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ABSTRACT 

Predictability of the Atlantic Meridional Overturning Circulation (AMOC) and 

associated oceanic and atmospheric fields on decadal time scales in Community Climate 

System Model version 3 (CCSM3) at T42 resolution is quantified with a 700-year control run 

and two 40-member “perfect model” climate change experiments.  After taking into account 

both the mean and spread about the mean of the forecast distributions, and allowing for the 

possibility of time evolving modes, the natural variability of the AMOC is found predictable 

for about a decade; beyond that range the forced predictability resulting from greenhouse gas 

forcing becomes dominant.  The upper-500m temperature in the North Atlantic is even more 

predictable than the AMOC by several years.  This predictability is associated with subsurface 

and sea surface temperature (SST) anomalies that propagate in an anticlockwise direction along 

the subpolar gyre and which tend to be prominent during the 10 years following peaks in the 

amplitude of AMOC anomalies. Predictability in the North Atlantic SST mainly resides in the 

ensemble mean signals after 3-4 forecast years. Analysis suggests that in CCSM3 the subpolar 

gyre SST anomalies associated with the AMOC variability can influence the atmosphere and 

produce surface climate predictability that goes beyond the ENSO time scale.  However, the 

resulting initial-value predictability in the atmosphere is very weak.     
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1. Introduction 

In this paper we explore the decadal time scale predictability of the Atlantic meridional 

overturning circulation (AMOC) and associated oceanic and atmospheric fields as they are 

represented in the T42 version of Community Climate System Model version 3 (CCSM3, 

Collins et al. 2006b).  Characterization and quantification of decadal predictability is of special 

interest because  many climate modeling groups from around the world are producing decadal 

hindcasts and predictions as part of the Coupled Model Intercomparison Project phase 5 

(CMIP5). Those simulations will be evaluated as part of the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC) (Taylor et al. 2009). The approach they 

are using is to run fully coupled climate models with an initialized ocean and estimated 

anthropogenic and natural forcing. The hypothesis is that climate models will be able to take 

advantage of information in the initial condition to predict the evolution of the large-scale 

patterns of sea surface temperature (SST) in the coming decades, and furthermore it is 

hypothesized that the forecast SSTs will bring predictive skill in atmospheric conditions over 

land.  

In contrast to weather prediction and seasonal prediction based primarily on ENSO, 

decadal prediction is still in its infancy.  It is assumed that the oceans are the most predictable 

component of the climate system on decadal time scales, but there is no clear understanding of 

what their predictability limits are, whether the predictability that exists in the oceans carries 

over to surface atmospheric conditions and what phenomena and processes would produce long 

predictability (Meehl et al. 2009, Hurrell et al. 2009, Solomon et al. 2011).   Unfortunately, 

there is no effective means of comprehensively determining these properties for nature, but 
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they can be estimated for models.  Measuring the predictability of a model is useful for two 

reasons.  A model’s initial value predictability limit is an upper bound on the range at which 

specifying a particular initial condition has the potential to add skill to forecasts made with that 

model, and to the extent that a model bears a similarity to nature its predictability limit provides 

an estimate of the limits inherent in nature.  

Our study, like others, focuses on predictability related to the AMOC because it is 

assumed to be an especially predictable component of the ocean circulation (Collins et al. 

2006a) and because it has the potential to influence fluctuations in climate over Europe, Asia 

and North America (Delworth et al. 2008).  Among the ocean initial-value predictability studies 

that began with Griffies and Bryan (1997), many have found that the AMOC has predictability 

on the decadal time scale  (Collins 2002, Collins and Sinha 2003, Pohlmann et al. 2004, Collins 

et al. 2006a, Msadek et al. 2010, Hurrell et al. 2009).  However, there is still considerable 

disagreement regarding the basic characteristics of the AMOC including its intrinsic time scale 

of variability, the physical mechanisms for its natural variability and what role it plays in the 

regional and global climate of the atmosphere.  

AMOC characteristics vary from one model to another and various mechanisms have 

been proposed to explain these behaviors.  The proposed mechanisms are generally categorized 

(reviewed by Saravanan et al. 2000, Latif et al. 2006) based on whether or not periodic 

behavior crucially depends on atmospheric feedbacks to the ocean.  Here we are particularly 

interested in several distinctions in CCSM3.  One   is   whether ocean decadal variability 

receives much of its driving from the atmosphere (e.g. Delworth et al. 1993, Delworth and 

Greatbatch 2000, Dai et al. 2005, Dong and Sutton 2005, Jungclaus et al. 2005, Park and Latif 

2005, Timmermann et al. 1998).  Intrinsic atmospheric variability has no preferred timescales 
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longer than a few weeks, so it should decrease AMOC predictability, though it does not 

necessarily restrict oceanic predictability to a few weeks. Another distinction we are concerned 

with is whether predictable oceanic signals influence the atmosphere, for ultimately it is this 

impact that will produce the atmospheric predictability that could benefit society (Delworth et 

al. 2008, Sutton and Hodson 2005, 2007, Msadek and Frankignoul 2009, Zhang 2008).  If the 

ocean does produce an impact on the atmosphere, this also opens the possibility of a positive 

feedback loop that could enhance ocean predictability.  A third distinction is whether there are 

recurring, long-lasting modes of oceanic variability and whether they are propagating or 

standing (Saravanan and McWilliams 1998, Saravanan et al. 2000).   The existence of such 

modes and their structural characteristics will influence how we measure and isolate decadal 

predictability.   

 If there is significant AMOC predictability, its practical consequences will be greatly 

enhanced if it leads to significant decadal predictability in the overlying atmosphere.  Some 

modeling studies suggest the possibility that the North Atlantic SST mode of variability known 

as the Atlantic Multi-decadal Oscillation (AMO) results from fluctuations of the AMOC 

(Knight et al. 2006, Delworth and Mann 2000).  The AMO, which consists of a pattern of like-

signed anomalies throughout the North Atlantic basin, is associated with variations in air 

temperature and rainfall in North America and Europe (Sutton and Hodson 2005, 2007, Enfield 

et al. 2001), as well as a number of key climate phenomena including Sahelian rainfall and 

Atlantic hurricane activity (Landsea et al. 1999, Knight et al. 2006, Zhang and Delworth 2006, 

Lu and Delworth 2005).  However, the physical mechanism for the AMO-AMOC linkage is not 

understood in either observations or models and which mechanism the atmosphere uses to react 

to midlatitude SST anomalies is controversial (Kushnir et al. 2002).     
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Initializing with a particular state is not the only means of producing forecasts with 

useful information.  Changes in system forcing can also contribute to predictability (Lorenz 

1963).  With increasing greenhouse gas (GHG) concentrations, global warming tends to 

weaken the AMOC by warming the upper North Atlantic Ocean and by enhancing freshwater 

flux, so AMOC predictability can have a contribution from this second mechanism.  Recently, 

Branstator and Teng (2010, hereafter referred to as BT2010) used several CCSM3 large 

ensemble experiments with perturbed atmospheric initial conditions to quantify initial-value 

predictability and predictability of the forced response in upper ocean heat content.  They found 

that for the North Atlantic, initial-value predictability is lost after perhaps 13 years but GHG 

effects become the dominant source of predictability after only about 9 years.  While BT2010 

focused on quantification of initial-value and forced predictability on the basin scale in upper 

ocean heat content of the North Pacific and the North Atlantic, here we are interested in 

discovering whether the common assumption that AMOC predictability is greater than the 

predictability of near surface fields is valid for CCSM3 and what the relative importance of 

initial value and forced predictability is for AMOC and related fields.  

 The aim of this study is to document the following four aspects of AMOC behavior in 

CCSM3: What is the predictability of the AMOC? In CCSM3, AMOC has been shown to 

exhibit prominent 20-year variability that is likely driven by the North Atlantic Oscillation 

(NAO, Hurrell 1995, Marshall et al. 2001) via its effect on convection in the deep water 

formation region in the Labrador Sea (Danabasoglu 2008, Kwon and Frankignoul 2010). So it 

is of interest to see how much decadal AMOC predictability can exist in spite of significant 

atmospheric forcing.  Is there associated predictability in near surface oceanic fields?  Do these 
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signals lead to detectable, predictable atmospheric signals? How important are predictable 

signals associated with AMOC natural variability compared to the forced response?   

