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Abstract Three 40-member ensemble experiments and a

700 year control run are used to study initial value pre-

dictability in the North Pacific in Community Climate

System Model version 3 (CCSM3). Our focus is on the

leading two empirical orthogonal functions (EOFs) of

subsurface temperature variability, which together produce

an eastward propagating mode. Predictability is measured

by relative entropy, which compares both the mean and

spread of predictions of ensembles to the model’s clima-

tological distribution of states. Despite the fact that EOF1,

which is structurally similar to the observational Pacific

Decadal Oscillation (PDO), has pronounced spectral peaks

on decadal time scales, its predictability is less than

6 years. Additional predictability resides in the tendency of

EOF1 to evolve to EOF2, primarily through simple

advective processes. The propagating mode represented by

the combination of EOF1 and EOF2 is predictable for

about a decade. Information in both the mean and spread of

predicted ensembles contribute to this predictability.

Among the leading 15 EOFs, EOF1 is the least predictable

mode in terms of the rate at which the corresponding

principal component disperses in the ensemble experi-

ments. However, it can produce enhanced predictability of

the whole system by inducing EOF2, which is one of the

two EOFs with the slowest dispersion rate. The first two

EOFs can also enhance the ensemble mean (or ‘‘signal’’)

component of predictability of the entire system. For

typical amplitude initial states, this component contributes

to predictability for about 6 years. For initial states with

unusually high amplitude projections onto these two EOFs,

this contribution can last much longer. The major findings

from the three ensemble experiments are replicated and

generalized when the initial condition predictability for

each of many hundreds of different initial states is esti-

mated. These estimates are derived from the behavior of a

linear inverse model (LIM) that is based on the intrinsic

variability present in the control run.

1 Introduction

While models, observations and assimilation methods have

now progressed to the stage that attempts are being made to

carry out forecasts on decadal timescales (Smith et al.

2007, Keenlyside et al. 2008), it remains unclear to what

degree information in the initial state can add to the skill of

such forecasts. For the climate system is chaotic and its

evolution could be so sensitive to inevitable errors in the

initial state that information residing there is lost after only

a few years. If so, there is no point in trying to predict

beyond this range unless one is also taking into account

changing external forcing.

In this paper, we contribute to the quantification of the

initial-value predictability of the coupled atmosphere–

ocean system by concentrating on the predictability of

prominent intrinsic modes of decadal variability. We focus

on these large scale features because they have high

amplitude and thus have the potential to impact weather

and climate events that affect society. Furthermore, in

studies of weather prediction (e.g. Tribbia 1988 and

Branstator et al. 1993) and intraseasonal variability (e.g.

Newman et al. 2003a), prominent modes have been found

to be more predictable than other features, and we are

interested in whether this may also be true for decadal

timescales.
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Given the short climate record, the only way to estimate

decadal predictability limits resulting from initial state

uncertainty is to use models. Most previous model-based

studies have focused on the North Atlantic, particularly

the Atlantic meridional overturning circulation (AMOC;

Griffies and Bryan 1997a, 1997b; Collins 2002; Collins and

Sinha 2003; Pohlmann et al. 2004; Collins et al. 2006b).

Many studies concur that the AMOC is potentially pre-

dictable a decade in advance, but the characteristics of the

AMOC, including its predictability limit, vary from model

to model (Hurrell et al. 2009). And it remains controversial

whether the AMOC can bring decadal predictability to the

surface climate.

In the North Pacific, the thermohaline circulation is too

weak to be responsible for the pronounced decadal vari-

ability observed in sea surface temperature (SST). Instead,

about one-third of the SST decadal variability is associated

with the ‘‘Pacific Decadal Oscillation’’, or PDO (Mantua

et al. 1997), a mode captured by the first empirical

orthogonal function (EOF) of SST. Because of its impor-

tance, much of our investigation is concentrated on the

predictability of the PDO. Several mechanisms have been

proposed for the PDO (Miller and Schneider 2000; Seager

et al. 2001), and they have different implications for its

predictability. Latif and Barnett (1994, 1996) hypothesized

that enhanced predictability can result from the oscillatory

nature of the PDO, which according to their analysis relies

on coupling between the subtropical ocean gyre circulation

and the Aleutian low pressure system. On the other hand,

driving of the ocean by white weather noise alone, without

two-way coupling, can produce decadal variability in the

ocean (Frankignoul and Hasselmann 1977; Frankignoul

et al. 1997). A third scenario that has been suggested

emphasizes the ocean circulation and slow dynamical

oceanic modes that contribute to a reddening of the SST

signals, even when the ocean-to-atmosphere feedback is

weak (Saravanan and McWilliams 1998).

