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ABSTRACT

A ‘‘perfect model’’ configuration with a global coupled climate model 30-member ensemble is used to

address decadal prediction of Pacific SSTs. All model data are low-pass filtered to focus on the low-frequency

decadal component. The first three EOFs in the twentieth-century simulation, representing nearly 80% of the

total variance, are used as the basis for early twenty-first-century predictions. The first two EOFs represent

the forced trend and the interdecadal Pacific oscillation (IPO), respectively, as noted in previous studies, and

the third has elements of both trend and IPO patterns. The perfect model reference simulation, the target for the

prediction, is taken as the experiment that ran continuously from the twentieth to twenty-first century using

anthropogenic and natural forcings for the twentieth century and the A1B scenario for the twenty-first

century. The other 29 members use a perturbation in the atmosphere at year 2000 and are run until 2061. Since

the IPO has been recognized as a dominant contributor to decadal variability in the Pacific, information late in

the twentieth century and early in the twenty-first century is used to select a subset of ensemble members that

are more skillful in tracking the time evolution of the IPO (EOF2) in relation to a notional start date of 2010.

Predictions for the 19-yr period centered on the year 2020 use that subset of ensemble members to construct

Pacific SST patterns based on the predicted evolution of the first three EOFs. Compared to the perfect model

reference simulation, the predictions show some skill for Pacific SST predictions with anomaly pattern cor-

relations greater than 10.5. An application of the Pacific SST prediction is made to precipitation over North

America and Australia. Even though there are additional far-field influences on Pacific SSTs and North

American and Australian precipitation involving the Atlantic multidecadal oscillation (AMO) in the At-

lantic, and Indian Ocean and South Asian monsoon variability, there is qualitative skill for the pattern of

predicted precipitation over North America and Australia using predicted Pacific SSTs. This exercise shows

that, in the presence of a large forced trend like that in the large ensemble, much of Pacific region decadal

predictability about 20 years into the future arises from increasing greenhouse gases.

1. Introduction

The new field of decadal prediction focuses on the

‘‘decadal’’ (defined as 10 to 30 years in the future) time

scale that is of interest to policymakers and stakeholders

(Meehl et al. 2009a; Hurrell et al. 2009). There have been

several attempts at decadal prediction using initialized

global coupled climate models, though these predictions

so far have been for 10 years in the future (Smith et al.

2007; Keenlyside et al. 2008; Pohlmann et al. 2009). Re-

cently, decadal hindcasts for the Pacific region have been

attempted (Mochizuki et al. 2010).

Both the externally forced response (e.g., from increas-

ing greenhouse gases) and internal variability [e.g., from

the interdecadal Pacific oscillation (IPO), the Pacific de-

cadal oscillation (PDO) is the North Pacific component of

the basinwide IPO—both have similar patterns] are im-

portant sources of potential predictability for Pacific SSTs

(Meehl et al. 2009a). Internally generated variability that

could be predictable presumes that there are distinct phys-

ical mechanisms producing that variability, such as for
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the IPO (Meehl and Hu 2006). At a regional level their

relative importance varies significantly, with the forced

response largest over parts of the tropical oceans and the

internal variability contribution greater over the middle-

and high-latitude oceans (Boer 2010). In spite of the

considerable signal-to-noise issues for shorter-term de-

cadal predictions, there are indications that over the next

several decades a detectable predicted response could

emerge above the noise (Karoly and Wu 2005). Teng

and Branstator (2010) analyzed the large ensemble used

in the present paper to show that subsurface heat con-

tent anomalies in the North Pacific and North Atlantic are

more predictable than surface temperatures, with po-

tential predictability in parts of those regions out to

about a decade. Since the predictable component of

climate anomalies on decadal time scales in any location

is typically modest compared to the unpredictable com-

ponent, it is important that these types of experiments,

including perfect model studies, are performed to begin to

quantify estimates of skill.

The so-called ‘‘perfect model’’ technique has been used

to obtain estimates of predictability assuming the initial

state and time evolution of the climate system were

known exactly in the form of a reference simulation that

perturbed ensemble members would try to predict. Such

studies, as well as initialized predictions (e.g., Kirtman

and Min 2009), have been used for ENSO predictions to

demonstrate that, for predictions 8 months in advance,

multimodel correlation coefficients for Niño-3.4 are ap-

proximately 0.75, reducing to 0.6 at 10 months and 0.5 at

12 months (Kirtman et al. 2002). However, Tang et al.

(2008) have shown that ENSO predictability varies on

decadal time scales, thus indicating the greater challenge

of longer-term predictions initialized from different cli-

mate base states.

