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Abstract 16 

An ensemble optimal interpolation (EnOI) data assimilation system for a high-resolution 17 

(0.1° horizontal) version of the Community Earth System Model version 2 (CESM2) ocean 18 

component is presented. For this purpose, a new version of the Data Assimilation Research 19 

Testbed (DART Manhattan) that enables large-state data assimilation by distributing state 20 

vector information across multiple processors at high resolution is used. The EnOI scheme 21 

uses a static (but seasonally varying) 84-member ensemble of pre-computed perturbations 22 

to approximate samples from the forecast error covariance and utilizes a single model 23 

integration to estimate the forecast mean. Satellite altimetry and sea surface temperature 24 

observations along with in-situ temperature and salinity observations are assimilated. This 25 

new data assimilation framework is then used to produce a global high-resolution 26 

retrospective analysis for the 2005 – 2016 period. Not surprisingly, the assimilation is 27 

shown to generally improve the time-mean ocean state estimate relative to an identically 28 

forced ocean model simulation where no observations are ingested. However, diminished 29 

improvements are found in under-sampled regions. Lack of adequate salinity observations 30 

in the upper ocean actually results in deterioration of salinity there. The EnOI scheme is 31 

found to provide a practical and cost-effective alternative to the use of an ensemble of 32 

forecasts.  33 

  34 
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Plain Language Summary 35 

Decadal climate prediction focuses on climate changes on time scales from a year to a 36 

decade or more, and is a combination of forced boundary condition and initial value 37 

problems. A well-established source of predictability on decadal time scales comes from 38 

the initialization of the ocean state. To exploit the capabilities of the next generation of 39 

high-resolution climate prediction systems, proper initialization of their ocean components 40 

is required. This work represents our first attempt at data assimilation in a high-resolution 41 

version of the Community Earth System Model (CESM2). We use a new version of the Data 42 

Assimilation Research Testbed (DART) that enables large-state data assimilation. However, 43 

the integration of an ensemble of high-resolution models remains computationally 44 

prohibitive. For this reason, we introduce an ensemble optimal interpolation (EnOI) 45 

scheme to assimilate observations much more efficiently. The EnOI scheme uses a static, 46 

but seasonally varying, ensemble of pre-computed perturbations to approximate samples 47 

from the forecast error covariance, and eliminates the need for running an ensemble. While 48 

our prototype retrospective analysis for the 2005–2016 period shows some limitations, the 49 

EnOI scheme is found to provide a practical and cost-effective alternative to the use of an 50 

ensemble of forecasts. 51 

  52 
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1. Introduction 53 

Decadal climate (or Earth system) prediction, which focuses on climate changes on time 54 

scales from a year to a decade or more, has been one of the frontier fields in climate science 55 

since the early 2000s, mainly because of its potential value to inform, among others, 56 

environmental and socio-economic decisions and policies on these time scales. Because 57 

decadal climate predictions are sensitive to both external forcings (including natural and 58 

anthropogenic) and internal climate variability, decadal climate predictions are a 59 

combination of forced boundary condition and initial value problems (Meehl et 60 

al., 2009). Despite substantial progress and availability of many decadal climate prediction 61 

experiments using fully-coupled Earth system models from various modeling centers (e.g., 62 

Keenlyside et al., 2008; Mochizuki et al., 2010; Smith et al., 2007; Sugiura et al., 2009; 63 

Yeager et al., 2018), many scientific and technical challenges remain (Meehl et al., 2014). 64 

Nevertheless, meaningful prediction skill for several key climate fields, such as 65 

precipitation and upper-ocean heat content, as well as for ocean biogeochemistry has been 66 

found (Yeager et al., 2018). Moreover, Smith et al. (2019) have recently concluded that 67 

climate on decadal time scales is more predictable than previously thought. While a vast 68 

amount of work is still needed, These studies were able to establish robust evidence of 69 

decadal prediction skill for surface temperature, precipitation, and pressure. They further 70 

showed that decadal predictions can capture many aspects of regional changes.  71 

The state-of-the-art decadal climate predictions referenced above usually use relatively 72 

coarse (horizontal) resolutions of order 0.25° to 1° in their component models. Recently, 73 

there is a growing demand for more accurate and reliable predictions that include a 74 

broader range of space and time scales with a more complete and regional representation 75 
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of weather, climate, and Earth system processes for a variety of applications. Meeting this 76 

demand will necessitate new approaches to forecasting that will require higher resolution 77 

models that include, for example, mesoscale physics in their ocean components for both 78 

forecasting and assimilation systems. Such high-resolution global models are becoming 79 

more widely available with recent increases in computational resources. 80 

Increased resolution is expected to lead to improvements in predictions. For example, Jia et 81 

al. (2015) found an improvement of the seasonal prediction of 2-m air temperature and 82 

precipitation over land and of the Nino-3.4 index using a high-resolution version of the 83 

Geophysical Fluid Dynamics Laboratory’s climate model. Shaffrey et al. (2017) show that 84 

predictions based on HiGEM, a higher resolution version of the HadGEM1 Met Office 85 

Unified Model, are significantly more skillful than predictions based on the lower 86 

resolution HadCM3 model, at lead times ranging from a year to a decade. Additionally, 87 

recent results from Siqueira and Kirtman (2016) indicate that when air-sea interactions 88 

associated with oceanic fronts and eddies are adequately resolved, more realistic 89 

variability of the ocean dynamics can enhance skill in near-term climate predictions. Using 90 

high-resolution and low-resolution predictions with the Community Climate System Model 91 

version 4 (CCSM4) for drought prediction over the Southeast United States, Infanti and 92 

Kirtman (2019) found higher skill with the high-resolution version of the model for a 36-93 

month prediction of the mean rainfall. These studies provide evidence that the skill of 94 

seasonal to decadal predictions can be increased and the representation of the climate 95 

system can be improved by using models with finer resolution. 96 
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A well-established source of predictability on decadal time scales comes from the 97 

initialization of the ocean state (Yeager et al. 2012; Robson et al. 2012; Matei et al. 2012; 98 

Chikamoto et al. 2013; Doblas-Reyes et al. 2013; Yeager et al., 2018). To fully exploit the 99 

new capabilities of the next generation of global high-resolution climate prediction 100 

systems, proper initialization of their eddy-permitting or -resolving ocean components 101 

