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Abstract This paper describes the implementation of a coarser-resolution physics grid into the
Community Atmosphere Model (CAM), containing 5

9
fewer grid columns than the dynamics grid. The dry

dynamics is represented by the spectral element dynamical core, and tracer transport is computed using
the Conservative Semi-Lagrangian Finite Volume Method (CAM-SE-CSLAM). Algorithms are presented
that map fields between the dynamics and physics grids while maintaining numerical properties ideal
for atmospheric simulations such as mass conservation and mixing ratio shape and linear-correlation
preservation. The results of experiments using the lower-resolution physics grid are compared to the
conventional method in which the physics and dynamical grids coincide. The lower-resolution physics
grid provides a volume mean state to the physics computed from an equal sampling of the different types of
nodal solutions arising in the spectral-element method and effectively mitigates grid imprinting in regions
with steep topography. The impact of the coarser-resolution physics grid on the resolved scales of motion is
analyzed in an aquaplanet configuration, across a range of dynamical core grid resolutions. The results
suggest that the effective resolution of the model is not degraded through the use of a coarser-resolution
physics grid. Since the physics makes up about half the computational cost of the conventional
CAM-SE-CSLAM configuration, the coarser physics grid may allow for significant cost savings with little
to no downside.

1. Introduction
Global atmospheric models fundamentally consist of two components. The dynamical core (dynamics),
which numerically integrates the adiabatic equations of motion and tracer advection, and the physical
parameterizations (physics), which compute the effects of diabatic and subgrid-scale processes (e.g., radia-
tive transfer and moist convection) on the grid scale. More out of convenience than anything else, the physics
are evaluated on the dynamics grid; that is, the physics and dynamics grids coincide. From linear stability
and accuracy analysis of numerical methods, it is a common result that the shortest simulated wavelengths
are not accurately represented by the dynamical core. Additionally, simulated downscale cascades result in
an unrealistic collection of energy and/or enstrophy near the truncation scale, which may be observed from
kinetic energy spectra in model simulations (Skamarock, 2011). Some form of dissipation must be incorpo-
rated into models to mitigate these numerical artifacts near the grid scale (Jablonowski & Williamson, 2011).
The unrealistic nature of the grid scale led Lander and Hoskins (1997) to speculate whether the physics
should be evaluated on a grid that is more reflective of the scales actually resolved by the dynamical core.

Exploring the impact of different physics grid resolutions has so far been limited to models employing the
spectral transform method (Lander & Hoskins, 1997; Wedi, 2014; Williamson, 1999). Lander and Hoskins
(1997) argued that passing underresolved states to the physics may be especially problematic in spectral
transform models, since the physics are evaluated on a latitude-longitude transform grid, and contains more
degrees of freedom than the spectral representation to prevent aliasing of quadratic quantities. However,
Lander and Hoskins (1997) found that the spectral truncation of the physics tendencies damps errors that
may result from passing an underresolved state to the physics, although the extent to which these errors
may still be present in the model is difficult to address.

Another class of spectral transform models evaluate the quadratic terms using semi-Lagrangian methods,
which are implicitly diffusive, relaxing constraints on the resolution of the transform grid. Wedi (2014)
experimented with different transform grid resolutions and concluded that the standard high-resolution
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quadratic grid actually improves forecast skill over the use of a lower-resolution transform grid. They sug-
gest that increasing the resolution of the transform grid simulates a kind of subgrid variability on the spectral
state, which is thought to be underrepresented in global atmospheric models (Shutts, 2005). This is in prin-
ciple the purpose of “superparameterization,” in which a cloud-resolving model is embedded in each grid
cell to approximate subgrid variability and improves both diurnal and subseasonal variability in the model
(Randall et al., 2003).

After the physics tendencies are transformed into spectral space, it is possible to truncate the tendencies
at any particular wave number in global spectral transform models. Williamson (1999) conducted a pair of
convergence tests using a spectral transform model: a conventional convergence test and one in which the
spectral truncation of the physics tendencies is held fixed and the resolution of the dynamical core increased.
In contrast to the realistic weather forecasts of Wedi (2014), Williamson (1999) ran their model to equilib-
rium in an idealized climate configuration. When the physics and dynamics resolutions increase together,
as in more typical convergence studies, the strength of the Hadley cell increases monotonically with reso-
lution. This sensitivity of Hadley cell strength to horizontal resolution is a common result of global models
at hydrostatic resolutions (see Herrington & Reed, 2017, and references therein). But with the truncation
wave number of physics tendencies held fixed, the Hadley cell showed very little sensitivity to dynamical
core resolution, resembling the solution for which the dynamics truncation wave number is equal to that of
the lower-resolution physics. Herrington and Reed (2017) speculated that these results suggest the scales of
motion resolved by the dynamical core may be aliased to the lower-resolution physics.

Global spectral transform models, while remarkably efficient at small processor counts, do not scale well
on massively parallel systems. High-order Galerkin methods are becoming increasingly popular in cli-
mate and weather applications due to their high-parallel efficiency, high-processor efficiency, high-order
accuracy (for smooth problems), and geometric flexibility facilitating mesh-refinement applications (e.g.,
Brdar et al., 2013; Giraldo & Restelli, 2008; Nair et al., 2009, and the Energy Exascale Earth System Model;
https://e3sm.org/). High-resolution climate simulations with NCAR's Community Atmosphere Model
(CAM; Neale et al., 2012) are typically performed using a continuous Galerkin dynamical core referred to as
CAM-SE (CAM Spectral Elements; Dennis et al., 2012; Lauritzen et al., 2018; Taylor et al., 2008). CAM-SE
may be optionally coupled to a conservative, semi-Lagrangian tracer advection scheme for accelerated mul-
titracer transport (CAM-SE-CSLAM; Lauritzen et al., 2017). Tracer advection then evolves on an entirely
separate, finite-volume grid which contains the same degrees of freedom as CAM-SE's quadrature node grid.

Element-based Galerkin methods are susceptible to grid-imprinting and may need to be considered when
contemplating a particular physics grid (Herrington et al., 2018, hereafter referred to as H18). Grid imprint-
ing manifests at the element boundaries, since the global basis is least smooth (C0; all derivatives are
discontinuous) for quadrature nodes lying on the element boundaries, and the gradients (e.g., pressure gra-
dients) are systematically tighter producing local extremes. Through computing the physics tendencies at
the nodal points, element boundary extrema is also observed in the physics tendencies.

H18 has shown that through evaluating the physics on the finite-volume tracer advection grid in
CAM-SE-CSLAM, element boundary errors are substantially reduced, although still problematic in regions
of steep terrain, at low latitudes. Through integrating CAM-SE's basis functions over the control volumes of
the finite-volume grid, element boundary extrema is additionally weighted by the C∞ solutions (i.e., the basis
representation is infinitely smooth and all derivatives are continuous) that characterize the interior of the
element, and the state is smoother. Additionally, in defining an area averaged state, the finite-volume physics
grid is made consistent with assumptions inherent to the physics and is more appropriate for coupling to
other model components (e.g., the land model), which is typically performed using finite-volume-based
mapping algorithms.

The CAM-SE-CSLAM finite-volume grid is defined through dividing the elements of CAM-SE's gnomonic
cubed-sphere grid with equally spaced, equi-angular coordinate lines parallel to the equi-angular element
boundaries, such that there are 3×3 control volumes per element (hereafter referred to as pg3; see Figure 1).
While the physics grid in H18 is pg3, that is, the physics and dynamics grids have the same degrees of free-
dom, the control volumes in pg3 encompass a region of the element in which their proximity to the element
boundaries is not equal. Therefore, not every control volume in an element has the same smoothness prop-
erties. This may be avoided through defining a physics grid in which the elements are instead divided into
2 × 2 control volumes (hereafter referred to as pg2; see Figure 1). The control volumes of the pg2 grid all
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Figure 1. An overview of the different grids in CAM-SE-CSLAM.

have the same proximity to the element boundaries and should mitigate the element boundary noise that
remains in the pg3 grid and is shown in H18.

In this study, we test the hypothesis that the coarser, pg2 physics grid is effective at reducing spurious noise
at element boundaries, particularly over regions of rough topography. In addition, the recent trend toward
running models at ever higher resolutions is an almost prohibitive computational burden. As the physics are
responsible for over half of the computational cost in CAM-SE (Lauritzen et al., 2018), the improvement in
computational performance using a coarser-resolution physics grid is potentially significant. However, any
advantages of using a coarser physics grid need to be weighed against any potential reduction in simulation
quality, for example, possible aliasing of the resolved scales of motion by the coarser grid, as suggested by the
results of Williamson (1999). Section 2 describes the implementation of the pg2 grid into CAM-SE-CSLAM
and the idealized model configurations used throughout this study. Section 3 provides results of model sim-
ulations designed to test the mapping algorithms, identify grid imprinting and assess the range of scales
resolved by the model. Section 4 provides a discussion of the results and conclusions.