It is generally believed that decadal predictions could

gain skill from three sources (Meehl et al. 2009a). The

first is climate change commitment (e.g., Meehl et al.

2005), whereby the climate system will continue to re-

spond for the next several decades due to forcing already

in the system. The second is changes in external forcing,

such as increases in greenhouse gases (GHGs) (Lee

et al. 2006), that are likely to continue at close to current

rates for the next several decades no matter what forcing

scenario is followed (Meehl et al. 2007). And the third is

the time evolution of regional decadal mechanisms [e.g.,

the IPO in the Pacific (Power et al. 1999) or tropical–

midlatitude interactions in that region (Deser et al. 2004)]

that could evolve predictably over perhaps the next de-

cade or two if captured accurately in the initial state.

Thus, decadal predictions lie at the confluence of skill

from climate change commitment, an initialized climate

state (that is currently applied for ENSO forecasts), and

the longer-term forced response (Hawkins and Sutton

2009). Exactly where this transition occurs (from initial-

ized skill to forced skill) is not well known. The studies

mentioned above that have been performed for decadal

prediction have mainly tried to exploit prediction skill

from the initial state over the next decade.

Therefore, the purpose of this paper is to perform de-

cadal predictions for Pacific SSTs in relation to a notional

year of 2010 for the 19-yr period centered on 2020. Pre-

dictions farther in the future will also be discussed al-

though, in relation to 2010 for simulations that start in

2000, a deterministic IPO evolution will likely be near the

limit of its contribution at 2020 when the forced response

could be expected to become more dominant. A perfect

model technique will be used with a 30-member ensemble

of twenty-first-century simulations from a global coupled

climate model, the Community Climate System Model

version 3 (CCSM3). Since the IPO and Pacific SSTs have

been shown to influence North American and Australian

precipitation, an application will be performed to re-

construct future precipitation patterns in those regions

using the SST information from the Pacific.

An implicit assumption in this paper is that far-field

influences on Pacific SSTs (and also in part North American

and Australian precipitation) such as the Atlantic mul-

tidecadal oscillation (AMO) (e.g., Folland et al. 1999;

Enfield et al. 2001; Knight et al. 2005; Parker et al. 2007)

and Indian Ocean SSTs and South Asian monsoon vari-

ability (e.g., Arblaster et al. 2002; Meehl and Hu 2006)

are accounted for in the model’s simulation of Pacific

SSTs. The AMO in the model resembles the pattern of

SSTs in the North Atlantic documented by Schubert

et al. (2009). Although Atlantic SST variability likely

contributes not only to Pacific SST variability (e.g.,

Timmermann et al. 2007) but also, for example, to North

American precipitation variability (Sutton and Hodson

2005; Schubert et al. 2009; the latter indicate a more

dominant influence of Pacific SSTs), our focus here is

on Pacific region SSTs that likely include those far-field

influences. Thus the present study includes a particular

emphasis on the IPO, which has been identified as a pat-

tern that is notable for decadal variability in the Pacific

(Power et al. 1999; Meehl and Hu 2006). Although the

objective of this paper is to predict Pacific SSTs, we will

apply those predictions to derive related patterns of

precipitation over North America and Australia, mindful

that the Atlantic SSTs could also have a significant direct

influence over precipitation, particularly in North America

(e.g., Schubert et al. 2009). We will show that such a re-

gionally based methodology does produce predictive skill,

although a parallel exercise using only Atlantic SSTs

for North American precipitation would be another

interesting way to approach the problem. Ultimately,
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prediction of global SSTs and associated regional pre-

cipitation patterns may be a desirable option, though our

results suggest that a regional approach could produce

some skill for regional predictions.

Section 2 describes the model and the large ensemble,

and section 3 outlines the experimental design and de-

cadal prediction methodology. Section 4 will show the

results of the decadal predictions in terms of Pacific

SSTs, section 5 applies those results to North American

and Australian precipitation for a time period centered

on the year 2020, and section 6 contains the conclusions.

2. Model description

The Community Climate System Model version 3

(CCSM3) twentieth- and twenty-first-century simula-

tions analyzed here are from the T42 version of CCSM3

with actively coupled ocean, land, and sea ice compo-

nents (Collins et al. 2006). Grid points in the atmosphere

are spaced roughly every 2.88 latitude and longitude, and

there are 26 levels in the vertical. The ocean is a version

of the Parallel Ocean Program (POP) with a nominal

latitude–longitude resolution of 18 (down to ½8 in the

equatorial tropics) and 40 levels in the vertical. No flux

adjustments are used in the CCSM3, and the equilibrium

climate sensitivity is 2.78C with a transient climate re-

sponse of 1.58C (Meehl et al. 2006).

