.
Input files are opend and read. Output files are created. Variables are scaled.

B.2.3 Subroutine glide nc fillall

Purpose fill netCDF coordinate variables.

B.2. GLIDE 83

Name and mandatory arguments

subroutine glide_nc_fillall(model)

Arguments

Mandatory
model type(glide global type) intent(inout) f95 type containing all variables as-

sociated with an instance of the
model.

B.2.4 Subroutine glide tstep p1

Purpose Performs first part of time-step of an ice model instance: calculate vertical velocity
and temperature field. Set model time.

Name and mandatory arguments

subroutine glide_tstep_p1(model,time)

Arguments

Mandatory
model type(glide global type) intent(inout) f95 type containing all variables as-

sociated with an instance of the
model.

time real(rk) intent(in) Current time in years

B.2.5 Subroutine glide tstep p2

Purpose Performs second part of time-step of an ice model instance: write data and move
ice and update horizontal velocities.

Name and mandatory arguments

subroutine glide_tstep_p2(model)

Arguments

Mandatory
model type(glide global type) intent(inout) f95 type containing all variables as-

sociated with an instance of the
model.

B.2.6 Subroutine glide tstep p3

Purpose Performs third part of time-step of an ice model instance: calculate isostatic adjust-
ment and upper and lower ice surface.

Name and mandatory arguments

subroutine glide_tstep_p3(model)

Arguments

84 APPENDIX B. THE GLIMMER API

Mandatory
model type(glide global type) intent(inout) f95 type containing all variables as-

sociated with an instance of the
model.

B.2.7 Subroutine glide finalise

Purpose To shut–down model, close all open files and deallocate memory.

Name and mandatory arguments

subroutine glide_finalise(model)

Arguments

Mandatory
model type(glide global type) intent(inout) f95 type containing all variables as-

sociated with an instance of the
model.

Optional
crash logical intent(in) set to true if the model died unex-

pectedly

B.3 GLINT

This appendix details the subroutine calls provided by GLINT, and their arguments. Note that
where a type is given as real(rk), this indicates that the kind of the real type is specified by
the value of the parameter rk, which may be altered at compile-time (see appropriate other
documentation for details).

B.3.1 Subroutine initialise glint

Purpose To initialise the ice model, and load in all relevant parameter files.

Name and mandatory arguments

subroutine initialise_glint(params,lats,longs,paramfile,time_step)

Arguments

Mandatory
params type(glint params) intent(inout) Ice model to be configured
lats(:) real(rk) intent(in) latitudinal location of grid-points in

global data (given in ◦N)
longs(:) real(rk) intent(in) longitudinal location of grid-points

in global data (given in ◦E)
paramfile character(*) intent(in) name of top-level parameter file
time step integer intent(in) Intended calling time-step (hours)
Optional

latb(:) real(rk) intent(in) Latiudinal locations of grid-box
boundaries (degrees). This array
has one more element than lats.

continued on next page

B.3. GLINT 85

continued from previous page

lonb(:) real(rk) intent(in) Longitudinal locations of grid-box
boundaries (degrees). This array
has one more element than longs.

orog(:,:) real(rk) intent(out) The initial orography (m).
albedo real(rk) intent(out) The initial ice albedo field
ice frac real(rk) intent(out) The initial ice fraction
orog lats real(rk) intent(in) Latitudinal location of gridpoints

for global orography output
orog longs real(rk) intent(in) Longitudinal location of gridpoints

for global orography output
orog latb real(rk) intent(in) Locations of the latitudinal bound-

aries of the grid-boxes (orography)
orog lonb real(rk) intent(in) Locations of the longitudinal bound-

aries of the grid-boxes (orography)
output flag logical intent(out) Set to show outputs have been up-

dated (provided for consistency with
main glint subroutine).

Additional notes

• The ice model determines the size of the global domain from the sizes of the arrays lats
and longs.

• The latitudes contained in latsmust be in descending order, so that lats(i) > lats(i+ 1)
for 1 ≤ i ≤ size(lats).

• The optional arguments orog lats, orog longs, orog latb, and orog lonb may be used
to define the frid on which the orography is output from GLINT. This is useful if the global
model has spectral dynamics, and thus a higher-resolution orography is needed for greater
accuracy when transforming to spectral space. These arguments may not be present in ar-
bitrary combinations - only orog lats+orog longs, orog lats+orog longs+orog latb,
orog lats+orog longs+orog lonb, and orog lats+orog longs+orog latb+orog lonb

are permitted. Other combinations will generate a fatal error.

B.3.2 Subroutine glint

Purpose To perform temporal averaging of input fields, and, if necessary, down-scale those
fields onto local projections and perform an ice model time-step. Output files may be appended
to, and if optional arguments used, fields made available for feedback.