Predictability from initial conditions (what Lorenz

(1963) refers to as ‘‘predictability of the first kind’’) is

measured by determining for how long the predicted dis-

tribution of an ensemble of similar initial states is distin-

guishable from the climatological distribution. Hence

asking how predictable the PDO is on decadal time scales

is different from asking how much variability it has on

these scales. Even if its temporal spectrum has a decadal

peak, if fast growing errors resulting from initial uncer-

tainties quickly conceal the PDO signals in forecasts, then

the PDO is not predictable. Note measuring predictability

is different from measuring a quantity that some refer to as

‘‘diagnostic potential predictability’’ (Boer 2000). This

quantity measures the variability on, say, decadal time

scales that is in excess of that expected if the part of the

spectrum for frequencies lower than annual were white.

The straightforward way to quantitatively measure pre-

dictability is to use ensemble experiments with perturbed

initial conditions under the ‘‘perfect model’’ assumption.

Most studies use the ensemble spread as measured by

standard deviations to quantify its limit, and predictability

is lost when the spread is indistinguishable from the cli-

matological spread.

Earlier studies have found that the answer to whether

there is decadal predictability in the North Pacific varies

with the analysis method and the variable that is consi-

dered. If one assumes there is a correspondence between

diagnostic potential predictability and predictability, some

modeling studies find there is decadal predictability of SST

in some regions of the North Pacific (Boer 2004). On the

other hand, others using stochastic modeling methods to

estimate predictability, have found that SST is predictable

for only 1–2 years in both the observational record

(Alexander et al. 2008) and AOGCMs (Newman 2007).

SST anomalies can persist into the following winter due to

the ‘‘reemergence mechanism’’, where the anomalies stay

below the mixed layer in summer and re-entrained into the

mixed layer in the following fall and winter (Deser et al.

2003). But even with the influence of this effect, most

studies conclude North Pacific SSTs are unpredictable on

decadal time scales.

For decadal predictions of the ocean, the emphasis on

SST in many studies is natural because it is through SST

that the ocean affects the atmosphere. Although SST does

not appear to be predictable beyond 1 or 2 years in most

regions, enhanced predictability may exist in multi-year

averaged SST. In addition to temporally averaged SST,

depth averaged temperature has been found to have

extended predictability (Griffies and Bryan 1997a). Depth

averaging serves as an implicit temporal filter that mini-

mizes the effects of daily weather fluctuations. As an

example of this effect consider Fig. 1a. It shows the

average root mean square difference of North Pacific ocean

variables between all pairs of realizations of a 40-member

ensemble of integrations performed with Community Cli-

mate System Model version 3 (CCSM3). In these integra-

tions, which are described in more detail in Sect. 2, the

initial states are identical except for the atmosphere. The

spread in upper 300 m temperature grows much slower

than the spread of SST. From a domain average point of

view, it takes about 10 years for the North Pacific sub-

surface temperature to diverge to random states, in contrast

to less than 5 years in SST.

This result indicates there may exist decadal predict-

ability in the subsurface temperature in the North Pacific in

CCSM3, but it does not explain what processes and

structures this predictability is associated with. In particular

it does not address whether it may arise from some

dynamic modes such as the PDO. With this figure in mind,
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in this paper we will address the following questions: to

what extent is there predictability in the prominent modes

in the subsurface temperature? How much do the promi-

nent modes contribute to the predictability of the entire

North Pacific region?

To answer these questions we will first identify strong

modes of North Pacific subsurface decadal variability in

CCSM3 using EOF analysis. It turns out that the leading

EOF is similar to the structure of the PDO. Then we will

quantify the predictability of these patterns using both

ensemble experiments, including the one used to produce

Fig. 1, as well as a 700 year control run of that model. In

addition to focusing on the role of intrinsic modes in

decadal prediction, this work expands on previous studies

by examining the upper 300 m temperature instead of SST,

and by analyzing a model whose predictability has not been

previously quantified. Moreover, instead of treating the

PDO as a standing mode represented by a single pattern,

we find the leading two EOFs in upper 300 m temperature

in CCSM3 represent different phases of a propagating

mode making it more physical and instructive to consider

the predictability of this pair of structures in combination

than individually. One method we employ that facilitates

the quantification of the predictability limit of a mode of

this type is to use relative entropy (Kleeman 2002) from

information theory.