The reference simulation or perfect model uses a single

simulation of twentieth-century climate (forced by a

combination of anthropogenic and natural forcings) that

continued without perturbations to the twenty-first cen-

tury following the A1B scenario (Meehl et al. 2006). Then

29 additional ensemble members were generated for the

period 2000 to 2061. The perturbations for the ensemble

members involved starting the atmosphere from different

days around 1 January 2000, with the other components

of the climate system (land, ocean, and sea ice) having the

same initial state in each of the ensemble members [see

Teng and Branstator (2010), for more details].

This should be considered a conservative method of

perturbing the initial state since presumably even greater

interensemble spread would occur if the ocean and sea ice

were also perturbed. But, as noted by Xie et al. (2010) and

Teng and Branstator (2010) and also shown below, there

is considerable divergence among ensemble members that

results from just perturbing the atmosphere in the coupled

model.

3. Experimental design and decadal prediction
methodology

Since previous work has shown that low-frequency

SST patterns in the Pacific region are likely to be a

combination of inherent (internally generated) and ex-

ternally forced response (Meehl et al. 2009a), the ana-

lyses here will attempt to quantify contributions from

both of those sources to predictions over the next several

decades. The interdecadal Pacific oscillation (the re-

gional manifestation of the IPO in the North Pacific is

the Pacific decadal oscillation) has been identified as a

dominant contributor to low frequency variability in the

Pacific (Power et al. 1999; Meehl and Hu 2006; Meehl

et al. 2009b). Therefore, regional predictive skill, over

and above that from commitment and external forcing,

may be realized if the time evolution of the IPO could be

predicted. However, the low frequency nature of the

IPO dictates that decadal predictions should be aver-

aged over some future time period. Here we low-pass

filter all model data such that a prediction for the year

2020 actually represents an outlook for the 19 years

centered on 2020. Narrowing this filter to shorter time

periods could also be done, but we use the 19-yr filter as

a broad starting point that could be followed in sub-

sequent work by different filtering.

We assume the notional present-day start date for the

predictions to be 2010. However, the ensembles branched

from the year 2000, so, due to the low-pass filtering, the

climate state for 2000 would necessarily include model-

simulated ‘‘observed’’ data from the last nine years of the

twentieth century and the first nine years in the twenty-

first century. In that way the ensembles would have been

running for 10 years by the time the ‘‘present-day’’ year of

2010 was reached such that modeled information about

low frequency variability in the years preceding the no-

tional start date of 2010 can be used to evaluate ensemble

members’ skill prior to 2010.

Thus, the low-pass filtering presents not only a logistical

issue for predicting low frequency phenomena, but also an

opportunity for evaluating future predictions. That is,

decadal outlooks 10 to 20 years in the future could use the

simulations started in preceding years in relation to the

notional present-day start date to provide information

that could be useful in eliminating nonskillful ensemble

members and thus improve the predictions running into

the future. This is different from numerical weather

forecasts in which information is required from the initial

point out to at least several days in the future, leaving no

time to evaluate different ensemble members to see which

ones are more skillful than others. Even for ENSO fore-

casts the predictive information must be available a cou-

ple of months out to a year or so in the future. For decadal

predictions, by definition, the predictive information is

required a decade or two in the future, which affords more

time to evaluate how ensemble members are performing.

To illustrate this point, Fig. 1 shows the first three

EOFs of the twentieth-century simulation used as the
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reference for the start of the large ensemble of future

climate simulations (note that the SST stops at 408S to be

consistent with previous analyses of the IPO that in-

cluded historical observational SST data that are less

reliable south of that latitude—e.g., Meehl et al. 2009b).

As defined by Meehl et al. (2009b), the first EOF is

mostly a trend coming mainly from increasing green-

house gas forcing and climate change commitment with

similar-sign values over the entire basin that explain

49.9% of the low-pass filtered variance. The second

EOF has the IPO-type pattern with the tropical Pacific

and subtropical northeastern and southeastern Pacific

with one sign, and opposite sign regions in the sub-

tropical northwest and southwest parts of the basin ex-

plaining 18.8% of the variance. The third EOF has

elements of the trend and IPO decadal variability and

explains 10.7% of the variance. Thus, the first two EOFs

together account for 68.7% of the SST variance, while

the first three explain 79.4% of the variance. Excluding

EOF3 from the analysis does not substantially change

the results, but including it does account for more vari-

ance, and that is what we do below.