To address these questions we briefly describe CCSM3 and our numerical experiments 

and analysis methods in Section 2, we report on the natural variability of the AMOC and its 

linkage with the North Atlantic subsurface and surface conditions and with atmospheric fields 

in Section 3, we quantify the predictability of the AMOC, the North Atlantic subsurface 

temperature and SST in Section 4, we investigate atmospheric surface climate predictability in 

Section 5, and we summarize our results and discuss their implications in Section 6.  

2. Model, experiments, and analysis methods 

We only provide a brief description of our model, experiments and analysis procedures, 

as the underlying assumptions and detailed analysis methods have been described in BT2010. 

2a. Model and experiments  

CCSM3 is a fully coupled model that has four components: atmosphere, ocean, land 

and sea ice (Collins et al. 2006b). In this study we use a version that has a T42 atmosphere and 

nominal 1◦ ocean for both a 1000-year present-day control experiment and “perfect model” 

ensemble experiments. Aspects of the climate of CCSM3 are described in more detail in Large 

and Danabasoglu (2008), Bryan et al. (2006), and Alexander et al. (2006). Although the model 

climatology is generally realistic, some significant cold and fresh biases are found in the North 

Atlantic (Large and Danabasoglu 2006).  Both the climatology and variability of the AMOC 

have resolution dependency in CCSM3 (Bryan et al. 2006).  In the last 700 years of the T42 

present-day control run, the climatological mean and interannual standard deviation of the 

maximum Atlantic meridional overturning streamfunction below 500m are about 19.3 Sv and 

1.0 Sv, respectively. It shows a prominent 20-year frequency peak (Danabasoglu 2008).   
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Much of our analysis concerns two large ensemble experiments that differ only in the 

anthropogenic forcing: one is forced by the SRES A1B scenario and the other has the forcing 

fixed at the year 2000 level (Meehl et al. 2006). Both ensembles are integrated from year 2000 

to 2061. We refer to them as the “A1B” and “Commitment” ensemble, respectively. The 

statistics of the Commitment scenario are different from those of the standard control run 

because the thermal inertia of the deep ocean and other components of the climate system can 

cause a delayed response to changes in external forcings (Meehl et al. 2005). All realizations 

from the two ensembles have identical ocean, land and sea ice initial conditions, which are 

taken from January 1st 2000 of a CCSM3 20th century run.  The 40 atmospheric initial states 

come from different days in December 1999 and January 2000 from the same historical run. 

This experimental design is mainly intended to address the question of for how long the 

dominant oceanic patterns can maintain predictability given that they are subjected to the day-

to-day variability of weather noise and the ocean is chaotic.  

Since the predictability properties of a climate system can depend on the initial state, 

analyzing one ocean initial state is one of the limitations to this study.  To assess predictability 

associated with other ocean, land and sea ice initial conditions, three additional A1B 40-

member ensemble experiments are used; they are branched from three different realizations of 

the A1B ensemble at year 2008, 2008, and 2010, and are referred to as A1B (II), A1B (III) and 

A1B (IV), respectively.  Each of their ocean initial states features a strong projection onto the 

leading basin EOF pattern either in the North Pacific (Teng and Branstator 2011, hereafter 

referred to as TB2011) or in the North Atlantic. Unlike the primary A1B ensemble, in these 

three supplementary experiments each realization has the same initial state for all four model 

component but each realization is distinct because we perturbed the solar constant value by at 



 7 

most .000002%. This is dynamically equivalent to having the 40 initial conditions be very 

slightly different from each other.      

We employ the T42 1000-year present-day control run for learning about the model 

intrinsic variability and baseline distribution, and for assessing statistical significance. Only the 

last 700 years are analyzed to avoid the period when spinup is prominent. Throughout the study, 

we use annual means of the ocean variables including the Atlantic meridional overturning 

streamfunction, upper-500m temperature 1

2b. Initial-value predictability and forced predictability 

 and SST, and DJF and JAS seasonal means of 

atmosphere variables.  

Predictability associated with a particular initial condition usually deteriorates with time. 

As mentioned earlier, when a climate system reacts to changing external forcing, e.g. 

increasing greenhouse gas concentrations, the forcing induces so-called predictability of the 

second kind (Lorenz 1963), which grows with time.  As illustrated in BT2010’s Fig.1a (which 

is reproduced here as Fig.1a for clarity), to quantify and compare these two types of 

predictability, it is helpful to think of two time evolving distributions. One is the distribution of 

predicted states Pe(t) resulting from marching from a specific initial distribution of states Pe(0), 

forward in time. The second distribution Pc(t)  represents the time-evolving climatological 

reaction to the forcing and is independent of any particular initial state. Eventually Pe(t) 

converges to Pc(t), indicating that the initial-value predictability is lost. At any given time, 

measures of ‘total predictability’ deal with comparing Pe(t) with Pc(0). It has two components: 

‘initial-value predictability’, which represents the difference between Pe(t) and Pc(t), and 

                                                 
1 BT2010 used upper-300m temperature to quantify initial-value predictability in the global ocean. Here we 
expand the depth averaging to 500 m due to the deeper mixing layer in the North Atlantic, and we find the 
predictability limit is quite similar to that of the upper-300m temperature. 
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‘forced predictability’, which can be measured by comparing Pc(t) with Pc(0).  These two 

components, which do not necessarily add up exactly to the ‘total predictability’, provide a 

means of comparing the relative importance of the initial value and the external forcing.   

We assume the predicted ensemble distributions, as well as distributions from the 

control that they are compared to, are well approximated by Gaussians. Two other assumptions 

we employ to define Pc(t) are that the covariance structure of the system climate does not 

change with forcing during the first 20 forecast years, and the climate mean of Pc(t) is well 

approximated by a linear and exponential function for the A1B and Commitment ensembles, 

respectively, once the influence of the initial condition is weak.   As in BT2010, the functions 

that we have assumed are good approximations to the time evolving climate mean (i.e., the 

means of Pc(t)) are the linear function 

)1999()(
19991

−+= tkTtT
BA

                                              (1) 

for the A1B experiment, and the exponential function 

)1()( /

1999

τt

commit
eATtT −−+=                                              (2) 

for the Commitment experiment.  In these expressions model year t varies from 2000 to 2061.  

We have estimated constant k by least squares fitting a line to A1B ensemble values during 

2010-62. Ideally 
1999

T  would be estimated with an ensemble of 20th century runs.    However, 

with only one realization available, we have instead extrapolated the fitted line in (1) to t=1999 

to derive
1999

T .  Next we have inserted the resulting 
1999

T    in (2) and calculated τ  and A by 

least square fitting of Commitment values during 2010-2061.   

To provide an example of how we calculated climate means of Pc(t) for the A1B and 

Commitment experiments,  we again adapt a figure from BT2010 (our Fig. 1b).   The red and 
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blue dots in this figure correspond to layer mean temperatures in a North Pacific box for each 

ensemble member for each year of the experiments, and the red and blue lines represent 

BA
T

1
and

commit
T  as derived from (2).  Note that measures of initial-value predictability concern 

departures of the red and blue dots from the red and blue lines, respectively.  We refer to these 

departures collectively as the ‘initial value components’ of a forecast to distinguish them from 

the ‘raw’ forecast states.   When initial-value predictability is lost the mean of the initial value 

components is zero and the distribution about the mean matches the distribution of Pc(t) about 

its mean.  In Fig. 1b early in the forecasts the distribution of the initial value component is 

clearly distinguishable from the climatological distribution both because of the narrowness of 

its spread and the separation of the ensemble mean from the climate mean.  The forced 

predictability can be measured by the departures of )(
1

tT
BA

 and )(tT
commit

 from 
1999

T  because 

the spread contribution to the distribution difference is negligible under our first assumption.  