2. Methods
Separating dynamics, tracer, and physics grids introduces the added complexity of having to map the state
from dynamics and tracer grids to the physics grid and mapping physics tracer increments back to the tracer
grid and physics increments needed by the dynamical core to the dynamics grid (see Figure 1). The dynam-
ics grid in the case of CAM-SE-CSLAM refers to the Gauss-Lobatto-Legendre (GLL) quadrature nodes used
by the spectral-element method to solve the momentum equations for the momentum vector (u, v), thermo-
dynamics equation for temperature (T), continuity equation for dry air mass ( 1

g
p), and continuity equations

for water vapor and thermodynamically and inertially active condensates (see, e.g., Lauritzen et al., 2018, for
details). By tracer grid we refer to the pg3 grid on which CSLAM performs tracer transport of water vapor,
condensates, and other tracers. Although water vapor and condensates are being advected by the CSLAM
scheme on the pg3 grid, these quantities are also needed on the GLL grid for the momentum equations and
thermodynamic equation. Transport of water variables is also performed by the spectral-element method
on the GLL grid. To avoid decoupling of water species on the CSLAM and GLL grids, the GLL water species
are overwritten by the CSLAM values every physics time step. This is explained in detail in H18.
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Figure 2. Indices notation for (a) the pg2 grid, (b) the pg3 grid, and (c) their exchange grid.

Similarly to the CAM-SE-CSLAM pg3 configuration, the dynamics state (momentum vector, temperature,
dry pressure) must be mapped from the GLL grid to the physics grid. Exactly the same algorithms as used
in the pg3 configuration apply; that is, momentum components are interpolated by evaluating the internal
Lagrange basis functions (used in the spectral-element method) at the equi-angular (gnomonic) center of
the pg2 cells and the Lagrange basis function representations of temperature and pressure are integrated
over the pg2 control volumes. See H18 for details.

As compared to the pg3 configuration, the extra complication with the pg2 setup is that the tracer grid does
not coincide with the physics grid; that is, the tracer state needs to be mapped from the CSLAM grid (pg3)
to the physics grid (pg2), and tracer increments computed by physics must be mapped from the physics
grid back to the CSLAM grid. In order to describe the mapping algorithms between the grids some notation
needs to be introduced.

The mapping algorithms are applied to each element𝛺 (with spherical area𝛥𝛺) so without loss of generality
consider one element. Let ΔA(pg2)

k and ΔA(pg3)
𝓁 be the spherical area of the physics grid cell A(pg2)

k and CSLAM
control volume A(pg3)

𝓁 , respectively. The physics grid cells and CSLAM cells, respectively, span the element,
𝛺, without gaps or overlaps

∪nph𝑦s2

k=1 A(pg2)
k = Ω and A(pg2)

k ∩ A(pg2)
𝓁 = ∅ ∀k ≠ 𝓁, (1)

∪nc2

k=1A(pg3)
k = Ω and A(pg3)

k ∩ A(pg3)
𝓁 = ∅ ∀k ≠ 𝓁, (2)

where nc = 3 is the CSLAM grid resolution parameter and nphys = 2 is the physics grid resolution parameter
(following the Fortran code base), although the methods described here are valid for any arbitrary integer
nphys (e.g., nphys = 4 is shown in Figure 1). The overlap areas between the kth physics grid cell and 𝓁th
CSLAM cell are denoted

Ak𝓁 = A(pg2)
k ∩ A(pg3)

𝓁 , (3)

(see Figure 2) so that

A(pg2)
k = ∪nc2

l=1Ak𝓁 . (4)

This overlap grid is also referred to as the exchange grid.

2.1. Mapping Tracers From A(pg3) to A(pg2) (CSLAM to Physics Grid)
The CSLAM and physics grids are both finite-volume grids so existing CSLAM technology can be used to
map the tracer state from CSLAM to physics grid. That is, compute a high-order shape-preserving recon-
struction of mixing ratio m and dry air mass 1

g
Δp per unit area in each CSLAM control volume and integrate

those reconstruction functions over the overlap areas (Lauritzen et al., 2010; Nair & Lauritzen, 2010). This
algorithm retains the properties of CSLAM: inherent mass conservation, consistency (constant mixing ratio
is preserved), mixing ratio shape preservation, and linear-correlation preservation.
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Denote the known cell-averaged values of dry pressure-level thickness and mixing ratio asΔp
(pg3)

and m(pg3),
respectively. We consider a particular layer and for simplicity drop the layer subscript. The same procedure
is applied to each layer in a column. The unknowns we would like to compute are the cell-averaged values
of the same quantities on the physics grid, Δp

(pg2)
and m(pg2), respectively. The dry pressure level thickness

integrated over the kth physics grid cell is given by

Δp
(pg2)
k = 1

ΔA(pg2)
k

nc2∑
𝓁=1

⟨𝛿p⟩k𝓁 , (5)

where ⟨𝛿p⟩k𝓁 is the dry mass in a layer over overlap area Ak𝓁 . It is computed by integrating a high-order (2-D
polynomial of degree 2) reconstruction of pressure-level thickness in each CSLAM cell over the overlap area
Ak𝓁

⟨𝛿p⟩k𝓁 = ∫Ak𝓁

[ ∑
i+𝑗≤2

 (i𝑗)
𝓁 xi𝑦𝑗

]
dA. (6)

The reconstruction coefficients  (i𝑗)
𝓁 in CSLAM cell 𝓁 are computed from the cell average pressure level

thicknesses on the CSLAM grid Δp
(pg3)

, and the numerical integration over overlap areas is done by line
integrals. The details of that are given in Lauritzen et al. (2010) and not repeated here.

The average tracer mass per unit area on the physics grid is given by

mΔp
(pg2)
k = 1

ΔA(pg2)
k

nc2∑
𝓁=1

⟨m𝛿p⟩k𝓁 , (7)

where ⟨m𝛿p⟩k𝓁 is the tracer mass over Ak𝓁 resulting from integrating a high-order reconstruction of 𝛥p and
m combined using the approach outlined in Appendix B of Nair and Lauritzen (2010) over the overlap area
Ak𝓁

⟨m𝛿p⟩k𝓁 = ∫Ak𝓁

[
Δp

(pg3)
𝓁

∑
i+𝑗≤2

(i𝑗)
𝓁 xi𝑦𝑗 + m(pg3)

𝓁

∑
i+𝑗≤2

̃ (i𝑗)
𝓁 xi𝑦𝑗

]
dA, (8)

where ̃ (00)
𝓁 =  (00)

𝓁 − Δp
(pg3)
𝓁 and ̃ (i𝑗)

𝓁 =  (i𝑗)
𝓁 for i, j > 0, and (i𝑗)

𝓁 are the reconstruction coefficients for
the mixing ratio in CSLAM cell A(pg3)

𝓁 . A shape-preserving limiter is applied to the reconstruction of mixing
ratio m (Barth & Jespersen, 1989) and not 𝛥p. This way of combining the reconstruction function for 𝛥p
and m in (8) ensures that a constant mixing ratio is preserved (consistency), tracer mass is conserved, linear
correlations are preserved, and tracer shape preservation is retained. The mixing ratio on the physics grid is
then

m(pg2)
k =

(mΔp)
(pg2)
k

Δp
(pg2)
k

, (9)

where Δp
(pg2)
k is given in (5).

Perhaps surprisingly a much more challenging problem is to map tracer increments (or state) from the
physics grid to the CSLAM grid while retaining important properties such as mass conservation, consistency,
and correlation preservation. Why this mapping problem is challenging is explained in detail in section 2.2.1
after having defined important properties for mapping physics increments/tendencies.

2.2. Mapping Tracer Increments From A(pg2) to A(pg3) (Physics to CSLAM Grid)
The increments from the parameterizations are computed on the physics grid. The tracer increment in
physics grid cell k is denoted 𝑓

(pg2)
k so that the updated mixing ratio on the physics grid is m(pg2)

k + 𝑓
(pg2)
k .