As noted by Meehl et al. (2009b), the trend and IPO

patterns share elements in common, and thus it is diffi-

cult to totally separate the two. However, Meehl et al.

(2009b) document that interpreting EOF1 as trend and

EOF2 as the IPO is a good first-order approximation of

the two phenomena.

To track the IPO, EOF2 in Fig. 1b is correlated with the

original low-pass filtered Pacific SST data for the twenti-

eth and twenty-first centuries from the ensembles. The

time series of pattern correlations is shown in Fig. 2a for

the twentieth century (black and green lines), the twenty-

first century perfect model reference simulation (blue

line), and for nine members of the twenty-first century

ensemble chosen subjectively to qualitatively track the

time evolution of the IPO. As can be seen in Fig. 2a, al-

though the ensembles branched at the year 2000, owing to

the low-pass filtering they begin to actually spread after

1991 as described above (i.e., 1992 represents data from

1983 to 2001 due to the low-pass filtering, and 2001 is one

year after the ensembles branched, which introduces a

small spread seen already in 1992 and the following years).

The spread grows to the year 2000 as at this time the low-

pass filtering takes information from the last nine years of

the twentieth century and the first nine years of the

twenty-first. In any case, these nine ensemble members

reflect IPO correlation values near zero in 2005, rising to

near 10.6 near 2010 and falling again to about 10.3 in

2020. Recall that the values plotted for 2020 take into

account data out to 2029.

However, if the other 20 ensemble members are

plotted in a similar way (Fig. 2b), there is much more

spread and thus less predictability. The information that

went into the plotted values at the year 2000 has already

produced considerable spread that only gets larger as

the predictions continue into the twenty-first century.

Thus, in this subjective evaluation, about 9 members

(31%) seem to show some skill in qualitatively following

the evolution of the IPO, and 20 do not.

Examination of Fig. 2 suggests that a better prediction

of the IPO for the period centered on 2020 would be

possible if there was some way of objectively selecting

a subset of skillful ensemble members early in the sim-

ulations. Of course there is no way of knowing which

FIG. 1. EOFs of the low-pass filtered SST data from the twentieth-

century simulation: (a) EOF1, explaining 49.9% of the variance;

(b) EOF2, explaining 18.8% of the variance; and (c) EOF3, ex-

plaining 10.7% of the variance.
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members will perform better when the ensembles branch

in 2000. However, in the first 9 years there is considerable

divergence in about 70% of the ensemble members (thus

producing the spread for the data plotted for the year 2000

that takes into account the previous and following 9 years

in the low-pass filtering). If the decadal prediction is for

time periods at least 10 years in the future in relation to

the notional start date of 2010, that means for simulations

started in 2000, by 2010 there are observations covering

the entire period centered on 2000, and the spread of the

ensemble members could be evaluated at that time and

a subset selected. This is because, as seen in Fig. 2a, a

number of ensemble members that are successful in track-

ing the IPO in 2000 continue to do so out to 2020.

FIG. 2. Pattern correlation of EOF2 from Fig. 1b with original low-pass filtered SST data for

the twentieth and twenty-first centuries: (a) subjectively chosen nine ‘‘best’’ ensemble members

that track the reference perfect model simulation (blue line) and the ensemble average of these

nine members (green line) and (b) as in (a) but for the remaining 20 ensemble members; en-

semble average is the black line.
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This method of subselecting more skillful ensemble

members has been attempted in other prediction con-

texts, for example, a method called ‘‘dynamic stratifica-

tion’’ for numerical weather prediction (Schubert et al.

1992). However, since the evaluation time is short for

a six-day forecast, dynamic stratification relies on mak-

ing a statistical evaluation of more skillful initial states.

For the decadal prediction problem, the first decade of

a simulation prior to the present-day start date can be

used to subselect more skillful ensemble members to

improve the skill of the predictions over the years fol-

lowing that notional start date.

Therefore, the decadal prediction methodology used

in this paper can be summarized as follows:

1) Low-pass filter all model data (center year represents

about a 19-yr average).

2) Using Pacific SSTs, calculate EOFs for the twentieth

century, first removing the twentieth-century annual

mean.

3) Compute PC time series for first three EOFs.

4) Regress principal component (PC) time series from

first three EOFs against original SST data and sum to

reconstruct patterns of time-evolving SST for twentieth

century; then compare these reconstructed patterns

to actual patterns to quantify how well past SSTs can

be characterized with the reconstructions since this

method will be used for the future SST predictions.