   

2c. Relative entropy 

In order to measure the departure of a distribution Px (e.g. Pe(t))  from a baseline 

distribution Pb (e.g. Pc(t)), we follow  the same approach employed by BT2010, and use relative 

entropy.  This measure, which has its foundation in information theory, was introduced to 

climate research by Kleeman (2002) and Majda et al.  (2005).   When, as in our study, Px and Pb 

are assumed to be Gaussian with n degrees of freedom, relative entropy can be calculated from: 
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where 

 

µb  and 

 

µx stand for the mean state vectors in distributions Pb and Px, respectively, while 

 

σb
2 and 

 

σx
2 correspond to covariance matrices representing relationships between elements of 
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state vectors in these same distributions. Note that we choose to use base 2 in (3) as was done 

in BT 2010, while relative entropy in Kleeman (2002) and TB2011 is expressed in base e. This 

choice means that relative entropy values are given in terms of binary bits of information in the 

predicted states.   

 One feature of using this Gaussian approximation for R is that it can be decomposed 

into contributions from the mean, namely the third term in the brackets, and from the 

covariances, which are the rest of the terms.  Commonly these are referred to as the ‘signal’ and 

the ‘dispersion’ components, respectively (Kleeman 2002).2

Another merit of relative entropy is that it can be applied to multidimensional fields. 

Similar to BT2010, we have chosen to represent fields in terms of EOF bases calculated from 

the control run. We then project the predicted fields onto these bases to get the predicted 

vectors.  Like BT2010, we truncate representations at 15 EOFs.   15 EOFs represent 94%, 88% 

and 86% of the total variance, respectively, for the Atlantic meridional overturning 

streamfunction, the North Atlantic upper 500 m ocean temperature, and SST. 

   Often only ensemble means are 

used when applying forecasts, so distinguishing the information in these two components is of 

interest. 

In our study, we have 700 samples from the control run to estimate the climatological 

distribution, but only 40 samples for predictions. The limited sample size of the prediction 

ensemble induces an error in the estimation of relative entropy. As a result, relative entropy 

asymptotes to a non-zero value for long forecast ranges when the predictability is lost. We 

estimate this value by calculating relative entropy from many samples of 40 randomly chosen 

                                                 
2 Note, because we assume the covariance structure of Pc(t) is time-independent, only the signal contributes to 
forced predictability in our study. 
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states from the control run, and in some of our figures the 95th percentile of these values is 

plotted to indicate when predictability is lost.   

 

3. 10-30-year natural variability 

a. Oceanic variability 

  As mentioned in the introduction, earlier studies have shown that in CCSM3 the 

AMOC exhibits pronounced decadal variability with a significant peak in its power spectrum at 

about 20 years (Bryan et al. 2006, Danabasoglu 2008). If there is decadal predictability in the 

AMOC, it may be associated with this intrinsic feature. Therefore we first focus on analyzing 

this prominent decadal mode and its associations with surface climate as it is manifested in the 

control integration.   

The spatial pattern of the leading two EOFs of the detrended annual mean Atlantic 

meridional overturning streamfunction and the corresponding power spectra are shown in Fig.2. 

EOF1 has a single cell pattern covering the entire Atlantic Ocean south of 60◦N3

                                                 
3 The results of this study are not affected when we expand the AMOC EOF domain to 75◦N. 

, indicating 

strengthening/weakening and deepening/shallowing of the mean AMOC streamfunction.   It 

accounts for 33% of the total variance. The time series of the corresponding PC1 has a strong 

correlation (with a simultaneous correlation coefficient value of 0.77) with the maximum 

overturning streamfunction between 0-60◦N and 500-5000m (not shown), which has been 

frequently used as an index to depict the strength of the AMOC (Delworth et al. 1993).  The 

significant peak in its power spectrum noted in other studies is evident in Fig.2.  EOF2 has 

received less attention in previous studies.  In CCSM3 it explains 18% of the interannual 

variance and is characterized by a dipole pattern with opposing meridional circulations south 

and north of 25◦N. The power spectrum of the PC2 time series has two prominent peaks at 50 
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and 20 years, respectively. The two EOFs have strong coherence in the 10-30 year frequency 

band (Fig.2, bottom right), suggesting the two patterns correspond to a time dependent physical 

mode. 

 If there is a prominent time-evolving mode in the meridional overturning 

streamfunction whose variability is approximately sinusoidal, the variability can be described 

by a pair of patterns which should be captured by complex EOF (CEOF) analysis (von Storch 

and Zwiers 1999). When we apply CEOF analysis to the 10-30 year filtered overturning 

streamfunction, we find the real and imaginary parts of CEOF1 (Fig.3, bottom left two panels) 

resemble EOF1 and EOF2 of the same filtered data (Fig.3 upper left two panels), respectively.  

In Fig.3, the complex eigenvector has been rotated to make the real and imaginary parts 

orthogonal.   The two real EOFs explain 62% and 11% of the variance in this band. The two 

patterns largely agree with the leading two EOFs in the unfiltered data, except that the southern 

meridional circulation cell penetrates further into the northern hemisphere in EOF2 of the 

filtered data.  EOF1 is much more dominant than EOF2 in terms of variance explained in the 

10-30-year frequency band, suggesting that the 10-30-year variability of the AMOC is to first 

order a standing mode.   

Though EOF1 is dominant, further analysis suggests that it is informative to take into 

account its relationship to EOF2 implied by their pairing in the CEOF analysis.  Lag 

correlations between the time series of 10-30 year filtered projections onto the leading two 

EOFs (or the CEOF1 real and imaginary parts) seem to indicate a perfect 20-year oscillation 

(red curves in Fig.3’s right panels) with PC2 lagging PC1 by 4 years and negative PC2 leading 

PC1 by 4 years.  But additional calculations suggest to us that the 20-year variability is not an 

oscillation.  For example when we project unfiltered meridional overturning streamfunction 
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anomalies onto the leading EOF and CEOF1 patterns in Fig.3 and recalculate the lag 

correlation coefficients the blue curves in Fig.3’s right panels are produced. Although EOF1 

still tends to evolve to EOF2 after 4 years in the unfiltered data, there is no significant lag 

correlation when negative EOF2 leads EOF1.  Also, the placement of the frequency peak is 

sometimes offset from 20-years in different segments of the control run.   

The 10-30-year variability of the AMOC is closely connected with the horizontal 

circulation and   temperature anomalies.  This connection is apparent in Fig.4, where we have 

regressed simultaneous and lagged values of annual mean SST, mean upper-500m temperature 

and barotropic streamfunction (BSF) against unfiltered AMOC PC1. At lag 0-year, 

accompanying the enhanced meridional overturning streamfunction of positive AMOC EOF1 

are BSF anomalies that represent a strengthening of both subtropical and subpolar gyres. Both 

the subsurface temperature and SST have a north-south dipole pattern, with cooling in the 

subpolar gyre region and warming of the Gulf Stream extension. Thereafter, as the single cell 

of AMOC EOF1 decays, growth of EOF2 at lag 4-years and lag 6-years becomes apparent. 

Most interestingly, there are coherent warm SST and subsurface temperature anomalies 

propagating anticlockwise from the Gulf Stream extension region toward the region southeast 

of Greenland. The location of the warm anomalies coincides with that of the positive anomalies 

of the BSF.  Prominent propagation of SST anomalies along the North Atlantic Current are also 

seen in nature, except that the observed propagating signals have higher frequency (with a 12-

14 year period) and stronger amplitude (0.5◦-1◦C) (Sutton and Allen 1997).    

The SST anomalies associated with the AMOC variability are mostly confined to the 

North Atlantic subpolar gyre region, which is different from the AMO pattern (Sutton and 

Hodson 2005) often found to be associated with AMOC variability in other studies. The AMO 
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features basin-wide anomalies in the North Atlantic and it has a much lower frequency.  

Following the AMO definition of Sutton and Hodson (2005), we calculate the AMO index in 

the 700 year control run by averaging the detrended SST over the entire North Atlantic (0◦-60◦N, 

75◦W-7.5◦W). The correlation coefficient between the AMO index and AMOC PC1 is 

insignificant (Danabasoglu 2008). Therefore the AMOC-AMO linkage in CCSM3 is very 

different from the linkage in another prominent climate model, namely GFDL’s CM2.1, in 

which a close linkage is found (Zhang 2008).    