(0.1° or finer horizontal resolution) is required. This represents a major challenge. 102 

Specifically, such high-resolution coupled Earth system models are already 103 

computationally intensive. The associated cost becomes even more prohibitive when the 104 

computational demands of data assimilation approaches are included to provide the 105 

necessary initial conditions for these predictions. The latter cost is exceptionally high for 106 

state-of-the-art data assimilation methods like the ensemble Kalman filters (EnKF). The 107 

cost is further exacerbated when it comes to initialization of decadal prediction 108 

simulations. Indeed, a large number of initialization dates is required, typically covering 109 

several decades, to robustly evaluate the performance of the system and establish a bias 110 

adjustment procedure.  111 

The Data Assimilation Research Testbed (DART; Anderson et al. 2009) framework 112 

implements a variety of ensemble filter methods. Performing a multi-decade long data 113 

assimilation with an eddy-permitting or -resolving ocean model with DART is also 114 

prohibitively expensive, remaining beyond the current NCAR computing capacity – and 115 

probably beyond the capabilities of the next generation systems as well. To overcome this 116 

major obstacle, alternative data assimilation techniques can be considered. One such 117 

alternative is a relatively inexpensive ensemble optimal interpolation (EnOI) scheme. The 118 

EnOI scheme was first introduced by Evensen (2003) and can be seen as a low-cost 119 
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approximation of the EnKF. An important distinction between the EnKF and EnOI is that the 120 

EnOI background covariance is either static or, more generally, not rigorously related to 121 

the model state. In other words, EnOI does not represent the specific errors of a given 122 

assimilation time, but rather assumes that the background covariance matrices are state-123 

independent, and are well represented by a stationary or seasonally varying ensemble. As a 124 

consequence, EnOI systems are immune from ensemble collapse, but do not have an 125 

evolving estimate of the state error. Because of its simplicity of implementation, low 126 

computational cost, and many other attractive characteristics, such as quasi-dynamically 127 

consistent, multi-variate, inhomogeneous, and anisotropic covariances, EnOI is a widely 128 

utilized ocean data assimilation method (e.g., Oke et al., 2008; Drevillon et al., 2008; Fu et 129 

al., 2011; Pan et al., 2014; Sakov & Sandery, 2015; Scott et al., 2018). While the EnKF has 130 

been shown to consistently outperform EnOI in a regional implementation in a 0.1° 131 

horizontal resolution version of the Modular Ocean Model version 4 (MOM4) by Sakov & 132 

Sandery (2015), one must be cognizant of the fact that the reported, relatively modest 133 

improvements of 9–21% in forecast accuracy, as measured by the size of the innovation, 134 

come at a large computational cost. For example, Sakov & Sandery (2015) used 96 135 

ensemble members, meaning that the EnKF system was roughly 96 times more expensive 136 

than the EnOI in their analysis. 137 

The present work represents our first attempt at data assimilation in a high-resolution 138 

(nominal 0.1° horizontal) version of the ocean component of the Community Earth System 139 

Model version 2 (CESM2), using EnOI within the DART framework. The ocean model is the 140 

Parallel Ocean Program version 2 (POP2; Smith et al., 2010; Danabasoglu et al. 2012; Small 141 

et al. 2014). This initial step focuses only on the ocean component, initialization of which 142 
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has been established to be important for improved prediction skills. It serves our long-term 143 

goal of developing a proper initialization procedure for an eventual high-resolution Earth 144 

system prediction system based on CESM. In section 2, a new release of DART, namely 145 

DART Manhattan, is introduced. This release provides a vastly improved memory scaling, 146 

and is a necessary first step to accommodate the increase in the size of the state vector that 147 

comes with global high-resolution ocean data assimilation. Section 3 describes the EnOI 148 

scheme as implemented in DART. The observations assimilated are presented in section 4. 149 

The ocean model and the simulations are summarized in section 5. Section 6 introduces a 150 

prototype global eddy-permitting / -resolving reanalysis for the 2005 to 2016 period and 151 

presents an evaluation of the system. Finally, section 7 provides a summary and concluding 152 

remarks. 153 

2. DART  154 

The DART Manhattan release (Data Assimilation Research Testbed, 2019) provides 155 

capabilities to do ensemble data assimilation with high-resolution versions of CESM2. 156 

DART implements parallel ensemble filters using the algorithm described in Anderson & 157 

Collins (2007). A forward operator computes the expected value of an observation from an 158 

instrument given the forecast model state. An ensemble of forward operators for each 159 

observation is created prior to assimilation of these observations at a given time. 160 

Previous versions of DART required that the whole model state vector for a given ensemble 161 

member was resident in the memory space of a single processor, known as a state complete 162 

representation. A forward operator could be computed in a straightforward fashion by 163 

directly accessing all the needed state variables. Once all forward operators were 164 
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computed, the state vectors of all ensembles were transposed in a massive all-to-all 165 

communication so that each processor ended up with all the ensemble members of a subset 166 

of the state variables in its memory space. The actual data assimilation was done using this 167 

ensemble complete representation. 168 

The state vectors of high-resolution CESM versions cannot fit in the memory of a single 169 

processor so the state complete representation is impossible. In the Manhattan version, the 170 

DART parallel implementation has been enhanced so that model state vectors are read 171 

from NetCDF files directly into the ensemble complete representation. A particular process 172 

is assigned to compute the entire ensemble of forward operators for a given observation.  173 

Since this process stores all ensemble copies for only a subset of the state variables, 174 

computing the forward operators now generally require communication to obtain the 175 

value of all required state variables from the other processes that store them. DART 176 

Manhattan uses passive target one-sided Message Passing Interface (MPI) communication 177 

(Gropp et al., 1999), also referred to as Remote Memory Access (RMA), to allow the 178 

processor computing a forward operator to obtain the values of state variables that it does 179 

not store (Anderson et al., 2013). Since a single processor computes the entire ensemble of 180 

forward operators for a given observation, it is trivial to vectorize across the ensemble. 181 