The problem is how to map 𝑓
(pg2)
k to the CSLAM control volumes, to obtain 𝑓

(pg3)
, satisfying the following

constraints:
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1. Local mass conservation: At a minimum total physics mass forcing on an element computed on the physics
grid should equal the element physics mass forcing on the CSLAM grid

𝑓
(pg2)
k Δp

(pg2)
k ΔA(pg2)

k =
nc2∑
𝓁=1

[
Δp

(pg3)
𝓁 𝑓

(pg3)
𝓁 ΔAk𝓁

]
, (10)

where Δp
(pg2)
k is the pressure level thickness in physics grid cell k and similarly for Δp

(pg3)
. We enforce

a more local constraint in which only mass increments overlapping with a particular CSLAM cell
contributes to the mass increment in that CSLAM cell.

2. Local shape preservation in mixing ratio: The increments mapped to the CSLAM grid and added to the
previous CSLAM state should not produce values smaller than the updated physics grid mixing ratios,
m(pg2)

k + 𝑓
(pg2)
k , or values smaller than the existing CSLAM mixing ratios that overlap with physics grid

cell A𝓁

m(pg3)
𝓁 + 𝑓

(pg3)
𝓁 ≥ m(min)

k = min
(

m(pg2)
k + 𝑓

(pg2)
k ,

{
mk𝓁|𝓁 = 1,nc2}) , (11)

where

mk𝓁 =
⟨m𝛿pk𝓁⟩⟨𝛿pk𝓁⟩ . (12)

The numerator and denominator in (12) are defined in (6) and (8), respectively. In particular, this means
that an increment, when mapped to the pg3 grid, should not drive the state negative (described in detail
below as the “negativity” problem).
A similar definition apply for maxima

m(pg3)
𝓁 + 𝑓

(pg3)
𝓁 ≤ m(max)

k = max
(

m(pg2)
k + 𝑓

(pg2)
k ,

{
mk𝓁|𝓁 = 1,nc2}) . (13)

3. Linear correlation preservation: The physics forcing must not disrupt linear tracer correlation between
species on the CSLAM grid (see, e.g., Lauritzen & Thuburn, 2012); that is, if two tracers are linearly
correlated and the physics increment preserves linear correlations on the physics grid, then the tracer
increment on the CSLAM grid must not disrupt linear correlations.

4. Consistency: A nonzero constant mixing ratio increment from physics, cnst, on the physics grid, 𝑓
(pg2)
k =

cnst∀k, must result in the same (constant) forcing on the CSLAM grid, 𝑓
(pg3)
𝓁 = 𝑓

(pg2)
k = cnst∀𝓁.

To motivate the algorithm that will simultaneously satisfy 1–4, it is informative to discuss how “standard”
mapping algorithms will violate one or more of the constraints.
2.2.1. Why “Conventional” Conservative Remapping Will Not Work
It is helpful to analyze in detail why conventional remapping cannot satisfy properties 1–4 above. Assume
that one remaps the mass increments in exactly the same way as the mapping of mixing ratio state from the
CSLAM grid to the physics grid described in section 2.1. That is, replace m with f and map from physics grid
to the CSLAM grid instead of the other way around. Denote the mapped mass increment 𝑓Δp

(pg3)
, and due to

the properties of the mapping algorithm the mass increment is conserved, linear correlation between mass
increments are conserved, and shape in mass increment is preserved. The problems arise when converting
from mass to mixing ratio.
2.2.1.1. Conserve Mass but Not Consistency
If ones uses the known pressure-level thickness on the CSLAM grid Δp

(pg3)
k to convert from mass increment

to mixing-ratio increment

m(pg3)
k =

̃
𝑓Δp

(pg3)

k

Δp
(pg3)
k

, (14)

a constant mixing ratio increment is not conserved. Basically, the constant increment mapped to the CSLAM
grid and converted to mixing ratio increment through (14) will, rather than being constant, reflect the spuri-
ous discrepancy between Δp

(pg3)
k and Δp

(pg3)
k , where Δp

(pg3)
k is the pressure-level thickness mapped from the

HERRINGTON ET AL. 1899



Journal of Advances in Modeling Earth Systems 10.1029/2019MS001684

Figure 3. Schematic illustration of the “negativity problem” in a single element. (a) Initial CSLAM tracer values, (b) mapped to pg2, (c) produces a tracer
increment on pg2, (d) with negative increments on the exchange grid overlying CSLAM cells in (a) that were initially 0 and (e) driving those mixing ratios
negative.

pg2 grid to the pg3 grid. That said, mass will be conserved since the dynamical core state has Δp
(pg3)
k (unless

the increment drives the mixing ratio negative—described in detail below).
2.2.1.2. Consistent but Not Mass-Conserving
Rather than converting to mixing ratio using Δp

(pg3)
k , a constant increment can be preserved by using

m(pg3)
k =

̃
𝑓Δp

(pg3)

k

̃Δp
(pg3)

k

, (15)

instead. But now mass conservation is lost since, again, Δp
(pg2)
k ≠ Δp

(pg2)
k . This issue is similar to the

mass-wind inconsistency found in specified dynamics applications (e.g., Jöckel et al., 2001; Lauritzen et al.,
2011).
2.2.1.3. The Negativity Problem and Linear Correlations
Even if one could derive a reversible map for mapping Δp

(pg2)
from the physics grid to the CSLAM grid,

there could still be problems if the increment drives the mixing ratios negative (or overshooting occurs) on
the CSLAM grid. This can easily happen for tracers, such as cloud liquid amount and cloud ice amount,
that are 0 in most of the domain and nonzero in localized areas/points (where there are clouds). We refer
to this as the “negativity problem.” This problem is depicted schematically in Figure 3. Consider a single
element of CSLAM control volumes, containing only a single cell with mixing ratio 1.0, and 0.0 everywhere
else (m(pg3)

𝓁 ; Figure 3a). The mixing ratios are mapped to the pg2 grid using, for simplicity, the piecewise
constant method where a constant value inside the pg2 cells is used during the integration over overlap cells
(m(pg2)

k ; Figure 3b). Now consider the case in which physics removes all the mass from the physics cell k:
𝑓
(pg2)
k = −m(pg2)

k (Figure 3c). The tracer increment is mapped from pg2 to pg3 using the piecewise constant
method. Some of the nonzero increments are now in overlap areas where the original CSLAM grid cells have
mixing ratio 0 (𝑓 k𝓁 ; Figure 3d), and hence, the state is driven negative when adding the overlap increment
to the CSLAM state (Figure 3e). This is referred to as the negativity problem although it can also happen for
maxima.

The negativity issue could be avoided if one remaps the physics updated state instead of mapping incre-
ments/tendencies. In that case a shape-preserving filter will make sure that the state on the CSLAM grid
is not negative (and does not overshoot). That said, if physics does not change the state and it is mapped
back to the CSLAM grid then spurious tendencies (proportional to the errors introduced by mapping state
from the CSLAM grid to the physics grid and back again) are introduced. Hence, it is advantageous to map
increments/tendencies since any reasonable algorithm will preserve a zero function.

As illustrated above a standard remapping method will not simultaneously satisfy 1–4, and hence, a new
algorithm has been derived.

2.3. New Tendency Mapping Algorithm
The problem is how to map the mass increment on the physics grid, 𝑓

(pg2)
ΔA(pg2), to the CSLAM cells that

overlap with𝛥A(pg2). To maintain shape preservation and linear correlations and to avoid the negativity prob-
lem locally, it is advantageous to define a mass excess function on the exchange grid Δm(excess)

k𝓁 . It is basically
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the maximum amount of mixing ratio that can be removed (in the case 𝑓
(pg2)

< 0) without producing new
minima in the exchange grid mixing ratio mk𝓁

Δm(excess)
k𝓁 = mk𝓁 − m(min)

k , (16)

where mk𝓁 is defined in (12). So the maximum amount of mass that we can be removed from the exchange
grid cells that span physics grid cell Ak without violating the shape-preservation constraint ((11) and (13)) is∑

𝓁

Δm(excess)
k𝓁 Δpk𝓁𝛿Ak𝓁 . (17)

If physics is designed not to remove more mass than available in Ak (which should be the case for a carefully
designed physics package), then it is guaranteed that∑

𝓁

Δm(excess)
k𝓁 Δpk𝓁𝛿Ak𝓁 ≥ 𝑓

(pg2)
ΔpkΔA(pg2). (18)

We distribute the physics mass forcing (assuming 𝑓
(pg2)

< 0) according to the mass excess in each overlap
area by solving this equation for 𝛾k

ΔA(pg2)
k Δp

(pg2)
k 𝑓

(pg2)
= 𝛾k

∑
𝓁

[
Δm(excess)

k𝓁 Δpk𝓁𝛿Ak𝓁

]
, (19)

and add mass increment (which in this case is negative)

𝛾kΔm(excess)
k𝓁 Δpk𝓁𝛿Ak𝓁 , (20)

to the 𝓁th CSLAM cell state m(pg3)Δp
(pg3)
𝓁 ΔA(pg3)

𝓁 . This process is repeated for all physics cells. Note that this
problem is well posed, that is, 𝛾k > 0, since physics will not remove more mass than is locally available (18).
The way in which the mass forcing is distributed to the CSLAM cells using the excess function insures that
the negativity problem is avoided. Mass is conserved by design, and shape preservation is obtained by using
the excess function.