To describe our investigation, this paper is organized as

follows. Section 2 introduces CCSM3, the ensemble

experiments, and analysis methods. The prominent modes

in the subsurface temperature in CCSM3 as well as the

processes that contribute to their behavior are described in

Sect. 3. Initial value predictability of the dominant modes

is estimated using three ensemble experiments in Sect. 4. In

order to test whether the ensemble experiment results

reflect general properties of CCSM3, we see whether

similar predictability properties for these modes are

implied by the intrinsic variability of that model in a long

control run. These predictability properties are determined

by construction and analysis of a linear inverse model in

Sect. 5. How the leading modes contribute to the predict-

ability of North Pacific subsurface temperatures in general

is discussed in Sect. 6, followed by a summary and dis-

cussion of our study’s implications in Sect. 7.

2 Model, experiments and analysis methods

2.1 CCSM3 and experiments

CCSM3 is a fully coupled model that includes four com-

ponents: atmosphere, ocean, land, and sea ice (Collins et al.

2006a). These components are linked via a flux coupler and

no flux corrections are employed. Alexander et al. (2006)

have compared the extratropical atmosphere–ocean vari-

ability over the Northern Hemisphere in a CCSM3 control

run to observations. In the North Pacific, the model simu-

lates the PDO reasonably well. The largest discrepancy is

that the PDO lacks the connection to tropical Pacific SST

that is seen in the observations. Since tropical Pacific SST

can strongly influence the atmospheric circulation of the

midlatitudes through the atmospheric bridge (Alexander

et al. 2002), the model may underestimate climate anoma-

lies associated with the PDO over the surrounding conti-

nents. Because the main purpose here is to quantify the

predictability of the prominent modes in the North Pacific

rather than their impacts on variables over land, such model

weaknesses may not be important. On the other hand, since

apparent tropical-midlatitude interactions implied by the

observational record on decadal time scales are not well

understood it is possible that these interactions have an

Fig. 1 Root mean square difference (RMSD) in SST and upper-

300 m temperature between pairs of members from a 40-member

ensemble simulation that differ only in the atmospheric initial

condition (later referred to as Ensemble I, see Sect. 2a for more

details) in the North Pacific (top panel, 120�E–110�W, 20�N–65�N)

and the equatorial Pacific (bottom panel, 120�E–80�W, 20�S–20�N).

The color curves are RMSD averaged across the 780 pairs that are

present in the 40-member ensemble. Black dashed lines correspond to

95% of the average RMSD between two random states in the CCSM3

control run
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influence on the predictability of the PDO (Newman et al.

2003b) that is not present in the simulations we study here.

To assess the predictability of prominent modes in the

North Pacific, we assume CCSM3 is a perfect surrogate for

nature and perform three 40-member ensemble experi-

ments using a configuration with a T42 atmosphere and a

nominal 1� ocean. Each of the three experiments has a

different initial state while the realizations in each experi-

ment differ from each other in one of two ways. Ensemble I

is branched from January 1st of year 2000 of a 20th century

historical run. Its 40 initial conditions are identical for land,

ocean, and sea ice gridpoints, but atmospheric initial con-

ditions are unique to each realization; they are taken from

different days in December 1999 and January 2000 of the

historical run. Ensembles II and III are branched from two

of the realizations of Ensemble I in year 2008. In the latter

two ensembles, all 40 members share the same initial states

for all four model components; each realization is distinct

only because the solar constant is slightly different in each

one. The realization-to-realization variations in the solar

constant are so small as to produce no appreciable effects

on the climate of each realization. On the other hand, after

one time step these variations have produced very small

variations in the atmosphere and thus act to set each real-

ization off on a different trajectory. Hence the solar con-

stant perturbations serve the same purpose as would small

perturbations to the initial atmospheric state.

In our study of the predictability of prominent North

Pacific modes, an inevitable question is whether the pre-

dictability limit of these modes is sensitive to their initial

amplitudes. This question guides our choice of initial ocean

states. As mentioned in the introduction and as described in

detail later, the mode our study primarily focuses on is

defined by the leading two EOFs of subsurface tempera-

ture. The initial state for Ensemble I has weak projections

on both these patterns. By contrast, the initial state for

Ensemble II is chosen because it features a very strong

projection onto EOF1 but has a very weak projection on

EOF2, and the initial state of Ensemble III has a very

strong projection on EOF2 but a very weak projection

on EOF1. Ensemble I is integrated for 62 years, but in

results not presented here, we have found that if there is

any predictable signal beyond year 20 it is very weak.

Therefore, we only consider the first 20 years of that

ensemble, and Ensembles II and III are integrated for only

20 years.