The anticlockwise propagation of the subsurface temperature anomalies in the subpolar 

region in Fig.4 represents the most prominent mode in the entire North Atlantic subsurface 

temperature variability. Its prominence can be seen when one examines the leading two EOFs 

of the upper-500m temperature (Fig.5, bottom left two panels). They are similar to the real and 

imaginary parts of CEOF1 of this field (not shown), respectively, which suggests that the two 

patterns vary coherently. The two EOFs together explain 45% of the total variance, and they 

are well separated from EOF3 (10%). Spectral analysis reveals that the leading PCs have 

similar temporal characteristics as the PCs of the AMOC, all having enhanced variance in the 

10-30-year frequency band. Within this frequency band, the PCs from the two fields do indeed 

have significant coherency (figure not shown).  More indications of the linkage between the 

AMOC and this prominent mode of subsurface temperature variability are found by comparing 

Fig.5 with Fig.4. There is close resemblance between the subsurface temperature EOF1 and the 

subsurface temperature regression map at lag 2, and between EOF2 and the lag 8 regression 

maps. This phase relationship is further supported by the significant lag correlation coefficients 

between AMOC PC1 and PC1 and PC2 of subsurface temperature seen in the bottom right 

panel of Fig.5.  
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Although Fig.4 shows consistent anticlockwise propagation of SST and subsurface 

temperature anomalies, this propagation feature is less prominent in SST.  This lack of 

prominence is reflected in the dissimilarity of SST EOF1 (Fig.5, upper left) and the structure of 

the propagating feature in the top row of Fig.4.  It is only when one considers SST EOF2 (Fig.5, 

upper right) or SST CEOF2 (not shown) that signatures of the propagating feature are found.  

SST CEOF2 resembles CEOF1 in upper-500m temperature, but it only explains 16% of SST 

variance. 

b. Atmospheric variability 

 Danabasoglu (2008) has shown how in CCSM3 the NAO modulates the subpolar gyre 

strength and the deep-water formation that spins the AMOC up and down. Here we are more 

interested in whether AMOC variability can influence atmospheric variability. Due to the 

seasonal dependence of the atmospheric response to midlatitude SST (Peng et al. 1997), we 

will investigate the winter and summer seasons separately.  Like many previous studies 

(Frankignoul et al. 1998), we use lag correlations to detect oceanic impacts on the atmosphere, 

as instantaneous correlations often reflect an atmospheric pattern that forces the ocean. 

We begin with consideration of lags with annual increments to match the analysis of 

ocean anomalies displayed in Fig.4.  During the winter, simultaneous regression maps with 

AMOC PC1 indicate a dipole surface air temperature (TAS) pattern and a positive NAO/Arctic 

Oscillation (AO, Thompson and Wallace 2000) pattern in sea level pressure (SLP) over the 

North Atlantic region (Fig.6). From lags corresponding to SLP leading AMOC PC1, we find 

this positive NAO appears 8 years before the AMOC peak, and lasts till lag 0, consistent with 

the NAO/AO forcing the AMOC (Danabasoglu 2008, Kwon and Frankignoul 2010).  However, 

two years after the AMOC maximum, the SLP pattern changes to a negative NAO/AO, and this 



 16 

pattern persists from lag 2-years to lag 10-years.  (We only show lag 5 and lag 10 in Fig.6). The 

regressed TAS anomalies are characterized by the so-called cold ocean warm land (COWL) 

pattern (Thompson and Wallace 2000) during positive AO/NAO at lag 0 and the opposite 

during the negative AO/NAO phase from lag 2 to lag 10.  This is the TAS pattern that Hurrell 

(1995) has argued is caused by the NAO.  The regressed anomalies have weaker amplitude and 

smaller spatial scales during the summer (Fig.6, lower two rows) compared to the winter. From 

lag 2 to lag 8, the summer SLP anomaly pattern is similar to the lag 5 regression map (Fig.6, 

bottom middle) with positive anomalies over the Barents Sea and the Kara Sea, and negative 

SLP anomalies over the Baltic Sea and the North Sea.  Since without air-sea coupling, 

atmospheric internal variability possesses a white spectrum for periods longer than a year, long-

lasting SLP anomalies like those in Fig.6 indicate the influence of SST on the atmosphere. 

Unfortunately, with only the control run, we are unable to determine whether the lag 5 

year negative AO/NAO pattern is forced by the North Atlantic SST anomalies alone, or by the 

SST anomalies in both midlatitude ocean basins, because we find SST anomalous patterns tend 

to occur simultaneously in the North Pacific and North Atlantic, even in monthly data. Since 

many factors including nonlinearity can add complexity to the atmospheric response to 

midlatitude SST anomalies (Kushnir et al. 2002), we are reluctant to draw further conclusions 

from the control run beyond what Fig.6 provides.  

4.  Predictability of the AMOC 

 To quantify the predictability that actually exists for CCSM3’s AMOC we use the A1B 

and Commitment ensembles.  We first examine initial-value predictability in the prominent 

features of the 10-30-year variability presented in Section 3.  Since we found the natural 

variability in this range is largely represented by a dynamically linked pair of patterns and since 
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the patterns together may be more predictable than each individually (TB2011), we first focus 

on the combined predictability in the linked pair. 

We project the unfiltered annual mean initial-value component of the AMOC in each 

realization of the large ensembles onto the two patterns associated with the real and imaginary 

parts of CEOF1 in the control run (Fig.3 bottom left two panels) to get the corresponding time 

series. The distributions of these projections at each forecast range are compared against the 

distribution of states in control run time series, which are calculated by projecting the detrended 

annual mean control run data onto the same two patterns. We use the univariate relative entropy 

of the projections onto real CEOF1 and imaginary CEOF1 as well as the bivariate relative 

entropy of the combined projections to quantify the initial-value predictability in these patterns 

(Fig.7).    

As we have pointed out, relative entropy measures the difference between the predicted 

and climatological distribution in terms of both mean and spread. In order to distinguish 

contributions from the two attributes, we plot these two components as well as the total relative 

entropy in Fig.7.  For both CEOF1 real and imaginary parts, it only takes about five or six years 

for the individual spread to grow as large as the climatological spread. The dispersion of the 

two combined patterns is predictable for several more years, and the additional predictability is 

caused by the off-diagonal elements of the covariance matrix. The signal contributes more to 

the predictability than does the spread. This is true for the CEOF1 real part even in the first 

year of the integration when ensemble spread is small.  As for the CEOF1 imaginary part, 

signal and spread make almost equal contributions to the total relative entropy in the first year, 

an indication that the initial condition in these experiments has a small projection onto this 

pattern. But for this pattern the signal actually grows from year 2 to year 4, while information 
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in the spread keeps decaying, so quickly that the signal becomes the dominant contributor to 

the total relative entropy for this pattern too.  

 Comparing the left two columns of the bottom row of Fig.7, we note that after the first 

two years, the imaginary part is more predictable than the real part.  As we will see in the next 

section, this is primarily a result of the initial large projection onto the monopole pattern of the 

real part of CEOF1 evolving to the dipole of the imaginary part of CEOF1, much like the 

behavior of the dominant mode in the control.  Interestingly, we would come to the opposite 

conclusion regarding the relative predictability of these two patterns if we had only taken 

spread into account.  As the two left-most panels of the top row of Fig.7 show, the dispersion 

relative entropy of the imaginary part of CEOF1 is less than for the real part at all ranges and 

saturates 1 or 2 years earlier.    

          Taking into account both patterns, we find the prominent mode of the 10-30-year 

variability in the AMOC is predictable for about 9 to 10 years (Fig.7 bottom right), which is 

double the predictability in the leading pattern alone (Fig.7 bottom left). In all panels in Fig.7, 

the A1B and Commitment ensembles have close resemblance, which is another indication of 

the significance of the initial-value predictability we are quantifying.  To check on how 

sensitive our results are to the particular initial ocean/land/sea ice state used in the A1B and 

Commitment experiments, we have repeated the analysis with the three other ensembles. There 

is good agreement among all five experiments for the dispersion component of relative entropy, 

but we find relatively large variations in the signal component.   Among the five experiments, 

the propagation of signals from the CEOF1 real to imaginary part is most apparent in the A1B 

and Commitment ensembles, whose initial conditions have stronger projections onto the 

CEOF1 real part than for the other three ensembles.  
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  It turns out that adding more patterns to represent the AMOC does extend its initial-

value predictability limit but not dramatically.  Figure 8 shows the relative entropy calculated 

from the 15 leading EOFs.  Together they explain 94% of the interannual variance.  With this 

representation the AMOC is predictable for 11-13 years in the A1B and Commitment 

ensembles, only a few years longer than what we find for CEOF1. Nevertheless, it suggests that 

some less prominent patterns are possibly more predictable than the leading EOFs. The most 

prominent modes, which may have more evident climate impacts due to either larger spatial 

structures or stronger temporal variability, are not necessarily the most predictable patterns. 