If the physics increment is positive (assuming 𝑓
(pg2)

> 0), we define a “lack” function

Δm(lack)
k𝓁 = mk𝓁 − m(max)

, (21)

and solve

Δp
(pg2)
k 𝑓

(pg2)
ΔA(pg2)

k = 𝛾k

∑
𝓁

[
Δm(lack)

k𝓁 Δpk𝓁𝛿Ak𝓁

]
, (22)

for 𝛾k and follow the same procedure as for mass excess. Since positive and negative forcing is treated in
exactly the same way, linear correlations are preserved. Note how the definition of the excess/lack function
insures linear correlation preservation; for example, if one would prevent negative values and not do any-
thing about overshoots, then linear correlations would not be preserved since the minima and maxima are
not treated in the same way.

While the above algorithm satisfies properties 1–4 in section 2.2, it is not a high-order algorithm in terms of
formal accuracy. This is illustrated in Figure 4 where a smooth analytical tendency (approximate spherical
harmonic of order 32 and azimuthal wave number 16; Jones, 1999)

𝑓 (pg2) = 1
2
+ 1

2
cos(16𝜆) sin (2𝜃)16, (23)

where (𝜆, 𝜃) is latitude-longitude and is mapped from pg2 to pg3 grid using this algorithm assuming m(pg3)
𝓁 =

0, ∀𝓁. The errors in the mapping are not always aligned with large gradients in the analytical function
as would be expected for a “traditional” interpolation algorithm. The errors are maximum on the order of
60%. To reduce errors, we therefore perform a higher-order pre-allocation of tendencies that is not mass
conserving but satisfies properties 2, 3, and 4 in section 2.2.
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Figure 4. (a) Smooth analytical function (approximate spherical harmonic of order 32 and azimuthal wave number 16 referred to as Y 16
32 ; Jones, 1999) plotted

using raster contours on the pg2 grid. Remaining plots show errors (mapped field minus analytical function evaluated at centers of grid cells). (c and d) A Y 16
32

tracer tendency is mapped from pg2 to pg3 grid using the default mapping algorithm without high-order pre-allocation algorithm (c) and the default algorithm
that uses high-order pre-allocation (d). The Figure shows that the high-order pre-allocation algorithm used to map tendencies from the pg2 to pg3 grid
drastically reduces mapping errors for a smooth function (compare plots (c) and (d)). (b) For comparison the errors for the high-order CSLAM algorithm used
to map state from pg3 to pg2 are shown. The errors for mapping the state from the CSLAM grid to the physics grid are similar in magnitude compared with the
errors arising from mapping tendencies from the physics grid to the CSLAM grid.

2.4. High-Order (Nonconservative) Pre-Allocation of Tracer Tendencies
A high-order tracer mass increment in overlap area Ak𝓁 can be computed using the following formula

⟨𝑓𝛿p⟩k𝓁 = ∫Ak𝓁

[
Δp

(pg3)
𝓁

∑
i+𝑗≤2

 (i𝑗)
k xi𝑦𝑗 + 𝑓

(pg2)
k

∑
i+𝑗≤2

̃ (i𝑗)
𝓁 xi𝑦𝑗

]
dA, (24)

where  (i𝑗)
k is the forcing increment reconstruction coefficients in the kth physics grid cell and 𝑓

(pg2)
k is the

average physics increment in the kth physics grid cell. Note that we are using the known dry pressure recon-
struction coefficients on the pg3 grid instead of reconstructing subgrid-scale pressure variations from the
physics grid cell-averaged values. We can do that since the dry pressure is not modified by physics. This
highlights the importance of a dry-pressure formulation of the dynamical core when separating physics and
dynamics grids (Lauritzen et al., 2018). If the physics forcing is constant, then ⟨𝑓𝛿p⟩k𝓁 exactly equals ⟨𝛿p⟩k𝓁
from (6); in other words, the mapping is designed to be reversible in dry pressure. The physics increment in
terms of mixing ratio change is given by

𝑓 k𝓁 =
⟨𝑓𝛿p⟩k𝓁⟨𝛿p⟩k𝓁

, (25)

where the denominator is given by (6).

Shape preservation, as defined by (11) and (13), is enforced by eliminating undershoots and overshoots on
the exchange grid by modifying the forcing increment 𝑓 k𝓁 so that shape preservation is not violated in the
overlap areas (In the computation of mk𝓁 there can be small overshoots and undershoots [due to numerical
integration errors] compared to the CSLAM cell average values m(pg3)

𝓁 that it overlaps with so we set

m(min)
k = min

(
m(min)

k ,
{

m(pg)
𝓁 |𝓁 = 1,nc2

})
(26)

)

m(min)
k ≤ mk𝓁 +

̃
𝑓 k𝓁 ≤ m(max)

k . (27)
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Figure 5. This figure is similar to Figure 4 but for a rough distribution (slotted cylinders). (a) The slotted cylinder distributions on the pg2 grid plotted using
raster contours. The slotted cylinders after being mapped to the pg2 grid using the default algorithm without (b) and with (c) the high-order pre-allocation
algorithm. These plots show that the mapping algorithms used to map from pg2 to the pg3 grid are shape preserving; that is, no new extrema are created in the
mapping process, and they preserve a constant (the background nonzero field remains constant).

While this algorithm preserves linear correlations and shape and is consistent, is it not mass conservative.
Hence, the remaining physics increment not allocated in the algorithm above is allocated using the new
tendency algorithm described in section 2.3.

Combining the high-order pre-allocation algorithm with the new tendency algorithm (which in this case
can also be considered as a mass-fixer that does not disrupt correlation-preservation, shape, and consis-
tency) leads to an order-of-magnitude reduction in mapping errors for a smooth function (see Figure 4)
while fulfilling the mass conservation, shape preservation, linear correlation, and consistency constraint.
Mass and linear correlation preservation is illustrated in the baroclinic wave test with terminator chem-
istry test in section 3.1. Shape preservation and consistency is demonstrated in an idealized mapping test
where a smooth function—see (23)—and a slotted-cylinder (see equation 12 in Lauritzen et al., 2012) are
mapped to/from the pg2 and pg3 grids (Figures 4 and 5). Since the background value in the mapping of the
slotted-cylinder field is preserved, the mapping algorithm is consistent. Since no new overshoots and under-
shoots are produced (particularly obvious in the mapping of the slotted cylinders) the mapping is shape
preserving. We also note that the mapping errors with the default algorithm (higher-order pre-allocation
with new tendency algorithm) are similar to the errors in mapping the same field from pg3 to pg2 using
traditional remapping with CSLAM technology (Figure 4).

2.5. Model Configurations
All simulations in this study are run on the Cheyenne supercomputer hosted at the NCAR-Wyoming Super-
computer Center (Computational and Information Systems Laboratory, 2017). Three model component
sets (compsets) in the Community Earth System Model, version 2.1 (CESM2.1; https://doi.org/10.5065/
D67H1H0V) are chosen to carry out the objectives discussed in section 1. The least complex compset is a
moist baroclinic wave test using a simple, Kessler microphysics scheme (FKESSLER compset; Lauritzen et
al., 2018). The baroclinic wave setup is primarily used to evaluate the new mapping algorithms and their abil-
ity to preserve linear correlations between two reactive tracers. The role of topography is investigated using a
dry Held-Suarez configuration (FHS94 compset; Held & Suarez, 1994) modified to include real world topog-
raphy. H18 indicate that this configuration tends to have more grid noise over steep terrain than in a more
complex configuration using CAM version 6 physics [CAM6; https://ncar.github.io/CAM/doc/build/html/
users_guide/index.html] and is therefore a conservative choice for evaluating any change in grid imprinting
between pg3 and pg2.