Because RMA is one-sided and requires no action by the processor storing a state variable, 182 

many processors can be computing ensembles of forward operators simultaneously. When 183 

all forward operators have been computed, the assimilation algorithm proceeds in the 184 

ensemble complete representation as before. 185 
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This new implementation in the DART Manhattan release has a number of benefits. It 186 

allows far larger model state vectors to be used with DART; increases the scalability of 187 

computing the forward operators and permits these computations to be vectorized; and 188 

eliminates the massive all-to-all communication required for the transpose from state 189 

complete to ensemble complete. Additionally, the DART Manhattan capability to directly 190 

read from or write to CESM NetCDF restart files removes the need for an intermediate file 191 

when passing data between CESM components and DART. Finally, each ensemble member 192 

is read in parallel by different tasks, significantly reducing the I/O time. 193 

3. Implementing the EnOI Scheme within DART for the CESM Ocean Component 194 

In the context of this work, data assimilation seeks to infer an optimal estimate, in a least-195 

squares sense, of the evolving state of the ocean using a statistical combination of 196 

observations and a numerical model describing the evolution of the system over time. The 197 

Bayesian paradigm provides a coherent probabilistic approach for the data assimilation 198 

problem (Anderson, 2001). Ensemble methods of assimilation, such as the EnKF previously 199 

used for the assimilation of in-situ ocean observations with DART into the nominal 1° POP2 200 

ocean model (Karspeck et al. 2013), rely on the ensemble approach and assume that the 201 

prior probability distribution can be estimated from the statistics of a finite sample of 202 

nonlinear ensemble forecasts. The EnKF has gained popularity because of its simple 203 

conceptual formulation and relative ease of implementation (e.g., it requires no derivation 204 

of a tangent linear or adjoint models). But by definition it requires the integration of an 205 

ensemble of models which, in the context of a 0.1° eddy-permitting or -resolving ocean 206 

model, is computationally prohibitive for long analysis periods of a decade or more. Thus, 207 
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in this work, the EnOI scheme (Evenson, 2003) is implemented to assimilate observations 208 

much more efficiently in the high-resolution version of POP2.  209 

As implemented within DART, the EnOI scheme uses a static, but seasonally varying, 210 

ensemble of 84 pre-computed perturbations (see section 5 for calculation of these 211 

perturbations) to approximate samples from the forecast error covariance and uses a 212 

single model integration to estimate the forecast mean as schematically illustrated in 213 

Figure 1. Use of 84 members represents a tradeoff between ensemble size and the amount 214 

of memory required for the analysis step.  215 

The sequential algorithm used in EnOI is very similar to that of the ensemble adjustment 216 

Kalman filter (EAKF) already available in DART (Figure 1; Anderson 2009). Starting with a 217 

model state vector 𝑥𝑘at time 𝑡𝑘, the model produces a forecast 𝑥𝑘+1at time 𝑡𝑘+1( in Figure 218 

1). An N-member ensemble of model anomalies is used to approximate forecast errors ( 219 

in Figure 1) and create an ensemble of prior 𝑥𝑝,𝑛. The sequential EnOI algorithm then 220 

applies the scalar forward operator ℎ to each sample of the state ( in Figure 1), resulting 221 

in the ensemble  222 

𝑦𝑝,𝑛 = ℎ(𝑥𝑝,𝑛), 𝑛 = 1, … 𝑁 

of prior estimates for the observation (green tick marks in Figure 1). The sample mean 𝑦̅𝑝 223 

and variance 𝜎𝑝
2 of the prior estimate of the observation are computed ( in Figure 1; 224 

green curve). Given the observed value 𝑦𝑜 and the observational error variance 𝜎𝑜
2 ( in 225 

Figure 1; red tick mark and curve), the product of the prior and the likelihood yields an 226 

updated estimate with variance  227 
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𝜎𝑢
2 = [(𝜎𝑝

2)−1  + (𝜎𝑜
2)−1]

−1
 

and mean 228 

𝑦̅𝑢 = 𝜎𝑢
2(𝑦̅𝑝 𝜎𝑝

2⁄ + 𝑦𝑜 𝜎𝑜
2⁄ ) 

The updated ensemble estimate ( in Figure 1; blue curve) for y given by  229 

𝑦𝑢,𝑛 = (𝜎𝑢 𝜎𝑝⁄ )(𝑦𝑝,𝑛 − 𝑦̅𝑝) + 𝑦̅𝑢 

is constructed by shifting the mean and linearly contracting the members to make the 230 

sample variance exactly 𝜎𝑢
2. An ensemble of observation space increments is defined as 231 

∆𝑦𝑛 = 𝑦𝑢,𝑛 − 𝑦𝑝,𝑛 ( in Figure 1; blue arrows). 232 

The increments for each state vector component are computed independently by 233 

regressing the observation space increments onto the state vector component ( in Figure 234 

1) using the prior joint ensemble sample statistics so that  235 

∆𝑥𝑚,𝑛 = (𝜎𝑥𝑚,𝑦 𝜎𝑝
2⁄ )∆𝑦𝑛 

 where ∆𝑥𝑚,𝑛 is the increment for ensemble member 𝑛 of state vector component 𝑚, while 236 

𝜎𝑥𝑚,𝑦 is the prior sample covariance of state vector component 𝑚 and 𝑦. The sequential 237 

EnOI algorithm then evaluates the posterior mean 𝑥𝑢,𝑛̅̅ ̅̅ ̅ by averaging the posterior state 238 

vector ( in Figure 1; blue arrows). Finally, the model advances the posterior mean state 239 

estimate to time 𝑡𝑘+2 when the next observations become available ( in Figure 1). 240 

The EnOI sequential algorithm eliminates the cost of running an ensemble of global high-241 

resolution forecasts as part of the cycled assimilation. As such, the EnOI has a 242 

computational cost about N times less than that of the EnKF, where N again is the ensemble 243 
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size. This is especially meaningful in the context of a global high-resolution ocean data 244 

assimilation experiment, where the forward model is expensive to run. The posterior mean 245 

is estimated by averaging the posterior state vectors and is then used as the initial state for 246 

the next forecast step of the cycled assimilation.  247 

Because of the limited size of the static ensemble employed by EnOI, the background 248 

covariance matrices are rank deficient. This results in nonnegligible correlations between 249 

widely separated variables, which are believed, a priori, to be uncorrelated (Anderson, 250 

2007). A remedy for this problem is to use a localization function to restrict the impact of 251 

an observation on geographically distant state variables (Houtekamer & Mitchell, 2001). 252 

Here, a compactly supported fifth-order piecewise polynomial localization function 253 