Considering the three other A1B ensembles, we find although there are some variations among 

the ensembles in terms of relative entropy values in the first decade and the exact year when the 

curves dip under the threshold, overall, information from the initial state is lost after about a 

decade. 

  Bryan et al. (2006) roughly estimated that in CCSM3 the North Atlantic maximum 

overturning streamfunction started to decline from the control run mean values after about 40 

years of increasing CO2 (at the rate of 1% per year), resulting in a weakening of 2 to 2.5 Sv at 

the time of CO2 doubling.  Here in large ensembles branched from a 20th century experiment 

instead of a control run, we find we can detect the trend, as indicated by the forced 

predictability, much earlier. For comparison, initial-value and forced predictability in the 

AMOC’s dominant linked pair of patterns and in the leading 15 EOFs are shown in Fig.9 (left 

column).  The black curves represent the total predictability, which is quantified by comparing 

the raw predicted states with the climatological distribution in year 1999. It has the same 

characteristic U shape that BT2010 found for subsurface temperature. Note that the time scale 

associated with the U shape is different from Cox and Stephenson (2007) and Hawkins and 
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Sutton (2009) who deal with uncertainties from several factors in climate projections. When 

compared to curves showing relative entropy for the initial value component (blue) and forced 

component (green), we find the total predictability can be well explained by the initial-value 

predictability in the first decade and the forced predictability in the second decade.  These 

results show, in a fashion similar to subsurface temperature (BT2010), that the initial value 

component of AMOC saturates after about a decade and becomes less important than the forced 

component one or two years earlier than that. 

 To enable a more detailed comparison of AMOC predictability to the predictability of 

near surface conditions, we have repeated relative entropy calculations for mean upper 500m 

temperature (Fig.9 middle column) and SST (right column) in the North Atlantic (20◦-75◦N, 

80◦W-0◦).  Interestingly, the upper-500m temperature seems to be several years more 

predictable than the AMOC, for both its leading CEOF and for a 15 EOF representation. As 

shown in Section 3, in CCSM3 the North Atlantic subsurface temperature variability is 

dominated by variability in the subpolar region, while the AMOC may be influenced by both 

the subpolar and subtropical gyres (Manabe and Stouffer 1999, Zhang 2008).   In Section 3 we 

noted strong coherency between AMOC and subsurface temperature variability for 10-30 year 

fluctuations and we might expect features closer to the surface to be more susceptible to 

weather noise, so it is surprising that the AMOC is less predictable. This is also true for the 

other three A1B ensembles.  Another noteworthy feature is that the dominant pair of patterns in 

the subsurface temperature has a very small forced trend (Fig.9, top middle), although some 

subsurface patterns associated with other EOFs have marked trends (Fig.9, bottom middle).   

SST usually has much shorter memory than subsurface fields due to weather noise.  

However, SST CEOF2, which is associated with the subsurface propagating feature, is 
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predictable for about a decade, (Fig.9, upper right), only 3 to 4 years less than CEOF1 of the 

subsurface temperature. In contrast, SST CEOF1 is predictable for only about 5 years (figure 

not shown).   

When we decompose the relative entropy based on 15 EOFs in Fig.9 (bottom) into its 

dispersion and signal components (Fig.10), we find SST predictability mainly resides in the 

signal component. The dispersion component of SST predictability reaches the saturation level 

in year 5, while the signals are predictable for about a decade (Fig.10, right). This is different 

from predictability characteristics of the meridional overturning circulation and the subsurface 

temperature, in which both components make comparable contributions (Fig.10 left and middle 

columns). Above in Fig.7 we have shown that for Atlantic meridional overturning 

streamfunction CEOF1, the signal component makes more contribution to the predictability 

than the dispersion component; the contrast becomes smaller here with more patterns included 

(Fig.10, left). 

5. Predictability of the surface climate 

 If the atmosphere reacts to the ocean or other boundary conditions that have long 

memories then it may have long initial-value predictability. In Section 3 we showed that in the 

control run there are negative NAO-like surface circulation and air temperature anomalies 5-10 

years following the peak of the AMOC PC1 that must be forced by SST anomalies associated 

with the 10-30-year variability in the ocean.    In this section we will investigate to what degree 

this behavior translates into surface predictability by analyzing the A1B and Commitment 

ensembles. We will only focus on the first decade since thereafter there is not much initial-

value predictability left in the ocean and predictability mainly comes from the forced response. 



 22 

 To learn about the structure of the signals in the ocean that potentially impact the 

atmosphere, we plot the ensemble means of the initial-value component of the AMOC, upper-

500m temperature and SST for every second year during the first decade of the experiments 

(Fig.11). 1-2-1 temporal smoothing has been applied in order to minimize the biennial ENSO 

signals (Collins et al. 2006b).   Here we average results from the two ensembles because each 

individual ensemble shows similar features, which is an indication of statistical significance.  

The initial AMOC state (bottom left panel of Fig.11) is similar in structure to the leading EOF 

in the control run, though its sign is opposite to that plotted in Fig.2.  Moreover, the evolution 

of this feature in the experiments (bottom row of Fig.11) is very similar to the typical intrinsic 

evolution of EOF1 that was documented in Fig.4 with the anomalies taking on a dipolar 

structure 4 to 6 years after the peak of the monopole.  Also similar to the control run (Fig.4), 

there are cold subsurface temperature anomalies (Fig.11 middle row) propagating 

anticlockwise in the subpolar gyre during the weakening of the monopole. Although 

propagation of the SST anomalies (Fig.11 top row) is less robust in the large ensemble runs, 

they also agree with the control run in years 5-10 in that the subpolar gyre becomes dominated 

by cold SSTs just as it became covered by warm SSTs for the opposite polarity situation in Fig. 

4.  

The next question is whether there are positive NAO-like surface circulation and air 

temperature anomalies in the large ensembles resulting from the cold subpolar SSTs, as 

expected from control run behavior.  The ensemble mean initial value components of TAS and 

SLP averaged from year 5 to year 10 are presented in Fig.12 (left column) and again we 

investigate the winter and summer seasons separately.  To facilitate the comparison with typical 

AMOC behavior, we regress these fields against negative AMOC PC1 in the control run (since 
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year1 exhibits a strong negative EOF1 pattern).  These results are plotted in the right column of 

Fig.12 in terms of average values for regressions of lag 4-9 years.  The regression maps are 

similar to the lag 5 regression maps in Fig.6 except that the sign of the anomalies is reversed.  

Comparing the left and right columns of the figure we see that during JFM of years 5 to 10, the 

ensemble mean TAS and SLP fields’ evolution has some similarity to the evolution seen in the 

control in that both have a positive NAO pattern together with cold air temperature over the 

North Atlantic and warm temperature anomalies over the Eurasia continent. 

There are, however, some disagreements between the experiments and the control over 

the North Pacific. In the control run the JFM SLP anomalies associated with the Aleutian Low 

and the Icelandic Low have the same (positive) sign and similar amplitude (Fig.12d), and 

together with low pressure anomalies over the Arctic Ocean they produce a positive AO pattern. 

In contrast, in the large ensembles the northern Pacific is dominated by low pressure anomalies.  

It is likely that this mismatch is caused by the fact that SSTs in the North Pacific of the 

ensemble experiments are quite different from the North Pacific SSTs typically associated with 

the evolution of AMOC after a negative PC1 event.   As is partially visible in Fig.12, and more 

clearly in global plots of the same fields, the evolution of the AMOC in the control tends to be 

accompanied by North Pacific SSTs that are similar to CCSM3’s Pacific Decadal Oscillation 

(PDO).  TB2011 have shown in this model the North Pacific subsurface temperature has 

decadal predictability, but the PDO has weak amplitude in the initial conditions and evolution 

of these particular experiments.  This lack of PDO structure in the ensemble can also be seen in 

the TAS panels of the left column of Fig.12. 