To understand whether the resolved scales of motion are influenced by a coarser-resolution physics grid,
a suite of aquaplanet simulations (Medeiros et al., 2016; Neale & Hoskins, 2000) are carried out over a
range of spectral-element grid resolutions, using CAM6 physics (QPC6 compset). The aquaplanet is an
ocean-covered planet in perpetual equinox, with fixed, zonally symmetric sea surface temperatures ideal-
ized after present-day Earth (QOBS in Neale & Hoskins, 2000). While the dynamics time step, 𝛥tdyn, varies
with resolution according to a Courant-Friedrichs-Lewy (CFL) criterion, there is no established standard
for how the physics time step, 𝛥tphys, should vary across resolutions. This is further complicated by several
studies indicating a high sensitivity of solutions to 𝛥tphys in CAM (Herrington & Reed, 2018; Wan et al., 2015;
Williamson, 2013; Williamson & Olson, 2003).

Here, a scaling for 𝛥tphys across resolutions is proposed, based on results of the moist bubble test (Herrington
& Reed, 2018) using CAM-SE-CSLAM and detailed in Appendix A. The basis for the scaling is to alleviate
truncation errors that arise in the moist bubble test when 𝛥tphys is too large. The scaling is linear in grid
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spacing,

Δtphys = Δtphys,0 ×
Ne,0

Ne
s, (28)

where 𝛥tphys,0 is taken to be the standard 1,800 s used in CAM-SE-CSLAM at low resolution, Ne,0 = 30
(equivalent to a dynamics grid spacing of 111.2 km). Ne refers to the horizontal resolution of the grid; each of
the six panels of the cubed sphere are divided into Ne×Ne elements. Throughout the paper, spectral-element
grid resolutions are denoted by an ne followed by the quantity Ne, for example, ne30.

CAM-SE-CSLAM uses a hybrid-𝜎 pressure coordinate in the vertical. The QPC6 (FKESLLER, FHS94)
compset uses 32 (30) unequally spaced layers disproportionally clustered within the boundary layer and
near the tropopause. The same vertical grid is used in all model configurations in this study. The dynamics
uses a vertically Lagrangian approach (Lin, 2004), in which the horizontal dynamics evolve within float-
ing Lagrangian layers that are periodically mapped back to a fixed eulerian reference vertical coordinate
(subcycled twice within in each 𝛥tdyn).

The only other parameter varied across resolutions modulates the strength of explicit numerical dissipa-
tion. The spectral element method is not implicitly diffusive, so fourth-order hyperviscosity operators are
applied to the state to suppress numerical artifacts. The scaling of the hyperviscosity coefficients, 𝜈, across
resolutions is defined as

𝜈T = 𝜈vor = 0.30 ×
(

30
Ne

1.1 × 105
)3 m4

s
, (29)

𝜈p = 𝜈div = 0.751 ×
(

30
Ne

1.1 × 105
)3 m4

s
, (30)

where subscripts T, vor, p, and div refer to state variables the operators are applied to, temperature, vortic-
ity, pressure, and divergence, respectively. The exponent in equation (30) reduces the coefficient by about
(This is approximate. To reduce the coefficients by exactly an order of magnitude for each doubling of the
resolution, the exponent should be ln 2

ln 10
≈ 3.01029, which it has been updated to in the most recent version

of CESM2.1) an order of magnitude for each doubling of the resolution (as in Lauritzen et al., 2018). No
explicit dissipation of tracers (e.g., water vapor) is required since the semi-Lagrangian numerics in CSLAM
are adequately diffusive.

3. Results
3.1. Mass Conservation and Linear-Correlation Preservation
To illustrate how different the solutions look using the coarser-resolution physics grid, Figure 6 shows a
snapshot of the cloud liquid field of the moist baroclinic wave test on day 10, in the ne30pg3 and ne30pg2
configurations. The cloud liquid fields show in detail clouds forming at wave fronts. As expected, the pg2
grid looks slightly coarser than pg3 due to its larger control volumes. Despite this, the details of the wave
patterns look reasonably similar to one another.

The model's ability to preserve linear correlations is assessed using the idealized Terminator “Toy” Chem-
istry test (Lauritzen, Conley, et al., 2015; Lauritzen et al., 2017). The tests consists of two reactive species
undergoing photolysis as they are advected over the terminator line. The flow field is provided by the moist
baroclinic waves test. The model is initialized with species such that their weighted sum Cly is a constant,
that is, Cly = Cl + 2Cl2 = 4 × 10−6 kg/kg. If linear correlations are preserved, then the column integrated
weighted sum of the species, ⟨CLy⟩, is constant.

H18 had shown that in the ne30pg3 configuration, ⟨CLy⟩ on day 15 of the terminator test is everywhere
4 × 10−6 kg/kg, to within machine precision. While the pg3 to pg2 mapping algorithm in theory preserves
linear correlations to machine precision, we found larger than round-off errors in pg2, likely due to if logic
with machine dependent thresholds in the implementation of the algorithm. Figure 7 shows ⟨CLy⟩ on day
15 in the ne30pg2 configuration, which has a minimum value of 3.99896 × 10−6 kg/kg, corresponding to
a maximum relative error of 0.026% (The maximum relative error in a pg2 simulation using a different
compiler is 0.016%). For comparison, another terminator test is performed with the equivalent dynamics
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Figure 6. Snapshot of the cloud liquid field in kilograms per kilogram near the 700-hPa level, on day 10 of the moist
baroclinic wave test in the ne30pg3 and ne30pg2 configurations, displayed on the upper and lower panels, respectively.
The fields are shown as a raster plot on their respective physics grids.

grid resolution using CAM-SE (ne30np4), in which tracers are advected using the spectral element method.
The maximum relative error in this configuration is 31.6%, 3 orders of magnitude greater error than the
ne30pg2 configuration.

Tracer mass conservation is analyzed in a pair of ne30pg2 and ne30pg3 aquaplanet simulations, following
the method of Lauritzen and Williamson (2019). Energy and mass conservation due to a particular model
process is assessed by model state I/O before and after each subprocess in the model. The loss of water vapor
mass due to the mapping algorithms in the ne30pg2 configuration is estimated as 1.184E−16 Pa per time
step, computed as the difference between the column-integrated, global mean climatological water vapor
pressure increment on the physics grid and on the tracer grid. This small error is effectively 0 to within
machine precision and similar to an equivalent calculation in the ne30pg3 simulation of 2.171E−17 Pa per
time step, which contains no mapping errors since the physics and tracer grids coincide. Negligible mapping
error in the ne30pg2 configuration is primarily a result of solving equations (19) and (22) for 𝛾k to circumvent
the negativity problem. Rerunning the ne30pg2 aquaplanet simulation without this mass fixer, for example,
through setting 𝛾k = 1 and Δm(excess)

k𝓁 = mk𝓁 in the mass increment (20), results in a spurious loss of water
vapor mass of 2.424E−07 Pa per time step; the mass fixer is necessary for conserving tracer mass in ne30pg2.

3.2. Grid Imprinting
Flow over topography can result in significant grid imprinting using the spectral element method (Lauritzen,
Bacmeister, et al., 2015, H18). Figure 8 shows the results of the Held-Suarez with topography simulations.
The middle panel is the vertical pressure velocity, 𝜔, averaged over 2 years, over the Andes and Himalayan
region at two different levels in the midtroposphere, using the ne30pg3 grid. The fields are displayed as
a raster plot on the physics grid, so that individual extrema, which characterize the flow over the Andes
between about 10◦ and 20◦S, may be identified as spurious. Near the foot of the Himalayas, between about
20◦ and 30◦N, there are parallel stripes of extrema aligned with the mountain front that appear to be spurious
2𝛥x oscillations.

As discussed in H18, grid imprinting over mountainous terrain tends to occur in regions of weak gravita-
tional stability, causing extrema to extend through the full depth of the troposphere as resolved updrafts
and downdrafts. Thus, grid imprinting over mountains may be alleviated through increasing the divergence
damping in the model. Figure 8 (right panel) repeats the ne30pg3 simulation through increasing 𝜈div by
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Figure 7. ⟨CLy⟩ in kilograms per kilogram on day 15 of the moist baroclinic wave test in the ne30np4 and ne30pg2
configurations, displayed on the upper and lower panels, respectively. The lower panel has a single contour level of
3.999E−6 kg/kg corresponding to a relative error of 0.025%.

an order of magnitude. The spurious noise over the Andes and the Himalayas are damped, and grid point
extrema tend to diffuse into neighboring grid cells. The wavenumber-power spectrum of the kinetic energy
due to divergent flow (Figure 9) confirms that divergent modes are damped at higher wavenumbers (greater
than 30), by about an order of magnitude relative to the default ne30pg3 simulation.