Name and mandatory arguments

subroutine glint(params,time,temp,precip,orog)

Arguments

Mandatory
params type(glint params) intent(inout) parameters for this run
time integer intent(in) Current model time (hours)
temp(:,:) real(rk) intent(in) Surface temperature field (◦C)
precip(:,:) real(rk) intent(in) Precipitation field (mm/s)

continued on next page

86 APPENDIX B. THE GLIMMER API

continued from previous page

orog(:,:) real(rk) intent(in) Global orography (m)
Optional

zonwind(:,:) real(rk) intent(in) Zonal component of the wind field
(ms−1)

merwind(:,:) real(rk) intent(in) Meridional component of the wind
field (ms−1)

output flag logical intent(out) Set to show new output fields have
been calculated after an ice-model
time-step. If this flag is not set, the
output fields retain their values at
input.

orog out(:,:) real(rk) intent(inout) Output orography (m)
albedo(:,:) real(rk) intent(inout) Surface albedo
ice frac(:,:) real(rk) intent(inout) Fractional ice coverage
water in(:,:) real(rk) intent(inout) The input fresh-water flux (mm,

over ice time-step). Essentially pre-
cip, but provided for consistency.

water out(:,:) real(rk) intent(inout) The output fresh-water flux (mm,
over ice time-step). This is sim-
ply the ablation calculated by the
model, scaled up to the global grid.
It is up to the global model to then
deal with it (route it to the oceans,
land scheme, etc.) Note that the
precipitation fed to the model but
which doesn’t get incorporated into
the ice sheet because it falls over the
sea is returned in this field.

total water in real(rk) intent(inout) Area-integrated water flux in (kg)
total water out real(rk) intent(inout) Area-integrated water flux out (kg)
ice volume real(rk) intent(inout) Total ice volume (m3)

Additional notes

• The sizes of all two-dimensional fields passed as arguments must be the same as that
implied by the sizes of the arrays used to pass latitude and longitude information when the
model was initialised using initialise glint. There is currently no checking mechanism
in place for this, so using fields of the wrong size will lead to unpredictable results.

• Zonal and meridional components of the wind are only required if the small-scale precip-
itation parameterization is being used (with whichprecip set to 2).

• The output field arguments only return data relevant to the parts of the globe covered
by the ice model instances. The fraction of each global grid-box covered by ice model
instances may be obtained using the glint coverage map subroutine below.

• The output orography field is given as a mean calculated over the part of the grid-box
covered by ice model instances. Thus, to calculate the grid-box mean, the output fields
should be multiplied point-wise by the coverage fraction.

• Albedo is currently fixed at 0.4 for ice-covered ground, and set to zero elsewhere. The
albedo is given for the part of the global grid box covered by ice, not as an average of the
part covered by the ice model. No attempt is made to guess the albedo of the parts of the
ice model domain not covered by ice.

B.3. GLINT 87

Example interpretation of output fields Consider a particular point, (i, j) in the global
domain. Suppose value returned by glint coverage map for this point is 0.7, and the output
fields have these values:

orog_out(i,j) = 200.0

albedo(i,j) = 0.4

ice_frac(i,j) = 0.5

What does this mean? Well, the ice model covers 70% of the grid-box, and in that part the
mean surface elevation is 200m. Of the part covered by the ice model, half is actually covered
by ice. Thus, 35% (0.5× 0.7) of the global grid-box is covered by ice, and the ice has an mean
albedo of 40%. The model makes no suggestion for the albedo or elevation of the other 65%
of the grid-box. Currently, ice albedo is a constant that may be changed in the appropriate
configuration file, but this output field is provided against the possibility that the model may
be extended at some point to include a model of ice albedo.

B.3.3 Subroutine end glint

Purpose To perform general tidying-up operations, close files, etc.

Name and mandatory arguments

subroutine end_glint(params)

Arguments

params type(glint params) intent(inout) Ice model paramters

B.3.4 Function glint coverage map

Purpose To obtain a map of fractional coverage of global grid-boxes by the ice model in-
stances. The function returns a value indicating success, or giving error information.

Type, name and mandatory arguments

integer function glint_coverage_map(params,coverage,cov_orog)

Arguments

params type(glint params) intent(in) Ice model parameters
coverage(:,:) real(rk) intent(out) Coverage map (all fields except

orography)
cov orog(:,:) real(rk) intent(out) Coverage map (orography)

Returned value

Value Meaning

0 Coverage maps have been returned successfully
1 Coverage maps not yet calculated; must call initialise glint first
2 Arrays coverage or cov orog are the wrong size