(Gaspari & Cohn, 1999) with a radius of ~600 km in the horizontal is used. No localization 254 

is applied in the vertical, allowing observations at any depth to impact the entire water 255 

column.  256 

The data assimilation algorithm also requires estimates of the error variance associated 257 

with the observations that are being assimilated. The error includes the instrumental error 258 

and the error due to unresolved dynamics in the model – usually referred to as the 259 

‘‘representativeness error’’. The representativeness error is the dominant observational 260 

error source in current ocean models (e.g., Oke & Sakov, 2008). The true 261 

representativeness error is a complex function of the model resolved vs. unresolved 262 

dynamics at the geographic location of the observations. For simplicity, however, a single 263 

crude error estimate is utilized in the current implementation, and it is used globally. For 264 

the altimetry, the standard deviation of the error is set at 5 cm across all platforms. For 265 
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temperature, the standard deviation of the error is set at 0.5°C for all type of temperature 266 

observations. For salinity, the standard deviation of the error is set at 0.5 psu. 267 

4. Observations 268 

Four sets of observational data sets are used: dynamic topography (DT), sea surface 269 

temperature (SST), in-situ temperature, and in-situ salinity. All the observations are 270 

aggregated over a 1-day window and assimilated as if they are instantaneous observations at 271 

00z (UTC). Figure 2 illustrates a typical set of observations for a given day (01 March 272 

2005). 273 

The DT is the relevant altimetric signal for assimilation into an ocean model. Satellite 274 

altimeters sense the sea surface height (SSH). The SSH is the elevation of the sea surface 275 

above a reference ellipsoid.  It has two components: (i) the DT which represents the 276 

signature of the ocean circulation, and (ii) the geoid which reflects the variation of the 277 

Earth’s gravity field. Ocean models use a uniform gravity field and as a result SSH and DT 278 

are the same surface in the model ‘‘world’’. For consistency we will use the term DT 279 

throughout this manuscript recognizing that ocean modelers usually favor the usage of 280 

SSH. 281 

For this application, the DT is constructed as the sum of the sea level anomalies (SLA) and 282 

the mean dynamic topography (MDT). We use the along-track SLA distributed by the 283 

Copernicus Marine Environment Monitoring Service (CMEMS; 284 

https://www.copernicus.eu), a product formerly provided by Aviso+.  By definition, the 285 

SLA represent the variable part of the altimetric signal. The CMENS SLA is computed 286 

relative to the 20-year mean for the 1993-2012 period, and all the missions, i.e., Jason-3, 287 
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Sentinel-3A, HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, T/P, ENVISAT, GFO, ERS1/2, 288 

are homogenized with respect to a reference mission and processed by the DUACS multi-289 

mission altimeter data processing system. The global MDT CNES-CLS13 (Rio et al., 2014) is 290 

used to reference the SLA to obtain the DT, which represents the absolute signal that 291 

results from the ocean circulation. An accurate knowledge of the MDT is the key for the 292 

optimal exploitation of altimeter data through assimilation. The ocean MDT is the 293 

difference between the Mean Sea Surface Height (MSSH), i.e., the time average of the sea 294 

level above a reference ellipsoid, and the geoid height above the same reference ellipsoid. 295 

As a result of the recent dedicated space gravity missions such as GRACE (Gravity Recovery 296 

and Climate Experiment; Tapley et al., 2004) and GOCE (Gravity field and steady-state 297 

Ocean Circulation Explorer; Drinkwater et al., 2003), the knowledge of the geoid has 298 

greatly improved in the past few years, so that the ocean MDT is now resolved with 299 

centimeter-scale accuracy at spatial scales of around 100-150 km. However, at scales 300 

shorter than 100 km, spatial filtering is still needed because of the spectral differences of 301 

the two surfaces. Specifically, while MSSH is known with centimetric accuracy at scales of a 302 

few km, the geoid models only achieve this precision for scales larger than 100 km. MDT 303 

information at scales shorter than 100 km are added using oceanographic in-situ 304 

information such as Argo floats and drifting buoy velocities (see Rio et al. 2011 for details).   305 

In-situ temperature and salinity observations are from the World Ocean Database 2013 306 

(WOD13; Boyer et al., 2013). WOD13 provides a uniform and quality-controlled access to a 307 

large number of data sets, and integrates ocean profile data from approximately 90 308 

countries around the world, collected from buoys, ships, gliders, and other instruments. 309 

While WOD13 is comprehensive and now includes order 15 million temperature profiles, 310 
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the coverage is irregular, both in space and time as illustrated by Figure 3 which shows 311 

maps of the number of available profiles (for both temperature and salinity) per year and 312 

per 1° grid box with a total of 295,806 profiles for year 2006 and 350,248 profiles for year 313 

2016.  Although the global coverage is clearly improved and more uniform in 2016, the 314 

subsurface still remains poorly observed for most of the Southern Ocean, especially in the 315 

Pacific sector with large areas without a single profile during the entire year, and most 316 

areas having less than 10 individual profiles for the entire year. This lack of subsurface 317 

observations remains a very challenging aspect for data assimilation, especially when 318 

moving to eddy-resolving ocean models. For comparison, Figure 3 (bottom) shows the 319 

number of altimeter observations per 1° grid box for year 2016 with a total of 28,805,019 320 

observations from 6 platforms, highlighting the synoptic view of the ocean provided by the 321 

altimeters as well as homogenous coverage of the global ocean.  322 

Finally, the NOAA High Resolution Optimum Interpolation SST V2 (OISST) data set 323 

(Reynolds et al., 2007) is also assimilated. This observational product provides a complete 324 

0.25° daily SST analysis constructed by combining observations from different platforms 325 

(Advanced Very High-Resolution Radiometer (AVHRR) satellites, ships, and buoys) and by 326 

interpolating to fill in gaps from the clouds.  327 

5. Ocean Model and Simulations 328 

In its high-resolution version, POP2 uses a tripolar grid with the two northern grid poles 329 

located in Alaska and Russia to overcome the geographical North Pole singularity while 330 

maintaining a more isotropic resolution in the northern high latitudes. The nominal 331 

horizontal resolution is 0.1°. To reduce the computational cost of the model, the present 332 
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study uses 42 levels in the vertical – in contrast with the 62-level version used in Small et 333 

al. (2014), with 10 m resolution near the surface monotonically increasing to 250 m in the 334 

abyssal ocean. The bathymetry of the model is derived from ETOPO2v2 Global Relief Model 335 