Comparison of plots for summer and winter in Fig.12 indicate that during years 5 to 10 

the ensemble mean oceanic TAS (and therefore SST) anomalies do not show much seasonal 
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variation in the two basins.  There are, however, noticeable seasonal changes in SLP patterns 

and in TAS over land.  The low pressure cell associated with the NAO-like pattern becomes 

much weaker in the summer, with negative anomalies mostly confined to the Greenland Sea, 

Barents Sea and Kara Sea. Although the summertime circulation anomalies over the North 

Atlantic and Europe still show some positive NAO characteristics, the dipole structure is 

dominated by high pressure anomalies covering most of Europe. Another seasonal change is 

found in TAS over the continents.  During the wintertime, both North America and the 

Eurasian continent have warm temperature anomalies, which are associated with the positive 

AO surface circulation anomalies (Thompson and Wallace 2000). These patterns are not found 

in the summer.  The contrast between summer and winter is also apparent in the control, with 

summer anomalies being much weaker than those in winter (Fig.12 right column).  

Earlier we mentioned that the initial value components of the A1B and Commitment 

ensembles produce similar AMOC, subsurface temperature and SST mean signals during the 

first decade (Fig.11). It is more difficult to find coherent signals in the atmospheric circulation.  

For example, when comparing seasonal mean SLP anomalies in each year from year 5 to year 

10, we find substantial differences in the wintertime NAO-like patterns between the two 

experiments.  It is for this reason that we combined the two ensembles and calculated multi-

year averages to increase the signal-to-noise ratio when comparing ensemble and control 

structures in Fig.12.  But as the rather small number of statistically significant points in Fig.12c 

demonstrates, even when 80 realizations and 6 year averages are used, predictable signals in 

some key surface fields are difficult to establish. The summertime SLP dipole structure can be 

better identified in individual years in both ensembles. This suggests that the summertime 

surface circulation may be more predictable than the winter counterpart due to smaller internal 
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variability.  Several previous studies also found a stronger atmospheric response to North 

Atlantic SST anomalies during the summer season (Sutton and Hodson 2007, Msadek and 

Frankignoul 2009). 

  These results indicate that there is a predictable signal in some aspects of surface fields, 

but the predictability seems to be less pronounced than in the ocean variables.  To quantify 

predictability of the atmospheric fields, we use the same approach we used in Fig.10 for 

oceanic fields and calculate relative entropy in the leading 15 EOFs of TAS over land (since the 

TAS over ocean is similar to SST) and SLP of the Northern Hemisphere (20◦-90◦N) in both 

seasons (Fig.13). The leading 15 EOFs in land TAS represent 86% and 76%, respectively, of 

the interannual variance in JFM and JAS seasonal means after 1-2-1 smoothing is applied.  

Comparing with the relative entropy in the leading 15 EOFs in the annual mean North Atlantic 

SST (Fig.10, bottom right), we find the planetary land TAS anomalies have much lower initial-

value predictability in both seasons, probably because they do not have the ocean’s inertia to 

lessen the effects of weather noise.  The summertime land TAS is slightly more predictable; 

nevertheless it loses initial-value predictability after 4 years. For both seasons, the forced 

predictability in TAS becomes significant and larger than the initial-value predictability after 5 

years. Compared with TAS, SLP has even weaker initial-value predictability. Relative entropy 

of the leading 15 EOFs in JFM and JAS SLP is shown in Fig.13 (bottom panels). The 15 EOFs 

together explain 92% and 84%, respectively, of the interannual variance. SLP from both 

seasons loses initial-value predictability after 2 or 3 years. Unlike TAS, there is no significant 

forced predictability in SLP.  

Similar to Section 4, we further decompose the relative entropy in Fig.13 into the 

dispersion and signal components. Unlike the ocean fields that show a monotonic decay 
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towards the 95% significance level in the first decade (Fig.10, top), the dispersion component 

of the atmospheric fields is flat through the entire forecast period, and even in the first year the 

value is very close to the 95% significance level (figure not shown). This indicates that 

although spread in the North Atlantic SST contributes to the predictability in the first five years 

(Fig.10 top right), the atmospheric predictability only resides in the mean signals.  

In an attempt to better capture the weak predictability in land TAS and SLP, we 

increase our sample size by combining the two ensembles and recalculate relative entropy of 

the initial-value component of all the fields.  Since the dispersion component of the 

atmospheric fields is negligible, only the signal component of relative entropy is presented 

(Fig.14 left). Comparing it with Fig.10 and Fig.12, the change to the estimated predictability of 

both the oceanic and the atmospheric variables is small with doubled sample size. Next we 

repeat the 80 member analysis with a 5-year running average applied to the data (Fig.14 right). 

The temporal smoothing slightly increases the relative entropy values for all variables.  Most 

importantly, now relative entropy of the atmospheric fields is above the 95% significance level 

in the first decade.  Thus the temporal averaging used in construction of Fig.12 was crucial in 

producing significant mean anomalies.  Notice, however, that though statistically significant, 

the information in predicted atmospheric fields is very much less than in ocean fields.    

6. Concluding remarks 

 Using a long control run and two “perfect model” large ensemble experiments, we find 

in CCSM3 that the AMOC is predictable as a result of initial condition information for about a 

decade, and beyond a decade the forced predictability takes over dominance.  AMOC initial-

value predictability is associated with the 10-30-year variability of an anticlockwise 

propagating feature in both subsurface temperature and SST in the North Atlantic subpolar 



 27 

region. This feature is represented by the leading two EOFs in the upper-500m temperature.  

Alternatively, it corresponds to the pair of patterns that comprise CEOF1, as well as to CEOF2 

of SST in the North Atlantic. As a result of this propagating mode, the subpolar region is 

dominated by warm/cool SST anomalies 5-10 years after an AMOC maximum/minimum. The 

resulting SST anomalies can influence the atmospheric surface circulation in both winter and 

summer seasons, but the atmospheric response is very weak. 

The AMOC’s initial-value predictability limit that we find in CCSM3 roughly agrees 

with results from other climate models in that the AMOC has initial-value predictability on the 

decadal time scale. However, our method to quantify predictability is quite different from other 

studies. In most previous studies, predictability is measured only by the spread in the forecast 

distributions of a univariate AMOC index (Msadek et al. 2010, Pohlmann et al. 2004, and 

Collins et al. 2006a).  If measured that way, as we showed in Fig.7 (top left), the AMOC EOF1 

is only predictable for about six years in CCSM3.  Additional predictability resides in ensemble 

mean signals, and in the tendency of the AMOC EOF1 single-cell pattern to evolve to EOF2’s 

dipole pattern. Only after we take both factors into account do we find the AMOC can be 

predictable for about a decade. Since most previous studies may have underestimated the 

AMOC predictability by neglecting two important contributors that we have included, as well 

as because most studies employ small ensemble sizes, we think the AMOC in CCSM3 may be 

less predictable than in many other fully coupled models.    

 Another feature that makes our results interesting is that the model we analyzed has a 

strong connection between the decadal variability of the AMOC and the NAO.  In particular, it 

is known that in this model the NAO tends to drive AMOC variability (Danabasoglu 2008).  

This connection should decrease AMOC predictability because the NAO is dominated by 
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atmospheric internal variability. However, we find the evolution of AMOC after peaks in its 

anomalous amplitude is predictable because of the regular evolution in its structure that occurs 

after these peaks.  Furthermore, the anticlockwise propagating feature in both subsurface 

temperature and SST that follows peaks in AMOC amplitude is even more predictable than the 

AMOC itself.  These SST anomalies can influence the atmosphere, potentially resulting in long 

predictability in the atmosphere.   The relationship between the AMOC and NAO on decadal to 

multidecadal time scales is poorly understood in nature, but our study provides an example that 

there still can be decadal initial-value predictability in the ocean and surface climate even if the 

AMOC is strongly influenced by the NAO. 