5) Calculate predicted PC time series using twentieth-

century EOFs projected on to future predicted SSTs for

each ensemble member (the same twentieth-century

mean is removed).

6) Correlate the second EOF pattern with the low-pass

filtered data for each ensemble member and calcu-

late the Euclidean distance from each ensemble

member from the reference case in the 10-yr period

from 1991–2000; the ensemble members with the

lowest summed distance are chosen.

7) Use the selected subset PC time series predictions

and the pattern of each twentieth-century EOF to

produce future SST anomaly patterns; then sum the

first three to get total contribution of first three EOFs

and average those results across the subset ensemble

members to get the SST anomaly patterns for each

year as a prediction.

8) Correlate those patterns with target SST anomalies as

prediction verification at various future time periods.

4. Decadal predictions of Pacific SSTs

Using the first three EOFs of twentieth-century cli-

mate from the reference model simulation as a starting

point (Fig. 1), the PC time series from these EOFs are

regressed against the original data and the patterns are

summed to reconstruct Pacific SST anomaly patterns

during the twentieth century. This serves as a check for

what could be expected for the twenty-first century pre-

dictions. Figure 3 shows the (left) reference and (right)

reconstructed SST anomalies for every five years starting

in 1960. Recall that the year is centered on the 19-yr time

period due to the low-pass filtering. The reconstructed

SST anomaly patterns qualitatively resemble the refer-

ence ones, including the tropical Pacific cooling in the

period centered on 1965. Pattern correlations between

the reconstructed and reference SSTs (at upper right of

right-hand panels) range from 10.44 (1970) to 10.84

(1980). In general, the reconstructed SST patterns have

lower amplitude than the reference, partly because, as

noted above, only the first three EOFs are used for the

reconstructions. The plots in Fig. 3 represent a kind of

running average representation of the target and re-

constructed SSTs for the twentieth century and are not

meant to quantify statistical significance.

As discussed earlier, the second EOF or IPO pattern is

postulated as an important possible source of regional

predictive skill, so the subsetting of the ensemble members

is done using the second EOF that represents the IPO.

Therefore, the second EOF pattern in Fig. 1b is correlated

with the low-pass filtered data for each ensemble member

and then the subset of ensemble members is chosen that

best captures the IPO (or EOF2) evolution by calculating

the Euclidean distance from each ensemble member

from the reference case in the 10-yr period from 1991 to

2000. The distances are summed and the ensemble mem-

bers with the lowest summed distance are chosen. As could

be expected from Fig. 2a, this number is likely to be less

than 10 and, indeed, the best seven to nine ensemble mem-

bers produce about the same level of skill by this measure.

Therefore, we choose the larger number, nine ensemble

members, and the ‘‘most skillful’’ are illustrated in Fig. 4

where the time evolution of the EOF2 pattern correlations

(as in Fig. 2a) are plotted for the nine-member subset

(ensemble average is red solid line; range is given by red

hatching) compared to the other 20 ensemble members

(ensemble average is solid blue line; range is blue hatching).

The ensemble average of the nine more skillful members

better follows the reference case (black line) compared to

the other ensemble members, with a summed range that is

smaller than the less skillful ensemble members.

Although we have structured the methodology to pre-

dict the future time evolution of the unperturbed refer-

ence simulation, it could also be possible to use each of

the other 29 members as the reference case, apply the

same methodology to choose the most skillful subset, and

track how they predict the future evolution of EOF2. The

three lower panels in Fig. 4 show three measures of
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FIG. 3. (left) Original low-pass filtered SST anomalies, plotted every five years as indicated in the panel

labels from (top) 1960 to (bottom) 1985. (right) As in the left panels but for reconstructed SST anomalies

from the first three EOFs. The year indicated actually represents a 19-yr period centered on that year.
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forecast performance evaluated over all 30 cases (by us-

ing each ensemble member as a reference, numbered

from 1 to 30 on the x axis). The first measure is chosen as

the Euclidean distance of the ensemble mean prediction,

and the lower left panel shows what percentage of the full

ensemble mean prediction distance is represented by the

reduced ensemble mean prediction distance. Thus, the

most skillful nine ensemble members are chosen for each

reference simulation as above; the Euclidean distance

between the reference case and the reduced ensemble

mean, after 2001, is divided by the Euclidean distance

from the full ensemble mean; and the ratio (multiplied by

100) is plotted on the y axis. A ratio of less than 100 shows

that the prediction produced by the subset of ensemble

members is more skillful than the full ensemble. Out of

the 30 possible reference predictions, 10 are less skillful

than the full ensemble for predicting the IPO in the future

out to 2020. Thus, in two-thirds of the cases, the subset

ensemble is more skillful by this measure.