(https://www.ngdc.noaa.gov/mgg/global/etopo2.html). The model uses partial bottom 336 

cells (Adcroft et al., 1997) for a more accurate discretization of the bottom topography. 337 

Ocean turbulent mixing is parameterized using the K‐profile parameterization (KPP; Large 338 

et al., 1994) in the vertical. A biharmonic operator with hyper-viscosity and diffusivity 339 

scaled by the cube of the local grid spacing is used as closure for lateral mixing by subgrid-340 

scale processes. While freshwater fluxes from river runoff are still incorporated as virtual 341 

salt fluxes that handle river inputs by removing salt from the ocean surface instead of 342 

adding freshwater volume, a local reference salinity, rather than a global one, is applied. 343 

Additionally, these freshwater fluxes are distributed in the vertical over the upper two 344 

surface layers of the model, i.e., upper 20 m. Both of these approaches are enabled by the 345 

newly implemented Estuary Box Model (EBM, Sun et al., 2017), and have been shown to 346 

reduce biases in the simulated salinity near river mouths (Tseng et al., 2016).  347 

Surface forcing is provided by the new atmospheric data sets for driving ocean–sea-ice 348 

models based on the Japanese 55-year atmospheric reanalysis product (JRA-55-do; Tsujino 349 

et al., 2018). JRA55-do data sets have a 55-km spatial and 3-hourly temporal resolution. 350 

Such a finer spatial and temporal resolution, compared to the previously-used Coordinated 351 

Ocean-ice Reference Experiments (CORE) interannual forcing version 2 data sets, is 352 

particularly beneficial for high-resolution simulations like the one used in the present 353 

study. Bulk formulae from Large & Yeager (2009) are used to compute air-sea heat and 354 

momentum fluxes. The model sea surface salinity (SSS) is restored towards the upper 10-m 355 
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average, monthly-mean climatological salinity from the World Ocean Atlas 2013 version 2 356 

(Zweng et al., 2013), using a piston velocity of 50 m over 1 year. It is standard practice to 357 

apply such SSS restoring when forcing an ocean – sea-ice model (Griffies et al., 2009), and it 358 

is needed to maintain a global hydrological balance in order to avoid model drift in the 359 

absence of coupled feedbacks. 360 

To obtain the static ensemble perturbations and also to have a baseline (control) 361 

simulation to evaluate our assimilation, a free-running, ocean – sea-ice hindcast simulation 362 

in which no observations were ingested (denoted as NoAssim hereafter) was performed. 363 

An ocean – sea-ice coupled version of CESM2 was used, where the Community Ice CodE 364 

(CICE5) was employed as the sea-ice component (Hunke et al., 2015). CICE5 is a dynamic-365 

thermodynamic sea-ice model that includes a subgrid-scale ice thickness distribution and 366 

uses the same tripolar grid as in POP2. The simulation was initialized on 01 January 2000 367 

using oceanic and sea ice initial conditions from year 30 of an existing ocean – sea-ice 368 

coupled simulation obtained with a repeat-year forcing data set (Bryan and Bachman, 369 

2014). It was then integrated for 17 years for the 2000–2016 period forced with the JRA55-370 

do data sets. The 84-member ensemble of pre-computed perturbations used by the EnOI to 371 

approximate samples from the forecast error covariance was constructed by randomly 372 

drawing 7 days from each individual month over the 12-year period for 2005-2016 for a 373 

total of (12 x 7 = 84) 84 members per month (January to December). As a result, the 374 

ensemble used by the EnOI varies seasonally, but does not have any interannual variations.  375 

We do not interpolate in time through a month, and there is a discontinuous switch in the 376 

prior ensemble at each month boundary. NoAssim simulation was also used to evaluate the 377 

long-term spatial average of the model MDT which is needed to account for the difference 378 
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in the arbitrary reference level used by the model and the observed CNES-CLS13 MDT. 379 

Finally, NoAssim simulation was utilized to initialize our prototype global eddy-resolving / 380 

-permitting POP2 ocean model reanalysis on 01 January 2005. The retrospective analysis 381 

(denoted as Assim hereafter) was run for 12 years from January 2005 to December 2016. It 382 

was configured and forced like NoAssim, but used the EnOI system described above to 383 

ingest satellite altimetry and sea surface temperature observations along with temperature 384 

and salinity in-situ observations.         385 

6. Evaluation of the High-Resolution Data Assimilation  386 

In this section, a brief evaluation of the retrospective analysis from the global high-387 

resolution data assimilation system for the 12-year period is presented, considering only a 388 

few basic fields. For this purpose, biases from available observations for the Assim analysis 389 

and the free-running NoAssim simulation introduced in the previous section are compared 390 

to each other. To allow such comparisons between the Assim and NoAssim and various 391 

standard gridded observational products, the simulated fields are interpolated from the 392 

0.1° POP grid to a regular grid used by each observational product. 393 

Figure 4 shows the mean SST for the 2005-2016 period, along with the mean biases against 394 

the Roemmich & Gilson (2009) gridded Argo data set for both Assim and NoAssim. Many of 395 

the persistent SST biases documented in the literature (e.g., Small et al., 2014) are easily 396 

identified in NoAssim. These include the dipole of warm and cold SST biases in the North 397 

Atlantic associated with errors in the Gulf Stream separation and the subsequent path of 398 

the North Atlantic Current; warm biases in the eastern tropical Pacific and Atlantic; and a 399 

warm bias off the South African coast associated with the Benguela upwelling system. Not 400 
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surprisingly, Assim eliminates or substantially reduces these biases. There is also a modest 401 

reduction in the large-scale cold bias particularly evident in the Pacific and Indian Basins in 402 

NoAssim. These improvements are reflected in the globally-averaged root-mean square 403 

(rms) bias of 0.3°C for Assim, representing a significant reduction from 0.45°C in NoAssim. 404 

Nevertheless, there are still remaining biases in Assim, i.e., along the Kuroshio Current and 405 

the Sub-Antarctic front in the Southern Ocean, that are comparable to those of NoAssim. 406 

Consequently, there is only a minor improvement in the global-mean SST in Assim (19.2°C) 407 

over NoAssim (19.1°C), both lower than the Argo observational estimate of 19.6°C.  408 