Although our study focuses on initial-value predict-

ability of intrinsic modes, A1B scenario forcing (Meehl

et al. 2006) has been included in all three ensembles so that

these experiments can also be used for assessing predict-

ability resulting from this external forcing (Lorenz’s (1963)

‘‘predictability of the second kind’’). In a following-up

study, we will compare predictability of both kinds using

these ensemble experiments. In the present study, we

assume intrinsic variability is independent of the trend

caused by the external A1B forcing trend. This allows us to

concentrate on intrinsic variability by first calculating the

40-member averaged linear trend in Ensemble I during

1999–2061 at each grid point, and then removing this trend

from each realization in all three ensembles. The residuals

are the variability whose predictability we examine.

In addition to the three ensembles, we employ a

1000 year control run (Bryan et al. 2006) for learning about

the model’s intrinsic modes, for constructing the inverse

model describe below, and for assessing statistical signifi-

cance. It is identical to the model used for the ensemble

experiments except the forcing is set to the conditions for

1990. Our study only uses the last 700 years of the control

run to avoid the years when spin-up occurs.

Our analysis uses values of SST and mean-upper-300 m

temperature in the North Pacific region defined by (20�N–

65�N, 120�E–110�W). We average the ocean temperature

in the top 16 layers of the ocean model and then regrid it

from the native ocean grids to the atmospheric model’s T42

grid. All results we present are derived from annual mean

data. We have also tested the use of DJF means, and it does

not affect the main results of our study.

2.2 Relative entropy

In predictability studies the most commonly employed

measures of whether and by how much a forecast distri-

bution differs from the climatological distribution use some

indication of the spread of the ensemble prediction, e.g. the

root mean square difference (RMSD) in Fig. 1. A more

comprehensive measure determines how much information

is provided by the prediction over and above the infor-

mation one has from knowledge of climatology. For an

n-dimensional system with state vector ðx1; x2; . . .; xnÞ and

climatological probability distribution c, the additional

information given by a perfect prediction with distribution

e is

R ¼
Z1

�1

. . .

Z1

�1

Z1

�1

e ln
e

c

� �
dx1dx2; . . .; dxn ð1Þ

.

In information theory, R is called the relative entropy

(Kleeman 2002). Relative entropy can be thought of as

being a distance between distributions e and c though

strictly speaking it is not a distance in the mathematical

sense. For predictions of a Markov process, R always

decreases monotonically with time provided complete state

vectors are employed. When R asymptotes to a value of

zero, it indicates that the two distributions are identical,

and the initial-value predictability is lost.
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If we assume both e and c are Gaussian with the first and

second moments denoted by le; r
2
e and lc; r

2
c , respec-

tively, relative entropy in Eq. 1 can be expressed as:

R ¼ 1

2
ln

detðr2
cÞ

detðr2
eÞ

� �
þ tr r2

eðr2
c

� ��1
h i�

þ le � lcð ÞT r2
c

� ��1
le � lcð Þ � n

o
:

ð2Þ

Later, we will refer to the first two terms minus n as the

dispersion component and the third term as the signal

component of the relative entropy.

In our study, we have 700 samples from the control run

to estimate the climatological distribution, but only 40

samples for predictions. The limited sample size of the

prediction ensembles induces an error in the estimation of

R. Because R is positive definite this error has a bias, and R

asymptotes to a non-zero value when the predictability is

lost. We estimate this value by calculating R from many

samples of 40 randomly chosen states from the control run.

Relative entropy has several advantages compared to a

conventional indication of predictability based only on the

spread of a single variable (e.g. the ratio of predicted to

climatological variance). First, it can take into account how

both the predicted mean and spread compare to the corre-

sponding climatological quantities. Clearly, this is a

worthwhile attribute since there is still useful information if

a prediction indicates a shift of the mean, even if it has the

same spread as climatology. Second, it can quantify pre-

dictability of a system that has more than one degree of

freedom. For our study, this attribute is important because

we wish to consider predictability of modes that have more

than one degree of freedom.

2.3 LIM

The CCSM3 ensemble approach has one important limi-

tation, namely, predictability limits revealed by an

ensemble experiment may be only valid for the particular

ocean/land/ice initial states used in the experiment. In order

to test whether the results we find in our ensemble experi-

ments reflect more general predictability properties of

CCSM3, we construct a linear inverse model (LIM) based

on the control run. The resulting LIM should approximate

the dynamical properties of CCSM3 provided the under-

lying assumption of the LIM is valid. This assumption is

that the system being represented can be well approximated

by a linear system driven by Gaussian white noise. Once

we have approximated CCSM3 in this way, we can esti-

mate its predictability limits for very many initial states.