Although our results suggest there is hope for skillful decadal predictions of 

atmospheric fields, our study also raises several concerns.  First, even after combining the two 

40-member ensembles and calculating 6-year averages, we find the atmospheric signals 

generated by the predictable CCSM3 ocean signals are weak relative to unpredictable 

atmospheric fluctuations.  As only 3 to 10 ensemble members are required for the CMIP5 

decadal prediction experiments (Taylor et al. 2009), it will be difficult to determine whether the 

predictions of models with similar properties are statistically significant. Our second concern 

involves the Pacific. Many studies have shown that the North Pacific also has decadal 

predictability, and it too can affect the hemispheric atmospheric circulation.    In CCSM3 the 

two northern ocean basins are independent enough that it is necessary to initialize and represent 

prominent variability in both basins in order to predict hemispheric atmospheric circulation 

anomalies. Predicting the North Pacific can be especially important for North America because 

of its downstream location (Meehl et al. 2010).     
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In the CCSM3 experiments we have analyzed, the climate is changing.  This 

complicates our analysis, but it is a source of predictability over and above that coming from 

predictable natural ocean variability.   In the first 20 years of these experiments, trends in the 

AMOC are quite similar in the two scenarios we considered, and they become the dominant 

source of predictability after a decade. In contrast, the surface air temperature and SST respond 

to the GHG forcing much faster.   These findings imply that even for decadal predictions, 

external forcing changes must be taken into account.  On the other hand our results here for the 

North Atlantic and in BT2010 for subsurface temperature in other basins indicate details in 

GHG evolution are not crucial for predictions during the first decade of projections. 

 It is also important to keep in mind various limitations to our conclusions due to model 

bias and the experimental design. The upper limit of AMOC predictability concerns the 

behavior of a “perfect model”. The predictability limit that we estimate here does not 

necessarily translate into predictive skill.  In addition to predictability error growth, forecast 

skill is also degraded by model errors.  One striking consequence of these errors is model drift 

resulting from model bias (personal communication with G. Danabasoglu, NCAR, USA).  

Another limitation is that most of our results are based on only one ocean initial state. Although 

in Fig.8 we have measured AMOC predictability using three additional ocean initial states and 

find it is similar to the predictability limits in our primary experiments, we cannot exclude the 

possibility that some ocean states may be more predictable than others.  The perturbed 

ensemble experiment approach has a fundamental limitation that only a few initial conditions 

can be investigated due to its large computational cost. We have had encouraging results when 

we have tested alternative methods that enable one to systematically consider predictability for 

each state along a model’s long control trajectory (Branstator et al. 2011). Thirdly, as 
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mentioned in the introduction, the findings in the study are only valid for T42 CCSM3.  Since 

AMOC variability varies a great deal from one climate model to another (Hurrell et al. 2009), 

we expect different conclusions for other models.   For example, the NAO response to the 

AMOC maximum is so weak as to be statistically insignificant in a shorter T85 CCSM3 control 

run (Danabasoglu 2008, Kwon and Frankignoul 2011).  For this reason, we strongly advocate 

that each modeling group that provides decadal predictions for CMIP5 also conduct 

predictability studies. 
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Figure captions  

Fig.1. a) Schematic diagram of time-evolving distributions under changing external forcing. 

The yellow/red shading represents the climatological distribution (Pc(t)).  It is independent of 

any particular initial state. Pe(t) (green shading) is an ensemble of predicted states  evolving 

from a specific tight cluster of initial conditions. Pe(t) eventually converges to Pc(t) as the 

influence of the particular initial conditions is lost.  The red dashed and black solid lines 

represent the time-evolving means of the two distributions. b) Scatter plot of annual mean 

upper-300m ocean temperature at 40-45W, 40-45N in the A1B (red) and Commitment (blue) 

ensembles. The red dashed and blue solid lines denote the two ensembles’ time-evolving 

climatological mean estimated via eqn(1) and (2) respectively. The black open circle at the 

origin denotes the year 1999 climatological mean estimated by extrapolating the A1B linear 

trend (eqn(1)). (Adapted from Branstator and Teng 2010).  

 

Fig.2. The leading two EOFs of detrended annual mean Atlantic meridional overturning 

streamfunction (top panels) from the 700 year control run and power spectra for the principal 

component (PC) of EOF1 (bottom left), EOF2 (bottom middle) and coherence between the 

leading two PCs (bottom right). The two black dashed lines superimposed on the power spectra 

are first-order autoregressive model (AR1) spectra and 99% significance level based on the 1 

year lag autocorrelations of the time series. The horizontal dashed line superimposed on the 

squared coherence indicates the 99% significance level. 

 

Fig.3.  EOF1 (top left), EOF2 (top middle), real (bottom left) and imaginary (bottom middle) 

parts of complex EOF1 (CEOF1) of 10-30-year filtered Atlantic meridional overturning 
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streamfunction from the 700 year control run. The red solid line in the right panels is lag 

correlation between PC1 and PC2 (top right) and between time series of the real and imaginary 

part of CEOF1 (bottom right) with the red horizontal dashed line indicating the 95% 

significance level, and the blue solid and dashed lines are the lag correlation between the time 

series of the unfiltered data and the corresponding 95% significance level. 

 

 Fig.4. Lagged regression of the annual mean SST (top), upper 500-m temperature (2nd row), 

barotropic streamfunction ( BSF, 3rd row), and the Atlantic meridional overturning 

streamfunction (bottom) from PC1 of the unfiltered meridional overturning streamfunction 

from the 700 year control run. The AMOC PC1 leads by 0, 2, 4, 6, 8 and 10 years from the left 

to the right column. Stippling indicates the 95% significance level of Student’s t test.  

 

Fig.5. The leading two EOFs of annual mean SST (top left two panels) and upper-500m 

temperature (bottom left two panels) from the 700 year control run. The right panels are the lag 

correlations between the leading two PCs and PC1 of the AMOC. The black horizontal dashed 

line indicates the 95% significance level. 

 

Fig.6. Lagged regression of the JFM TAS (1st row), JFM SLP (2nd row), JAS TAS (3rd row), 

and JAS SLP (bottom row) from PC1 of the AMOC from the 700 year control run. AMOC PC1 

leads the atmospheric fields by 0 (right), 5 years (middle), and 10 years (right).    Stippling 

indicates the 95% significance level from Student’s t test. Temporal 1-2-1 smoothing has been 

applied to TAS and SLP seasonal means to remove the ENSO signals, which show strong 

biennial variability in CCSM3.  
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Fig.7. Relative entropy for the initial-value component of the Atlantic overturning 

streamfunction represented by its CEOF1 (right), and the real (left) and imaginary (middle) 

parts of CEOF1, in the A1B and Commitment ensembles. Top and middle panels represent the 

dispersion and signal components of relative entropy, and the bottom panels show the total 

relative entropy. The red dashed lines indicate the 95th percentile of relative entropy values 

from ensembles of 40 random states in the control run.  R1 and R2 stands for univariate and 

bivariate relative entropy respectively. 

 

Fig.8. Relative entropy of the initial-value component of the Atlantic meridional overturning 

streamfunction represented by its leading 15 EOFs in the A1B, Commitment, A1B(II), A1B(III) 

and A1B(IV) ensembles.  Red dashed line is the 95th percentile of relative entropy from 

ensembles of 40 random states. 

 

Fig.9. Relative entropy of  the Atlantic meridional overturning streamfunction (left column), 

upper-500m temperature (middle column) and SST (right column) relative to the 1999 

climatology (black),  relative entropy of the initial-value component (blue), and that of the  

forced component (green). Solid and dashed lines denote the A1B and Commitment ensembles, 

respectively. Red dashed line indicates the 95th percentile of relative entropy from ensembles 

of 40 random states in the control run.  In the top panels the overturning  streamfunction and 

the upper-500m temperature are represented by the first CEOF and the SST is represented by 

the 2nd CEOF, while in the bottom panels all three fields are represented by 15 leading EOFs. 
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The range of the y-axes is proportional to the number of degree of freedom of the measured 

system. 