The mean DT for the 2005-2016 period for Assim and NoAssim are presented in Figure 5. 409 

The figure also includes mean biases against the CMENS gridded multi-mission DT. In 410 

general, NoAssim has large basin-scale negative differences, particularly in the Pacific 411 

Ocean, associated with cold biases in the deep ocean (not shown). There are also some 412 

large biases in the Southern Ocean and in the vicinity of western boundary currents. These 413 

differences are related to the biases in the positions of these energetic structures, i.e., the 414 

Gulf Stream / North Atlantic Current, the Kuroshio, and the Antarctic Circumpolar Current. 415 

The positive differences in the equatorial and tropical oceans are associated with the warm 416 

biases in the upper ocean (see Figure 6). Globally, the assimilation is able to reduce the 417 

differences with the observed DT, with the rms bias of 8.6 cm in NoAssim down to 7.8 cm in 418 

Assim. However, this is only a small reduction, and the assimilation actually deteriorates 419 

the DT in the Southern Ocean with large negative differences in the South Indian Ocean and 420 

Agulhas Current region. These energetic regions, in which high eddy activity drives a lower 421 

signal-to-noise ratio, might not be sufficiently sampled by Argo (see Figure 3), leading to 422 

relatively large errors, particularly, in the deep ocean. Indeed, Assim has a large cold bias 423 
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below 1000 m depth (not shown) in the same regions where the DT displays a negative 424 

bias (Figure 5). As stated in section 3, no localization is applied in the vertical, allowing 425 

altimetry observations to impact the entire water column. This, combined with the sparsity 426 

of in-situ observations in those regions, implies that the covariances from the high-427 

resolution model used to extend the altimetry observations to the ocean interior 428 

temperature and salinity are still problematic. 429 

Proper initialization of the upper-ocean heat content has been shown to improve 430 

prediction skill in the North Atlantic (e.g., Yeager et al., 2012 and 2018). Therefore, it is 431 

crucial for any data assimilation product intended for initialization of such prediction 432 

simulations to have a faithful representation of the upper-ocean temperatures. Such an 433 

assessment for Assim is presented in Figure 6, showing the 0 – 250 m depth-averaged 434 

mean potential temperature distributions in comparison to those of NoAssim and the 435 

Roemmich & Gilson (2009) gridded Argo data set. NoAssim shows a ubiquitous warm bias 436 

with the largest differences found in the eastern tropical basins. The Gulf Stream and 437 

Kuroshio also show warm biases along their northern fronts, consistent with the fact that 438 

even at an eddy-permitting resolution, the western boundary currents tend to overshoot 439 

and flow too far north along the continental slopes. As seen with SSTs, there is an 440 

associated, large cold bias to the east of Newfoundland due to the overly zonal North 441 

Atlantic Current. With assimilation, all these biases are significantly reduced. 442 

Quantitatively, the rms error is reduced from 1°C in NoAssim to 0.6°C in Assim. This 443 

improvement is due to a large-scale cooling in Assim, with the Pacific Ocean showing some 444 

cold biases. The mean 0 – 250 m depth-averaged potential temperature in Assim is 15.4°C, 445 

matching the value from Argo. In contrast, NoAssim is warmer with a value of 16°C.  446 
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The time series of the annual-mean upper-ocean heat content (down to 250-m depth) are 447 

shown in Figure 7 for the subpolar North Atlantic (SPNA) region, defined as the area 448 

between 45°-20°W and 50°-60°N. The figure confirms the improvement achieved by the 449 

assimilation. Specifically, Assim has a mean heat content of 50.97x1022 Joules for the 2005–450 

2016 period, which is in much better agreement than that of NoAssim with the Argo 451 

estimate of 51x1022 Joules. NoAssim significantly underestimates the heat content with a 452 

mean of 50.73x1022 Joules, reflecting the cold bias seen over the SPNA region (Figure 6). 453 

The variability of the heat content is very well captured by both Assim and NoAssim, with 454 

the assimilation marginally improving the Pearson's correlation coefficient from 0.94 for 455 

NoAssim to 0.96 for Assim. 456 

A reduction in the tropical Pacific mean state biases is also known to lead to an improved 457 

representation of the El Nino Southern Oscillation (ENSO) variability that, in turn, can 458 

produce better forecast skill (e.g., Manganello & Huang, 2008; Kim et al., 2017; Richter et 459 

al., 2018). Figure 8 shows the mean upper-ocean potential temperature differences for 460 

Assim and NoAssim from the gridded Argo data set (Roemmich & Gilson, 2009) along the 461 

Equatorial Pacific. In NoAssim, there is a substantial warm bias in excess of 2.4°C to the 462 

east of the dateline, associated with a very diffuse thermocline. In contrast, Assim shows a 463 

vastly improved mean upper-ocean thermocline structure with its 20°C isotherm tracking 464 

the observations very closely. The bias magnitudes are also sharply reduced, with the 465 

largest bias magnitudes down to around 0.6°C. 466 

The above results clearly demonstrate improvements in SST and DT with Assim. These 467 

improvements are most likely due to the availability of altimetry and remote SST data sets 468 
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from satellite microwave radiometers, providing a global synoptic view of the ocean 469 

surface, and a strong constrain on the Assim SST and DT. In contrast, sea surface salinity is 470 

poorly observed. The recent satellite ESA Soil Moisture and Ocean Salinity (SMOS), NASA 471 

Aquarius SAC-D and Soil Moisture Active Passive (SMAP) missions have made it possible 472 

for the first time to measure sea surface salinity from space and can bring a valuable 473 

additional constraint to control the model salinity. However, satellite salinity observations 474 

are still relatively new and only available for the most recent years. Moreover, satellite 475 

salinity observations still contain large errors in coastal oceans and high latitudes (e.g., 476 