The 𝜔 field of the ne30pg2 simulation is provided in Figure 8 (left panel). Grid cell extrema over the Andes
is less prevalent than in the ne30pg3 simulation, as seen by the reduction in large-magnitude 𝜔 (e.g., red
grid cells). The spurious oscillations at the foot of the Himalayas appear to have been entirely eliminated.
This improvement in grid imprinting is due to the consistent smoothness properties of the control volumes
in the pg2 grid compared with the pg3 grid discussed in section 1, and these results are consistent with
our hypothesis. The divergent modes are marginally damped relative to ne30pg3 for wavenumbers greater
than about 50 but are an order of magnitude larger than in the enhanced divergence damping ne30pg3 run
(Figure 9). From a scientific and model development perspective, the pg2 configuration is preferable to the
pg3 configuration, since it eliminates grid imprinting without placing any additional constraints on 𝜈div.

3.3. Impact on Resolved Scales of Motion
Tropical regions are very sensitive to horizontal resolution, primarily due to the scale dependence of resolved
updrafts and downdrafts at hydrostatic scales (Herrington & Reed, 2017; 2018; Jeevanjee, 2017; Pauluis &
Garner, 2006; Weisman et al., 1997). The vertical velocity of updrafts and downdrafts is related to the hor-
izontal length scales of buoyancy the model is able to support. This can be demonstrated through a scale
analysis of the Poisson equation (Jeevanjee & Romps, 2016) valid for hydrostatic scales, showing that the
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Figure 8. Mean 𝜔 at two model levels in the middle troposphere, in a Held-Suarez configuration outfitted with real world topography. (left column) ne30pg2
(middle column) ne30pg3 and (right column) ne30pg3 with the divergence damping coefficient, 𝜈div, increased by an order of magnitude. The 𝜔 fields are
computed from a 2-year simulation. The data are presented on a raster plot in order to identify individual grid cells

ratio of the scale of 𝜔 at two resolutions, due to their respective buoyancies, is

𝜔Δx1

𝜔Δx2

=
DΔx2

DΔx1

, (31)

where D𝛥x is a characteristic horizontal buoyancy length scale for grid-spacing𝛥x (hereafter referred to as the
forcing scale), and it is presumed that the magnitude of the buoyancy and the vertical scale of the buoyancy
is unchanged or compensating across the two resolutions. Equation (31) indicates that the magnitude of
the vertical velocity scales like the inverse of the forcing scale, which was verified in a simple moist bubble
configuration using CAM-SE and the CAM finite-volume dynamical core (Herrington & Reed, 2018), as well
as using CAM-SE-CSLAM as configured in the present study (Appendix A).

In aquaplanet simulations using CAM-SE, the forcing scale is grid limited, varying with resolution in the
range of 5 to 10 times the grid spacing (Herrington & Reed, 2018). Through setting the forcing scale propor-
tional to 𝛥x, equation (31) quantifies the sensitivity of updrafts and downdrafts to horizontal resolution. The
forcing scale is analogous to an effective resolution, which is the characteristic length scale below which
features are overly damped by numerical dissipation and largely absent from the solution. The effective res-
olution may be inferred from kinetic energy spectra as the wavenumber where the slope of the spectrum
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Figure 9. Kinetic energy power spectrum arising from divergent modes in ne30pg3, ne30pg2, and ne30pg3 with the
divergence damping coefficient, 𝜈div, increased by an order of magnitude, in the Held-Suarez with topography
simulations. Spectra computed from 5 months of 6-hourly winds.

becomes steeper than the observationally determined slope (Skamarock, 2011). In the CESM2 release of
CAM-SE, this criterion occurs near wavenumber 60 (see Figure 6 in Lauritzen et al., 2018), a length scale of
about 6 times the grid spacing and overlapping with the estimated forcing scale.

When the physics and dynamics grids are of different resolutions, which grid determines the models char-
acteristic forcing scale? The remainder of this section will show that the dynamics grid spacing largely
determines the forcing scale in the pg2 physics grid configuration. The dynamical core's control over the
forcing scale is illustrated at low resolution (section 3.3.1), high resolution (section 3.3.2), and across a range
of resolutions typical of present day climate models (section 3.3.3).

3.3.1. Low Resolution
The question posed above may be addressed through comparing ne30pg2, where 𝛥xphys = 166.8 km (here-
after 𝛥x is expressed as the average equatorial grid spacing), 3

2
times larger than the dynamics grid spacing,

𝛥xdyn = 111.2 km, to a simulation where both are equal to the physics grid spacing, 𝛥xdyn = 𝛥xphys = 166.8
km (ne20pg3), and another simulation where both are equal to the dynamics grid spacing, 𝛥xdyn = 𝛥xphys =
111.2 km (ne30pg3). The resolvable scales in the ne30pg2 solution are expected to be bounded by the ne20pg3
and ne30pg3 solutions. Although according to equation (28), 𝛥tphys for ne20 grids should be different from
ne30 grids, here it is set to the ne30 value (see Table 1), in order to reduce the differences between the
three configurations, and justified because lower-resolution runs are not very sensitive to this range of 𝛥tphys
(Figure A2).

Table 1
𝛥x and 𝛥t for the Physics and Dynamics in the Low-Resolution Simulations

Grid name 𝛥xdyn 𝛥tdyn 𝛥xphys 𝛥tphys

ne20pg3 166.8 km 300 s 166.8 km 1,800 s
ne30pg2 111.2 km 300 s 166.8 km 1,800 s
ne30pg3 111.2 km 300 s 111.2 km 1,800 s

Note. 𝛥x is computed as the average equatorial grid spacing.
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Figure 10. Snapshots in the longitude-pressure plane of 𝜔(gll) through the ITCZ region in the ne20pg3, ne30pg2, and
ne30pg3 configurations, in the upper, middle and lower panels, respectively. Black is the ±15-K/day contour of the
physics tendencies, and the white contour is the 0.0075-kg·m−2·s−1 contour of the parameterized deep convective mass
fluxes.

Figure 10 is a snapshot of the 𝜔 field in the Intertropical Convergence Zone (ITCZ) in the pressure-longitude
plane, in the three simulations. The𝜔 field is overlaid with the±15 K/day contour of the physics temperature
tendencies (black), which are primarily due to stratiform cloud formation. Since the component of 𝜔 due to
buoyancy is determined by the physics temperature tendencies mapped to the GLL grid, the tendencies and
𝜔 are shown on the GLL grid, 𝑓 (gll)

T , and 𝜔(gll), respectively. The white contour is intended to outline regions
where the deep convection scheme is fairly active, set to the 0.0075 kg·m−2·s−1 value of the convective mass
fluxes (note the convective mass fluxes have not been mapped to the GLL grid and are instead shown on
the pg grid). The figure indicates that large regions of the ITCZ are composed of upward 𝜔 that balance the
warming due to compensating subsidence produced by the deep convection scheme. Much larger magnitude
𝜔 are composed of resolved updrafts driven by the buoyancy of stratiform clouds and resolved downdrafts
due to evaporation of condensates produced by overlying clouds (Herrington & Reed, 2018). These large
buoyancy stratiform clouds tend to form in the middle-to-upper troposphere due to detrainment of moisture
from the deep convection scheme (Zhang & McFarlane, 1995).

It is not obvious from the snapshots in Figure 10 whether the length scales of the stratiform clouds, that is,
the models characteristic forcing scale, are any different across the three simulations. Analogous to deter-
mining the effective resolution (Skamarock, 2011), the forcing scale may be inferred from the wave-number
power spectrum of 𝑓 (gll)

T as the maximum wavenumber prior to the steep, unphysical decline in power that
characterizes the near-grid scale (hereafter 𝑓 (gll)

T is referred to as the forcing). The wave-number power spec-
trum of the forcing in the middle-to-upper troposphere is shown in Figure 11a. Unlike kinetic energy spectra,
the decline in power near the models effective resolution is more gradual, making it difficult to determine
a characteristic forcing scale from the spectra. However, it is clear that the slope of the ne20pg3 spectrum
begins to steepen at smaller wavenumbers than in the ne30pg3 spectra. Additionally, the ne30pg2 spectra
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Figure 11. (a) Wavenumber-power spectrum of the temperature tendencies from the moist physics, near the 369-hPa level, (b) probability density distribution,
and (c) the scaled probability density distribution of upward 𝜔 everywhere in the model. The scaled distributions are scaled to ne30pg3 using 𝛥xphys.

is remarkably similar to the ne30pg3 spectra, for all wavenumbers. These spectra indicate that the charac-
teristic forcing scale in the ne30pg2 and ne30pg3 simulations are similar and that both are smaller than the
ne20pg3 forcing scale. From equation (31), it is expected that the magnitude of the vertical motion is greater
in both the ne30pg2 and ne30pg3 simulations.