 

Fig.10. Dispersion (top) and signal (bottom) component of relative entropy of the initial-value 

component of the Atlantic meridional overturning streamfunction (left), upper-500m 

temperature (middle), and SST (right).  The short dashed line indicates the 95% significance 

level derived from the control run. Each field is represented by its leading 15 EOFs. 

 

Fig.11. Ensemble mean initial-value component of SST (top), upper 500m temperature (middle) 

and the Atlantic overturning streamfunction (bottom) from year1 to year 9 in the A1B and 

Commitment ensembles. Stippling indicates 95% significance level from Student’s t test. 

 

Fig.12. The left panels show ensemble mean initial-value component of JFM TAS (a), JFM 

SLP (b), JAS TAS (c), and JAS SLP (d) averaged from year 5 to year 10 in the A1B and 

Commitment ensembles. The right panels show the same fields but are regressed from AMOC 

PC1with 4-9-year lags in the 700 year control run. Stippling indicates 95% significance level 

from Student’s t test. 

 

Fig.13. Same as Fig.8 bottom panels but for JFM (left) and JAS (right) seasonal mean TAS 

over land (top) and SLP (bottom) in the Northern Hemisphere (20-90N). Each field is 

represented by the leading 15 EOFs.   
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Fig.14. Left panel is the signal component of relative entropy of 80-member initial-value 

component of the Atlantic meridional overturning streamfunction, the North Atlantic upper-

500m temperature and SST, and the Northern Hemisphere (20-90N) JFM and JAS seasonal 

mean TAS over land and SLP using 15 EOFs.  The red horizontal dashed line indicates the 

95% significance level from the control run. Right panel is the same as the left panel but 5-year 

running averaging has been applied to both the large ensemble and control run data.  
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Fig.1. a) Schematic diagram of time-evolving distributions under changing external forcing. 
The yellow/red shading represents the climatological distribution (Pc(t)).  It is independent of 
any particular initial state. Pe(t) (green shading) is an ensemble of predicted states  evolving 
from a specific tight cluster of initial conditions. Pe(t) eventually converges to Pc(t) as the 
influence of the particular initial conditions is lost.  The red dashed and black solid lines 
represent the time-evolving means of the two distributions. b) Scatter plot of annual mean 
upper-300m ocean temperature at 40-45W, 40-45N in the A1B (red) and Commitment (blue) 
ensembles. The red dashed and blue solid lines denote the two ensembles’ time-evolving 
climatological mean estimated via eqn(1) and (2) respectively. The black open circle at the 
origin denotes the year 1999 climatological mean estimated by extrapolating the A1B linear 
trend (eqn(1)). (Adapted from Branstator and Teng 2010).  
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Fig.2. The leading two EOFs of detrended annual mean Atlantic meridional overturning 
streamfunction (top panels) from the 700 year control run and power spectra for the principal 
component (PC) of EOF1 (bottom left), EOF2 (bottom middle) and coherence between the 
leading two PCs (bottom right). The two black dashed lines superimposed on the power spectra 
are first-order autoregressive model (AR1) spectra and 99% significance level based on the 1 
year lag autocorrelations of the time series. The horizontal dashed line superimposed on the 
squared coherence indicates the 99% significance level. 
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Fig.3.  EOF1 (top left), EOF2 (top middle), real (bottom left) and imaginary (bottom middle) 
parts of complex EOF1 (CEOF1) of 10-30-year filtered Atlantic meridional overturning 
streamfunction from the 700 year control run. The red solid line in the right panels is lag 
correlation between PC1 and PC2 (top right) and between time series of the real and imaginary 
part of CEOF1 (bottom right) with the red horizontal dashed line indicating the 95% 
significance level, and the blue solid and dashed lines are the lag correlation between the time 
series of the unfiltered data and the corresponding 95% significance level.
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Fig.4. Lagged regression of the annual mean SST (top), upper 500-m temperature (2nd row), 
barotropic streamfunction ( BSF, 3rd row), and the Atlantic meridional overturning 
streamfunction (bottom) from PC1 of the unfiltered meridional overturning streamfunction 
from the 700 year control run. The AMOC PC1 leads by 0, 2, 4, 6, 8 and 10 years from the left 
to the right column. Stippling indicates the 95% significance level of Student’s t test.  



 46 

 

 
 
 
 
 
Fig.5.The leading two EOFs of annual mean SST (top left two panels) and upper-500m 
temperature (bottom left two panels) from the 700 year control run. The right panels are the lag 
correlations between the leading two PCs and PC1 of the AMOC. The black horizontal dashed 
line indicates the 95% significance level.
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Fig.6. Lagged regression of the JFM TAS (1st row), JFM SLP (2nd row), JAS TAS (3rd row), 
and JAS SLP (bottom row) from PC1 of the AMOC from the 700 year control run. AMOC PC1 
leads the atmospheric fields by 0 (right), 5 years (middle), and 10 years (right).    Stippling 
indicates the 95% significance level from Student’s t test. Temporal 1-2-1 smoothing has been 
applied to TAS and SLP seasonal means to remove the ENSO signals, which show strong 
biennial variability in CCSM3.  
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Fig.7. Relative entropy for the initial-value component of the Atlantic overturning 
streamfunction represented by its CEOF1 (right), and the real (left) and imaginary (middle) 
parts of CEOF1, in the A1B and Commitment ensembles. Top and middle panels represent the 
dispersion and signal components of relative entropy, and the bottom panels show the total 
relative entropy. The red dashed lines indicate the 95th percentile of relative entropy values 
from ensembles of 40 random states in the control run. R1 and R2 stands for univariate and 
bivariate relative entropy respectively. 
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Fig.8. Relative entropy of the initial-value component of the Atlantic meridional overturning 
streamfunction represented by its leading 15 EOFs in the A1B, Commitment, A1B(II), A1B(III) 
and A1B(IV) ensembles.  Red dashed line is the 95th percentile of relative entropy from 
ensembles of 40 random states.  
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Fig.9. Relative entropy of  the Atlantic meridional overturning streamfunction (left column), 
upper-500m temperature (middle column) and SST (right column) relative to the 1999 
climatology (black),  relative entropy of the initial-value component (blue), and that of the  
forced component (green). Solid and dashed lines denote the A1B and Commitment ensembles, 
respectively. Red dashed line indicates the 95th percentile of relative entropy from ensembles 
of 40 random states in the control run.  In the top panels the overturning  streamfunction and 
the upper-500m temperature are represented by the first CEOF and the SST is represented by 
the 2nd CEOF, while in the bottom panels all three fields are represented by 15 leading EOFs. 
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Fig.10. Dispersion (top) and signal (bottom) component of relative entropy of the initial-value 
component of the Atlantic meridional overturning streamfunction (left), upper-500m 
temperature (middle), and SST (right).  The short dashed line indicates the 95% significance 
level derived from the control run. Each field is represented by its leading 15 EOFs.
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Fig.11. Ensemble mean initial-value component of SST (top), upper 500m temperature (middle) 
and the Atlantic overturning streamfunction (bottom) from year1 to year 9 in the A1B and 
Commitment ensembles. Stippling indicates 95% significance level from Student’s t test. 
 
 



 53 

 

 
 
 
 
 
Fig.12. The left panels show ensemble mean initial-value component of JFM TAS (a), JFM 
SLP (b), JAS TAS (c), and JAS SLP (d) averaged from year 5 to year 10 in the A1B and 
Commitment ensembles. The right panels show the same fields but are regressed from AMOC 
PC1with 4-9-year lags in the 700 year control run. Stippling indicates 95% significance level 
from Student’s t test. 
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Fig.13. Same as Fig.8 bottom panels but for JFM (left) and JAS (right) seasonal mean TAS 
over land (top) and SLP (bottom) in the Northern Hemisphere (20-90N). Each field is 
represented by the leading 15 EOFs.   
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Fig.14. Left panel is the signal component of relative entropy of 80-member initial-value 
component of the Atlantic meridional overturning streamfunction, the North Atlantic upper-
500m temperature and SST, and the Northern Hemisphere (20-90N) JFM and JAS seasonal 
mean TAS over land and SLP using 15 EOFs.  The red horizontal dashed line indicates the 
95% significance level from the control run. Right panel is the same as the left panel but 5-year 
running averaging has been applied to both the large ensemble and control run data.  
 

 