Vinogradova et al. 2014). In Assim, the corrections in the near surface salinity evaluated by 477 

the assimilation scheme heavily rely on the multivariate covariances that relate DT and SST 478 

observations to salinity innovations. Figure 9 shows the global-mean potential temperature 479 

and salinity model minus Argo difference and rms error profiles for the 2005-2016 period 480 

for Assim and NoAssim. Consistent with the results presented above, the assimilation is 481 

able to reduce the error in temperature at the surface, but also at depth, particularly 482 

around 100-m depth. However, for salinity, while the assimilation has little effect at depth, 483 

it significantly degrades the solution in the upper 100 m or so by further freshening an 484 

already fresh-biased upper ocean in NoAssim. Because salinity is dynamically relevant, 485 

degrading the salinity state can lead to errors in the velocity field as illustrated by Vialard 486 

et al. (2003).  487 

The Atlantic meridional overturning circulation (AMOC), representing zonally-integrated 488 

circulation, is thus also constrained by salinity (e.g., Huang et al., 2011). Because the 489 

current implementation of the EnOI is found to degrade upper-ocean salinities, we expect 490 
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poor AMOC representation in our prototype reanalysis. Indeed, this is confirmed in Figure 491 

10 that shows the AMOC time-mean cell distribution for Assim and NoAssim.   492 

There are significant differences in the representation of the primary circulation pattern 493 

associated with the North Atlantic Deep Water (NADW) cell (positive contours) with a 494 

stronger and deeper NADW transport in Assim. Furthermore, the NADW cell shows 495 

multiple distinct local maxima at different latitudes in Assim, lacking the meridional 496 

coherency seen in NoAssim. The strength of the deep ocean counter circulation (negative 497 

contours) associated with the northward flow of the Antarctic Bottom Water (AABW) 498 

intruding from the Southern Hemisphere is also much stronger in Assim. Overall our 499 

results appear to be consistent with some of the AMOC features described by Karspeck et 500 

al. (2017) in their AMOC inter-comparison in ocean reanalysis products and confirm that 501 

the historical reconstruction of AMOC is very sensitive to the details of assimilation 502 

procedures. 503 

More in-depth analysis of Assim is not very meaningful until we can address the salinity 504 

issue and subsequently improve the AMOC representation.   505 

7. Summary and Discussion 506 

The DART Manhattan version includes new software infrastructure that enables ensemble 507 

data assimilation with high-resolution models, including CESM. This new version uses 508 

passive target one-sided MPI communication to enable large-state ensemble data 509 

assimilation by distributing state vector information across multiple processors on 510 

different MPI tasks, effectively relaxing the memory limitations inherent to the state 511 

complete representation paradigm used in previous DART versions. To achieve an 512 
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affordable data assimilation system for a high-resolution version of the CESM2 ocean 513 

component, an EnOI scheme has been implemented within the DART Manhattan version. 514 

The EnOI scheme uses a static (but seasonally varying) ensemble of pre-computed 515 

perturbations to approximate samples from the forecast error covariance and utilizes a 516 

single model integration to estimate the forecast mean. As a result, the computational cost 517 

of the EnOI is much less than the cost of the EnKF typically implemented with DART, 518 

making the EnOI a practical alternative for applications where computational cost is a 519 

limiting factor such as global high-resolution ocean reanalysis. We estimate the cost of 520 

running the global high-resolution retrospective analysis presented in this manuscript at 521 

about 600K core hours per simulation year on the 5.34-petaflops Cheyenne supercomputer 522 

(an SGI ICE XA cluster with 145,152 Intel Xeon processor cores and 313 TB of total 523 

memory) at the NCAR Wyoming Supercomputer Center. Had we used the full EnKF scheme, 524 

the cost per simulation year would have been of the order of tens of millions of core hours 525 

depending on the size of the ensemble used by the EnKF to approximate the prior 526 

probability distribution. In its current implementation the EnOI system assimilates satellite 527 

altimetry and sea surface temperature observations along with temperature and salinity 528 

in-situ observations.  529 

The new data assimilation framework is used to produce a global high-resolution 530 

retrospective analysis for the 2005 – 2016 period with the CESM2 ocean component. The 531 

assimilation is shown to improve the time-mean ocean state estimate relative to an 532 

identically forced ocean model simulation where no observations are ingested. Most of the 533 

improvements occur in the upper ocean where Argo and other in-situ observations from 534 

the WOD13 are available. However, highly energetic regions, such as the western boundary 535 
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currents and the Antarctic Circumpolar Current where high eddy activity drives a lower 536 

signal-to-noise ratio, still show notable biases because these regions are likely insufficiently 537 

sampled by Argo and other types of in-situ observations available in the WOD13. Despite 538 

the recent significant increase in in-situ observations with the Argo program, another 539 

under-sampling related issue is seen in the upper-ocean salinities. Specifically, near the 540 

surface, where salinity is mostly controlled by surface flux exchanges rather than a 541 

temperature - salinity relationship, the salinity corrections inferred by the EnOI scheme 542 

lead to a significant deterioration of salinity in the mixed layer. Indeed, assimilation further 543 

freshens the upper ocean which is already too fresh in the simulation without data 544 

assimilation. Capturing the observed salinity state has always been a challenge for global 545 

ocean data assimilation systems because salinity data are sparse compared to temperature 546 

data (e.g., Chang et al., 2011). One potential explanation for the poor surface salinity in 547 

Assim is as follows. By sampling the forecast error covariance from a long, free-running 548 

model simulation, we likely tend to overestimate the forecast error. As a result, the 549 

assimilation scheme gives too much weight to the observations compared to the model 550 

forecast. Since we have plenty of SST observations and only sparse SSS observations to 551 

constrain the posterior, the assimilation update tends to overfit the posterior to the 552 

observed SST and infers SSS innovations from unreliable multivariate covariance between 553 

salinity and temperature near the surface. If this is indeed the case, a potential way to 554 

improve the surface salinity in Assim would be to use the Adaptive Inflation Algorithm 555 

proposed by El Gharamti (2018), which rectifies the ensemble variance using inflation or 556 

deflation as needed. We note that the more operational data assimilation systems tend to 557 
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ingest salinity climatology to weakly constrain salinity (and temperature) to limit drifts and 558 

avoid the kind of issues seen in our results (e.g., Lellouche et al., 2018).  559 