The probability density function (PDF) of upward 𝜔(gll) everywhere in the simulations is shown in
Figure 11b. Large-magnitude 𝜔(gll) are more frequent in the ne30pg2 run, compared to ne20pg3, and the PDF
is actually more similar to the ne30pg3 distribution, consistent with their similar forcing scales. This may be
further illustrated through scaling the PDFs,

Ps(𝜔) = 𝛼 × P(𝜔∕𝛼), (32)

where Ps(𝜔) is the scaled PDF of 𝜔 and 𝛼 is the ratio of 𝜔 to 𝜔target, the 𝜔 associated with the target grid
resolution, 𝛥xtarget. Making the assumption that the forcing scale is linear in 𝛥x, then from equation (31),
𝛼 = 𝛥xtarget∕𝛥x. The target resolution is taken here to be equal to the ne30pg3 grid resolution.

If the forcing scale of ne30pg2 is in fact determined by 𝛥xphys, then one sets 𝛥x = 𝛥xphys in 𝛼. This scaled PDF,
however, severely overestimates the frequency of upward 𝜔 of the target resolution, ne30pg3 (Figure 11c).
It is clear from the similarity of the unscaled PDFs of ne30pg2 and ne30pg3 (Figure 11b), and their forcing
spectra (Figure 11a), that the characteristic forcing scale in these two configurations are approximately the
same. It follows that the forcing scales in ne30pg2 and ne30pg3 are determined by their common grid, 𝛥xdyn,
rather than 𝛥xphys, which are different. And one can be reasonably confident in the linear framework used
to approximate 𝛼—the scaled ne20pg3 PDF fits the ne30pg3 distribution quite well. It then follows that the
forcing scale of ne20 simulations is about 3

2
times that of ne30 simulations, the ratio of their grid spacings.

There are two reasons the pg2 forcing scale is determined by the GLL grid. The first is that the hyper-
viscosity coefficients are a function of the GLL grid resolution (equation (30)), and the second is that the
physics tendencies are mapped to the pg3 and GLL grids using high-order mapping, which reconstructs
scales the pg2 grid is unable to support (see Appendix B). The impact of only using low-order mapping or
only using ne20 viscosity in a ne30pg2 simulation results in a forcing spectra that lies in between the default
ne30pg2 and ne20pg3 runs (not shown). The combined effect of both factors on the forcing scale is illustrated
through an ne30pg2 simulation that uses low-order mapping, and with hyperviscosity coefficients set to ne20

Table 2
𝛥x and 𝛥t for The Physics and Dynamics in the High-Resolution Simulations

Grid name 𝛥xdyn 𝛥tdyn 𝛥xphys 𝛥tphys

ne80pg3 41.7 km 112.5 s 41.7 km 675 s
ne120pg2 27.8 km 75 s 41.7 km 450 s
ne120pg3 27.8 km 75 s 27.8 km 450 s

Note. 𝛥x is computed as the average equatorial grid spacing.
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Figure 12. As in Figure 11, but for the high-resolution simulations. Asterisks indicate that 𝛥tphys = 675 s, which is larger than that used for the default ne120
runs (see Table 2).

values (ne30pg2-ne20visc-loworder in Figure 11). The PDF of 𝜔(gll) and the forcing spectrum more closely
resemble the ne20pg3 run. In the ne30pg2-ne20visc-loworder configuration, the forcing scale is more accu-
rately determined by 𝛥xphys since the scaled PDF is in fairly good agreement with the ne30pg3 simulation
(Figure 11c).
3.3.2. High Resolution
The experiment described in the previous section is repeated here for a ne120pg2 aquaplanet simulation,
corresponding to an approximate grid spacing of 𝛥xdyn = 27.8 km and 𝛥xphys = 41.7 km. ne80pg3 refers
to the grid in which the physics and dynamics are the same resolution as the physics of the ne120pg2 grid,
and ne120pg3 the grid in which the physics and dynamics are equal to the resolution of the dynamics of
ne120pg2. At these higher resolutions, the solutions are sensitive to 𝛥tphys (Figure A2), and so the ne80 grid
uses a larger time step than that of the ne120 grids (Table 2), following equation (28).

Figure 12 is the same as Figure 11 but for the high-resolution simulations. While the ne80pg3 forcing spec-
tra begins to drop off near wavenumber 100, the ne120pg2 and ne120pg3 drop off closer to wavenumber 200,
and their spectra lie on top of one another (Figure 12a). The PDFs of (upward) 𝜔(gll) show that the ne120 dis-
tributions lie on top of one another, and while not a perfect match, both ne120 runs have substantially more
frequent large-magnitude vertical motion than in the ne80pg3 run (Figure 12b). As in the low-resolution
runs, the similarity of the ne120 forcing spectra and 𝜔(gll) distributions indicate that the forcing scale of the
ne120pg2 run is not determined by the physics grid spacing but rather the dynamics grid spacing. This is
also evident from the overprediction of the frequency of large-magnitude 𝜔(gll) compared with the ne120pg3
run, through scaling the ne120pg2 PDF and setting the forcing scale proportional to 𝛥xphys in equation (32)
(Figure 12c).

In the ne120pg2 simulation, the dynamics grid determines the forcing scale for the same two reasons found
in the low-resolution runs. The high-order mapping of the physics to the dynamics is important for recon-
structing scales not supported on the pg2 grid, and scaling the viscosity coefficients by the dynamics grid
spacing is also important. But in order to recreate the ne80pg3 solution using the ne120pg2 grid, the physics
time steps must be the same for these two grids. Combining all three modifications leads to an ne120pg2
solution that resembles the ne80pg3 run (ne120pg2-ne80visc-loworder ∗ in Figure 12). The forcing spectrum
and distribution of 𝜔(gll) match that of the ne80pg3 run, and scaling the PDF by 𝛥xphys closely resembles the
ne120pg3 distribution.

Table 3
𝛥x and 𝛥t for the Physics and Dynamics in the Intermediate Resolution Simulations

Grid name 𝛥xdyn 𝛥tdyn 𝛥xphys 𝛥tphys

ne40pg3 83.4 km 222.5 s 83.4 km 1,350 s
ne60pg2 55.6 km 150 s 83.4 km 900 s
ne60pg3 55.6 km 150 s 55.6 km 900 s

Note. 𝛥x is computed as the average equatorial grid spacing.
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Figure 13. Global mean, time-mean (a) upward 𝜔, (b) Cloud Layers Unified by Binormals precipitation rate, and (c)
parameterized deep convective precipitation rate. All means computed from the final 11 months of 1-year simulations,
and upward 𝜔 is computed using 6-hourly output.

3.3.3. Across Resolutions
Three intermediate resolution aquaplanets are run to provide a continuous representation of the solution
spanning from low to high resolution (Table 3). Figure 13 are scatter plots of the climatological global mean
state versus 𝛥xdyn for all model configurations listed in Tables 1–3. The fields plotted in the figure, upward𝜔,
and the two components of precipitation, stratiform precipitation rate (Cloud Layers Unified by Binormals;
CLUBB) and deep convective precipitation rate (ZM), are all sensitive to resolution. Upward 𝜔 and CLUBB
precipitation decreases, and ZM precipitation increases monotonically with 𝛥xdyn. The pg2 solutions have
very similar values to the pg3 solutions, although they are slightly offset toward the lower-resolution side of
the plots. The differences between the pg2 and pg3 solutions are much less than the differences between pg2
and configurations where the physics and dynamics grids are both equal to the pg2 physics grid resolution
(e.g., ne40pg3 compared with ne60pg2). The mean state of the configurations resembles that of the transients
discussed in the previous sections; the coarser pg2 physics grid does not appear to degrade the resolved scales
of motion, which are primarily determined by the dynamics grid resolution.

4. Conclusions
This study documents the implementation of a coarser-resolution physics grid into the CAM, with spectral
element dynamics (based on a dry-mass vertical coordinate) and conservative semi-Lagrangian advection of
tracers (CAM-SE-CSLAM). The spectral-element and tracer advection grids are mapped to a finite-volume
physics grid after Herrington et al. (2018) but containing 2

3
fewer degrees of freedom in each horizontal direc-

tion. Mapping from the coarser physics grid to the dynamics and tracer grids is performed with high-order
reconstructions, and a tendency mapping algorithm is developed to ensure shape preservation, consistency,
linear-correlation preservation, and mass conservation. These numerical properties are verified to a high
degree of precision through idealized tests.