Another measure of performance for an ensemble of

simulations is the precision of the forecast, which can be

measured in terms of the spread of the ensemble. This

result is shown in the lower middle panel in Fig. 4 where

the range of the reduced ensemble (R1, defined as the

sum of the ranges at each time point between 2010 and

2020) is divided by the range of the full ensemble (R0).

The lower this ratio, the better the skill of the reduced

ensemble. Note that all 30 values of the ratio (R1/R0 3

100, by definition less than or equal to 100) lie well below

100, and about two-thirds are below 75, with seven be-

low 65, indicative of enhanced skill. Finally, in the lower

right panel of Fig. 4, a measure of coverage (defined as

the fraction of times in the forecast period when the

reference case lies within the range of either the reduced

or full ensemble) is plotted for each of the 30 test cases.

A value of 1.0 means the reference case is always cap-

tured by the spread of the ensemble. There are two dots

for each case, one for the full ensemble (blue) and one

FIG. 4. (top) Reference time series of pattern correlations for EOF2, in black (as in Fig. 1a); the blue line is the ensemble mean from the

full set of members (29), light blue shading is the full ensemble spread, the red line is the reduced ensemble mean (nine members

objectively chosen as explained in section 3), and the pink shading is the reduced ensemble spread. (bottom) From left to right, three

measures of performance (accuracy, precision, and coverage) are evaluated using each of the 30 ensemble members as a reference. See

section 4 for details.

2966 J O U R N A L O F C L I M A T E VOLUME 23



for the reduced ensemble (red). There are only 17 out of

30 cases when the full ensemble spread captures the

reference case at each point in time. Of these cases, 11

are also captured perfectly by the reduced ensemble

spread. There are only four cases for which the reduced

ensemble coverage falls below 70% (and of these, three

are cases when also the full ensemble coverage is at 70%

or below), indicating that the reduced ensemble mem-

bers do a reasonable job of at least capturing the enve-

lope of the actual evolution of the IPO in future climate.

The three twentieth-century EOFs are next regressed

on to the subset of nine more skillful future ensemble

members that were selected in Fig. 4a, and the corre-

sponding PC time series are calculated and shown in Fig. 5.

It can be seen that the forced trend (EOF1) has the least

spread of future PC time series (Fig. 5a), while EOF3 has

the greatest spread (Fig. 5c). The IPO (EOF2, Fig. 5b)

reflects the qualitative tracking of the reference case out to

2020 as illustrated by Fig. 4.

Following the lines in these plots out to 2030 shows

similar results for EOF1 and EOF3, with the large trend

dominating the time evolution. For EOF2, any skill

captured in the first 20 years dissipates after 2020 with an

almost random spread of the ensemble members (Fig. 5).

This indicates the increasing dominance of the forced

trend the longer the simulations are run into the future.

These future PC time series are then regressed onto the

EOFs in Fig. 1 and averaged across the subset ensemble

members. Figure 6 shows how the three EOFs contribute

to the reference SST anomaly patterns for the prediction

in 2020. The trend EOF1 (Fig. 6b) clearly has a large

contribution to the overall warming in the Pacific (Fig. 6a)

with an anomaly pattern correlation of 10.60. However,

the IPO pattern in Fig. 6c has a pattern correlation of

10.27, while EOF3 in Fig. 6d has the lowest contribution

with a pattern correlation of near zero.

To contrast the reconstructed contributions to the ref-

erence simulation for 2020 in Fig. 6 to those in 2010, the

IPO (EOF2) actually has a larger contribution (pattern

correlation of 10.54) compared to the trend EOF1 (pat-

tern correlation of 10.47) (not shown). Thus, the passage

of a decade (from 2010 to 2020) shows that the growing

external forcing from increasing GHGs begins to over-

whelm the contributions from the IPO.

The regression patterns are then summed to construct

the total predicted SST anomaly patterns for the future.

These patterns are compared to the reference case in Fig. 7,

with the reference case SST anomalies on the left and the

reconstructed predictions from the first three EOFs on the

right. There is an anomaly pattern correlation of 10.63 for

the period centered on 2010 (Fig. 7b) and 10.67 for the

prediction period centered on the year 2020. As in the

twentieth-century reconstructions in Fig. 3, the future

reconstruction (Fig. 7d) shows a lower amplitude SST

anomaly pattern than the reference (Fig. 7c), again partly

as a result of using just the first three EOFs, although the

major features of the future SST evolution are predicted

FIG. 5. Principal component time series formed by regressing the

three twentieth-century EOFs (Fig. 1) onto the selected nine future

ensemble members for (a) EOF1, (b) EOF2, and (c) EOF3. The

reference member is the blue line.
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for 2020 by the reduced ensemble. The anomaly pattern

correlation for the 19-yr prediction centered on 2030 is less

than for 2020, with a value of 10.59 (not shown).