It is well known that univariate assimilation techniques can have a detrimental effect on 560 

the ocean-state variables not directly constrained by the data (e.g., Ji et al., 2000; Troccoli et 561 

al., 2002). Multivariate assimilation methods, like the EnOI scheme used in this study, can, 562 

in theory, offer an answer to this problem, if the covariances used to propagate information 563 

from observed state variables to unobserved state variables are well known. Our results, 564 

with Assim showing negative DT bias collocated with cold bias at depth, suggest that even 565 

at high-resolution, the covariances diagnosed from our static but seasonally varying 566 

ensemble of model states are not accurate enough to project the satellite observations to 567 

depth and infer meaningful temperature and salinity increments below the thermocline in 568 

regions with strong mesoscale activity. This limitation is potentially due to the limited 569 

ensemble size used by the EnOI scheme, but the physical memory limitation on our current 570 

computer system does not permit the use of a larger ensemble size. Indeed, the sample 571 

covariance can be suboptimal as a result of the limited ensemble size. One common 572 

strategy to remedy the sampling error issue when implementing an ensemble method in a 573 

high dimensional geophysical application is covariance localization. However, the issue of 574 

vertical localization for vertically integrated quantities, such as DT, is not straightforward. 575 

A number of studies have related localization to the correlation between an observation 576 

and a given state variable (e.g., Anderson, 2012). Vertically integrated quantities are 577 

expected to have a meaningful correlation with state variables, such as temperature and 578 

salinity, over the whole column, but the correlation will be a function of the state variable, 579 

location, and depth. Therefore, it can be expected that the localization function should also 580 
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vary accordingly with those variables. Lei et al. (2020) have recently proposed an adaptive 581 

localization approach to estimate an effective vertical localization to assimilate satellite 582 

radiance observations, which measure integrated quantities over an atmospheric column. 583 

This adaptive method is based on sample correlations between ensemble priors of 584 

observations and state variables, aiming to minimize sampling errors of estimated sample 585 

correlations. It will be very interesting to implement this kind of adaptive localization 586 

approach in our EnOI scheme to see if we can improve the quality of our results. Finally, we 587 

note that another limitation could also come from the way our static ensemble used by the 588 

EnOI to approximate samples from the forecast error covariance was constructed. It will 589 

require further testing to assess if different ways of sampling the model internal variability 590 

to parameterize the EnOI could improve the results. 591 

The EnOI method can be used to extend our reanalysis further back in time. Although the 592 

approach itself would not change in such an application, some details of the data 593 

assimilation, such as localization, would change to account for decreases in available 594 

observations. The lack of satellite altimetry prior to the 1990s and satellite SST prior to the 595 

1980s will present significant challenges.  596 

Our ultimate goal is to create a seamless Earth system prediction framework within CESM 597 

that enables initialization through data assimilation with DART. The experience gained 598 

from this initial effort with a high-resolution ocean model version will guide our efforts to 599 

improve the quality and capabilities of our system in the future.  600 

 601 

 602 
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Figures 840 

  841 

 842 

Figure 1. Schematic representation of the sequential algorithm used in the EnOI scheme as 843 

implemented in DART (adapted from Anderson et al. 2009). An estimate of the model state 844 

at time tk is advanced to time tk+1 by a forecast model . A stationary ensemble (4 in this 845 

example) of model anomalies is then used to approximate forecast errors . A forward 846 

observation operator, h, is applied to each state vector  to obtain 4 estimates of an 847 

observation  denoted by green tick marks. The observed value and the observational 848 

likelihood (red tick mark and red curve in the observation space portion of the schematic) 849 

are combined with the prior ensemble estimate (green curve) to obtain an updated 850 

ensemble estimate  and increments  (in blue arrows in the observation space portion of 851 

the schematic). The increments to the observation ensemble are regressed onto each state 852 

vector component  independently to generate state vector increments (blue arrows in 853 

the model space portion of the schematic). The posterior mean (blue asterisk) is computed 854 

 by averaging the posterior state vector. The model is then used to advance the posterior 855 

mean state estimate  to time tk+2 when the next observations become available.  856 

 857 

Figure 2. A typical set of observations assimilated daily shown for 01 March 2005. (top 858 

left) along-track sea level anomaly (∼100,000 observations; in m); (top right) sea surface 859 

temperature (∼75,000 observations; in °C); (bottom left) in-situ temperature (∼75,000 860 

observations; in °C); and (bottom right) in-situ salinity (∼25,000 observations; in psu). See 861 

section 3 for details of the observational data sets. 862 
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 863 

Figure 3. Total number of individual in-situ profiles (for both temperature and salinity) 864 

per 1° x 1° box available for (top) year 2005 and (middle) year 2016. For comparison, the 865 

bottom panel shows the number of altimetric observations per 1° x 1° box available for 866 

year 2016. Note that the top and middle panels use the same nonlinear scale which differs 867 

from that of the bottom panel. 868 

 869 

Figure 4.  Mean SST (in °C) for the 2005-2016 period from (top left) Assim and (top right) 870 

NoAssim; mean SST model minus observations (bias) for the same period for (bottom left) 871 

Assim and (bottom right) NoAssim. A gridded ARGO data set from Roemmich and Gilson 872 

(2009) is used for observations. The mean SST (in °C) is included on the top panels and the 873 

rms bias (in °C) is included on the bottom panels. 874 

 875 

Figure 5. Same as in Figure 4 except for DT (in m). The CMENS gridded multi-mission 876 

absolute DT is used for observation. 877 

 878 

Figure 6. Same as in Figure 4 except for the 0 – 250 m depth-averaged potential 879 

temperature. A gridded ARGO data set from Roemmich and Gilson (2009) is used for 880 

observations. 881 

 882 

Figure 7. Time series of the upper ocean heat content (down to 250-m depth) for the 883 

Subpolar North Atlantic region (45°-20°W, 50°-60°N). 884 

 885 



 44 

Figure 8.  Mean potential temperature (in °C) bias along the Equatorial Pacific for the 886 

2005-2016 period from (top) Assim and (bottom) NoAssim. The biases are with respect to 887 

the Roemmich and Gilson (2009) gridded Argo data set. The solid and dashed black lines 888 

denote the 20°C isotherm from the gridded Argo data set and model simulations, 889 

respectively. 890 

 891 

Figure 9. Global-mean potential temperature (top) and salinity (bottom) model minus 892 

Argo difference (left) and rms error (right) profiles for the 2005-2016 period for Assim 893 

(blue) and NoAssim (orange). 894 

 895 

Figure 10. Time-mean AMOC stream function in Sverdrup (1 Sv ≡ 106 m3s-1) from 2007 to 896 

2016 plotted in depth-latitude space for (left) Assim and (right) NoAssim. The positive and 897 

negative contours indicate clockwise and counter-clockwise circulations, respectively. Bold 898 

line is the zero contour. Contour interval is 4 Sv. 899 
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