The coarser-resolution physics grid is designed to remove grid imprinting that manifests for nonsmooth
problems using element-based high-order Galerkin methods. The lower-resolution physics grid provides a
volume mean state to the physics that is computed from an equal sampling of the different types of nodal
solutions arising from the spectral-element method, and it was hypothesized that this method eliminates
grid imprinting from the element boundaries. Using a Held-Suarez configuration modified with real-world
topography, it was shown that element boundary noise over steep topography is nearly, if not entirely,
eliminated from the coarser physics grid solution, consistent with our hypothesis.

Physical parameterizations make up a significant fraction of the total computational cost of atmosphere
models, and the coarser physics grid may be used to reduce this overhead. The cost savings is due to the
factor 5

9
fewer grid columns in which the physics need be computed, cutting the physics costs by at least

half. In CESM2.0, the CAM6 physics makes up about half the cost of the overall model (Lauritzen et al.,
2018), and so the total cost savings is potentially large, but note that additional mappings between the tracer
advection and physics grids increase the cost of the dynamical core. The authors sought to understand
whether the reduction in computational cost occurs at the expense of a degraded solution, through aliasing
the dynamics to the coarser-resolution physics. An exhaustive number of grids were developed and run in

HERRINGTON ET AL. 1912



Journal of Advances in Modeling Earth Systems 10.1029/2019MS001684

Figure A1. Minimum 𝜔 from a series of 1-day long moist bubble simulations in which the dynamics grid spacing (top
x axis) and bubble radius (bottom x axis) are varied by the same factor. The circles are for experiments where 𝛥tphys
varies according to equation (28), and the crosses for simulations where 𝛥tphys is fixed at 1,800 s. The gray lines are the
analytically predicted 𝜔, after equation (31) scaled to the lowest-resolution solutions. The magnitude of 𝜔 in the pg3
solutions are systematically larger than the pg2 solutions, which is primarily a result of the damping effect of
integrating the basis functions over a larger control volume.

an aquaplanet configuration and confirm that the resolved scales of motion are not degraded through the
use of a coarser-resolution physics grid. It was found that the resolved scales are primarily determined by
the effective resolution of the dynamical core. This was attributed to two factors: (1) explicit numerical dis-
sipation by the dynamics blurs the distinction between solutions on the physics, dynamics, or tracer grids
and (2) high-order mapping of the physics tendencies to the dynamics and tracer grids reconstructs scales
that are not supported on the coarser physics grid.

The coarser physics grid in CAM-SE-CSLAM provides significant cost savings with little to no downside.
The coarser physics grid replicates solutions from the conventional method of evaluating the physics at the
same resolution as the dynamical core, mitigates grid imprinting in the solution, and runs efficiently on
massively parallel systems. The coarser physics grid may be leveraged to reduce the computational burden
as a component of increasingly expensive Earth System Models or permit once unattainable throughputs for
high-resolution climate simulations. This approach may also be useful in the computationally burdensome
superparameterization approach (Randall et al., 2003), in which a cloud-resolving model could instead be
embedded into the lower-resolution physics grid, reducing computational overhead. The coarser physics
grid configuration of CAM-SE-CSLAM is well positioned to address the scientific challenges ahead, as a
formidable next-generation climate model.

Appendix A: Defining 𝜟tphys Across Resolutions

Herrington and Reed (2018) developed a moist bubble test, which indicate that time-truncation errors are
large at high resolution (about 50 km or less) using more conventional values for the physics time step.
The test may be able to provide insight on a reasonable scaling of 𝛥tphys across resolutions in more complex
configurations. In the test a set of nonrotating simulations are initialized with a warm, supersaturated moist
bubble, and the grid spacing and bubble radius are simultaneously reduced by the same factor in each run
through varying the planetary radius. The test was designed to mimic the reduction in buoyancy length
scales that occur when the model resolution is increased in more complex configurations (Hack et al., 2006;
Herrington & Reed, 2018).
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Figure A2. Probability density distribution of upward 𝜔 everywhere in the model in the aquaplanets using the ne30pg2
grid (left) and the ne120pg2 grid (right). Figure computed for 1 year of 6-hourly data. The different colors indicate the
physics time steps used in the runs.

The moist bubble test is performed with CAM-SE-CSLAM and coupled to the simple condensation routine
of Kessler (1969) across five different resolutions (pertaining to the ne30, ne40, ne60, ne80, and ne120 grids).
The results are expressed as the minimum 𝜔 throughout each 1-day simulation and shown in Figure A1.
Two sets of simulations are performed with both pg3 and pg2, one with 𝛥tphys determined by equation (28)
and an equivalent set of simulations with 𝛥tphys = 1, 800 s for all resolutions.

With the diameters of the bubbles set proportional to 𝛥xdyn, Herrington and Reed (2018) has shown that 𝜔
converges to the scaling of equation (31) in the limit of small 𝛥tphys, where small 𝛥tphys refers to the CFL
limiting time step used by the dynamics. Equation (31) is overlain as gray lines in Figure A1, with ne30 being
the reference resolution. The solutions using 𝛥tphys from equation (28) follow the scaling, whereas fixing
𝛥tphys = 1, 800 s across resolutions damps the solution relative to the analytical solution, progressively more
so at higher resolutions. If 𝛥tphys is too large, the solution has nonnegligible error, which is avoided through
scaling 𝛥tphys according to equation (28).

To get a handle on whether the test is useful for understanding more realistic configurations, four aquaplanet
simulations are performed using the CAM6 physics package: a pair of ne30pg2 simulations, one in which
𝛥tphys is set to the appropriate value from equation (28) (1,800 s), and another where it is set to the 𝛥tphys
corresponding to the ne20 resolution (2,700 s). Similarly, a pair of ne120pg2 simulations are performed, one
with 𝛥tphys set to the value from equation (28) (450 s) and one with 𝛥tphys set to the ne80 value (675 s).

Figure A2 shows the PDFs of upward 𝜔 computed from a year of six-hourly data in the simulations. At lower
resolution, 𝛥tphys has only a very small effect on the solution, near the tail end of the distributions. At high
resolution, values of𝜔 less than about−3 Pa/s are more frequent in the small𝛥tphys run, with the discrepancy
growing more for larger magnitudes of 𝜔. The progressively larger errors with increasing resolution also
manifests in the moist bubble tests, indicating that truncation errors arising from large 𝛥tphys do exist in
more complex configurations.

Appendix B: The Impact of High-Order Mapping to the Dynamics Grids
Figure B1 (left) shows a close-up of the wavenumber power spectrum of the forcing on the pg grid (dotted),
where it is computed, and on the GLL grid (solid), where it is has been mapped. In ne30pg3, the magnitudes
are similar on both grids, except the mapping tends to damp the high wavenumbers of the forcing on the
GLL grid (greater than 60), but these scales are primarily below the effective resolution of the model and
should not effect the solution. For ne30pg2, the magnitude of the forcing is actually greater after mapping
to the GLL grid and more similar to the forcing in the ne30pg3 simulations. The high-order mapping can
therefore replicate the scales of the physics tendencies that occur in the pg3 simulation, even though the
physics are evaluated on a coarser pg2 grid.
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Figure B1. (left) Wavenumber-power spectrum of the temperature tendencies from the moist physics, at the 369-hPa
level, and (right) probability density distribution of upward 𝜔, everywhere in the model, for 3-year-long aquaplanet
simulations. Solid lines refer to values of on the GLL grids, and dashed lines the fields on the pg grids. See text for
details regarding the three simulations.

The importance of the high-order mapping can be shown with an additional ne30pg2 simulation, using
low-order mapping (ne30pg2-loworder in Figure B1). Specifically, low-order mapping refers to piecewise
constant mapping between the pg2 and CSLAM grids, and bilinear mapping from pg2 to the GLL grid. The
forcing spectrum is now similar on both the pg2 and GLL grids, although the low-order mapping tends to
damp the forcing on the GLL grid for wavenumbers greater than about 60, scales smaller than the models
effective resolution (Figure B1, left). A close-up of the PDF of𝜔(gll) is provided in Figure B1 (right, solid lines).
As expected, the frequency of large-magnitude 𝜔(gll) in the low-order run is less compared to the default
ne30pg2 simulation.

The dotted lines in Figure B1 (right) show the PDF of𝜔 on the pg grids. The frequency of large-magnitude𝜔 is
reduced on the pg grids, compared to the state on the GLL grids. This is primarily due to the smoothing effect
of integrating the nodal point values over control volumes (H18). The larger 𝜔 values are even less frequent
on the pg2 grid due to integrating over control volumes 9

4
times greater than the pg3 control volumes.
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