As a check to see how well the reduced ensemble is

performing compared to what could be expected from the

full ensemble, Fig. 8 shows the time evolution of the

pattern correlations for the reconstructed SST anomaly

patterns with the reference case for the reduced ensemble

(Fig. 8a) and the other 20 ensemble members (Fig. 8b).

For the year 2015, the spread in the reduced ensemble is

0.08 while it is 0.15 in the rest of the ensemble, while for

2020 the spread in the reduced ensemble is 0.03, and for

the rest of the ensemble members the spread is 0.08. Thus,

using the reduced ensemble results in a reduction of about

half the ensemble prediction spread over and above the

remaining ensemble members. To test the significance of

this result, for the year 2020, random sets of nine values

are drawn from the full 30-member ensemble, and for

each set of nine values the range is compiled as the lowest

to highest value of the nine members. All combinations

are formed into a probability density function that in-

dicates the chance for a range smaller than the value of

0.03 for the nine-member selected set is 2.6%, so the

smaller range for the reduced ensemble is significant at the

97.4% level.

5. An application to North American and
Australian precipitation

Although Pacific SSTs are of interest because of some

knowledge we may have of mechanisms that could pro-

duce predictability over that region, it is also of interest

to attempt to estimate quantities of relevance to stake-

holders in regions where climate has been shown to be

influenced by low frequency variability of Pacific SSTs

such as North America and Australia (e.g., Meehl and Hu

2006). As noted earlier, there are processes associated

with decadal variability in the Atlantic, such as the AMO,

that also have been shown to influence North American

precipitation. However, for the present application we

focus on the contribution from the Pacific SSTs, mindful

that taking into account additional decadal SST variability

in the Atlantic could increase predictive skill over North

America. Additionally there are influences from South

Asia that could affect Australian precipitation as well as

Pacific SSTs.

Using a similar methodology for reconstructing the fu-

ture SST anomaly patterns in Fig. 7, we calculate a precip-

itation outlook for the 19 years centered on 2020 in Fig. 9

for North America and Fig. 10 for Australia. We use the

predicted reduced ensemble PC time series from the SST

FIG. 6. (a) Reference simulation SST anomalies for the 19-yr period centered on 2020. (b) Contribution of predicted EOF1 to predicted

SSTs in 2020. (c) As in (b) but for EOF2. (d) As in (b), but for EOF3.
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EOFs, regress them onto the low-pass filtered precipitation

data, and sum those patterns to produce predicted pre-

cipitation anomalies. First, for North America the pre-

dicted pattern for the 19-yr period centered on 2020 in

Fig. 9b is compared to the reference pattern in Fig. 9a.

The major features in the reference case (Fig. 9a) of in-

creased precipitation in northern North America and

the Mississippi basin with reduced precipitation over

the southwest and eastern United States are reproduced

in the prediction for the period centered on 2020 with an

anomaly pattern correlation of 10.38 (Fig. 9b).

The same procedure is followed to produce patterns

of predicted precipitation over Australia for the 19-yr

period centered on 2020 (Fig. 10b) compared to the

reference case (Fig. 10a). As with the North American

result in Fig. 9, the pattern of predicted precipitation

over Australia qualitatively captures the reference case.

There is above-normal precipitation predicted over New

South Wales and extending to northern Australia and

below-normal precipitation for southern Victoria and

central Australia (Fig. 9) with an anomaly pattern cor-

relation of 10.61. This greater skill compared to North

America (10.38) could reflect the stronger connection

of Australian rainfall to Pacific SSTs in general and the

IPO in particular (Arblaster et al. 2002).

6. Conclusions

Decadal prediction of Pacific SSTs is addressed in

a perfect model experiment where an unperturbed ref-

erence simulation of twentieth- and twenty-first-century

climate (the latter following the A1B scenario) is pre-

dicted by a perturbed 29-member ensemble (the per-

turbations occurring only in the atmosphere). This can

be considered a conservative example since the initial

ocean and sea ice state is perfectly known and the pre-

dictions have only small perturbations in the atmo-

sphere from starting the model on different days near

1 January 2000.

There are two guiding principles for the methodology

that concentrates only on the low frequency part of the

climate system (all data are low-pass filtered). First, it is

assumed that much of the predictability can be captured by

the first three EOFs for which EOF1 is interpreted to be

mostly the climate change commitment and forced trend,

EOF2 resembles a dominant mode of decadal climate

FIG. 7. Reference simulation SST anomalies for 19-yr periods centered on (a) 2010 and (c) 2020. Regression patterns for the first three

EOFs summed to construct the predicted SST anomaly patterns for 19-yr periods centered on (b) 2010 and (d) 2020.
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variability in the Pacific called the interdecadal Pacific

oscillation (a Pacific basin version of the Pacific decadal

oscillation, defined only for the North Pacific), and EOF3

contains elements of the first two. Nearly 80% of the

twentieth-century low-pass filtered SST variance is cap-

tured by these three EOFs. The second guiding principle is

that decadal variations of the IPO (EOF2) may provide

some increase in regional prediction skill over and above

the forced trend and climate change commitment, and for

the IPO there will be a more skillful subset of ensemble

members that can be identified early in the prediction

period that will continue to track the evolution of EOF2

into the future more skillfully than the rest of the ensemble

members.

A method of selecting a more skillful subset relies on the

concept that modeled information about low frequency

FIG. 8. Time evolution of the pattern correlation for the reconstructed SST anomaly patterns

with the reference simulation for (a) the 9-member reduced ensemble and (b) the other 20

ensemble members. The reference simulation is shown by the blue line.
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variability from years preceding the notional start date can

be used to evaluate and eliminate less skillful ensemble

members. The selected subset of ensemble members can

then be applied to the 10 to 20 years of the prediction after

that notional start date. For this exercise it is assumed that

this start date is the year 2010, and ensemble members

branched from an initial state in the year 2000. Thus, by

2010 there are already 10 years of observations that can be

used to reject nonskillful ensemble members. This number

amounts to less than 10 using a measure of summed spread

from the reference case (nine are used here). This subset

is then used to compute future PC time series that are

projected back onto the original three EOFs of Pacific

SSTs. The results are summed and averaged over the

subset ensemble to construct predictions past 2010 that

can be evaluated with respect to the reference case. The

anomaly pattern correlation for the outlook for the 19 years

centered on 2020 for Pacific SSTs is 10.67 in this case

and 10.59 for 2030.

An application of the predicted SSTs in the Pacific is

made to North American and Australian precipitation.

Using the same future PC time series derived from the

Pacific SSTs projected on the low-pass filtered North

American and Australian precipitation data shows that

the prediction of the 2020 period qualitatively captures

the regional aspects of precipitation changes for that time

period. For North America there are increases over

the north-central states and Midwest with decreases over

the southwest and eastern United States, with an anomaly

pattern correlation of 10.38. Over Australia for the 2020

period, above-normal precipitation is predicted for much

of New South Wales and extending to northern Australia

and below-normal precipitation for southern Victoria and

central Australia, with an anomaly pattern correlation

FIG. 9. North American precipitation anomalies for the 19-yr period centered on 2020

computed by regressing the reduced ensemble PC time series from the three SST EOFs in Fig. 5

onto the low-pass filtered precipitation data: (a) reference simulation and (b) predicted.
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of 10.61. The greater skill for the predicted pattern of

Australian rainfall compared to North American pre-

cipitation could reflect the stronger connection of Aus-

tralian rainfall to Pacific SSTs.

For 2010 (the end of the ensemble evaluation period),

the Pacific SST ensemble members have a higher con-

tribution from the IPO compared to the forced trend,

but by 2020 the forced trend is dominant. Predictions

beyond 2020 indicate that almost all of the signal is from

the forced trend. This suggests that by 2020 the IPO is

already becoming swamped by the forced trend, and any

regional skill from the IPO would have been over-

whelmed by the forcing. Thus, one could ask what the

results would look like if a simple full ensemble average

were used for a prediction of SST anomalies over the

Pacific basin and precipitation anomalies over North

FIG. 10. As in Fig. 9 but for Australian precipitation anomalies.
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America and Australia rather than the reduced ensemble.

Results show that by 2020 and on to 2030, the influence

from the IPO is dominated by the forced trend since the

anomaly pattern correlations for SST reconstructed from

projecting the PC time series for the first three EOFs

derived from the full 29-member ensemble compared to

the 9-member reduced ensemble are similar. Thus, these

results indicate that in an era of rapidly increasing forcing

from increasing GHGs, most regional predictive skill at

time periods longer than a decade arises from the forced

trend, with lesser contributions from the IPO.
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