Here we provide only a brief description of the LIM

formulation, as LIMs have been described in detail in many

papers since being introduced to atmospheric science by

Penland(1989). Assume the dynamical system of interest

can be well approximated by

dx

dt
¼ Bxþ n; ð3Þ

where x is the departure of the state of the system from its

mean, B is a linear feedback operator and n is Gaussian

white noise. Then B can be found from observations of the

system because

expðBs0Þ ¼ Cðs0ÞC�1ð0Þ ð4Þ

where CðsÞ is the lag-s covariance matrix of x and s0 is the

particular lag used to calculate B. (Also the covariance Q

of the driving noise can be derived from B and Cð0Þ via a

Lyapunov equation though we do not need Q for our LIM

applications).

When using CCSM3 to investigate predictability we

study the evolution of an ensemble of similar initial states

under the influence of chaotic dynamics. In the LIM

approximation the ensemble is replaced by a continuous

distribution that evolves from a single initial state under the

influence of the noise. Now if GðsÞ is the lag-s propagator

of Eq. 3, i.e.

GðsÞ ¼ expðBsÞ ¼ ½Gðs0Þ�s=s0 ; ð5Þ

then the distribution of forecasts at range s for initial state

~xðtÞ has mean

�xðt þ sÞ ¼ GðsÞ~xðtÞ ð6Þ

and covariance

xðt þ sÞxTðt þ sÞ
� 	

¼ Cð0Þ �GðsÞCð0ÞGTðsÞ; ð7Þ

where hi represents an average over the distribution.

Assuming CCSM3 statistics are stationary, G(s) based on

CCSM3 data will converge to zero for large s, and so the

distribution of LIM forecast states will take on the

covariance structure of CCSM3’s climate and their mean

will be zero. So, as is true for the full system, at some

forecast range the predictability of forecasts from a LIM

based on CCSM3 will vanish.

We measure the predictability of a distribution of LIM

forecasts just as we do a CCSM3 ensemble, namely in

terms of relative entropy using the mean and standard

deviation from Eq. 6 and 7. One property of LIM forecasts,

as with any linear stochastic oscillator, is that the noise

characteristics are independent of the initial state. There-

fore, as can be seen in Eq. 7, the covariance structure of a

forecast is not affected by the initial state. Hence only the

signal component of relative entropy in Eq. 2 varies with

the initial condition, and an initial state with a particular

structure will have higher predictability the larger its

amplitude is.
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In order to reduce data processing and to exclude pat-

terns of variability whose amplitudes are weak, we use the

leading 15 EOFs in the upper-300 m temperature in the

North Pacific to represent the entire field when defining our

LIM. Together these 15 explain about 85% of the total

variance. Just as Alexander et al. (2008) and Newman

(2007) found when constructing LIMs for observed Pacific

SST, we find the resulting LIM is appropriate for North

Pacific subsurface temperature variability in CCSM3 and

approximates its behavior well. One indication of this is

that when we generate our LIM with s0 ¼ 1year, the

resulting propagator Eq. 6 explains 66% of yearly incre-

ments and 41% of 2 year increments while the corre-

sponding values for persistence forecasts are 49% and

-6%, respectively. Moreover, other conditions that a LIM

should meet (Penland and Sardeshmukh 1995) if the

assumptions it is based on are valid are also satisfied. The

Euclidean norm of B is insensitive to variation ofs0 in

the 1–3 year range, and the eigenvalues of Q are all

positive. Additional indications of the appropriateness of

the LIM are presented in Sect. 5 where we find it can

reproduce the basic predictability characteristics of the

three CCSM3 ensemble experiments of our study.

3 Prominent modes

To identify prominent modes of subsurface variability that

are intrinsic to CCSM3, we apply EOF analysis to the

North Pacific in the control integration. Any one method of

identifying modes is not necessarily adequate for all situ-

ations, but as seen below, EOFs are effective at identifying

the mode of North Pacific variability that we are most

interested in, the PDO. When we calculate EOFs for the

average temperature in the upper 300 m, we find the first

two EOFs together explain about 40% of the total variance,

and they are well separated from the other EOFs (North

et al. 1982). We mainly focus on the characteristics of these

two EOFs. For comparison, we also examine the first two

EOFs of SST in the same domain because this is the var-

iable on which many studies have concentrated.

3.1 The first two EOFs

SST EOF1 (Fig. 2, top left) has a spatial pattern similar to

observations (Mantua et al. 1997) and to that in an earlier

version of CCSM (Kwon and Deser 2007). There are

anomalies of one sign in the western and central North

Pacific along the Kuroshio Extension at around 40�N, sur-

rounded by anomalies of the opposite sign. EOF1 in upper

300 m temperature (Fig. 2, bottom left) generally looks like

the SST EOF1, except that the two active centers at the

Kuroshio extension and the Central Pacific are better sep-

arated in the subsurface. Power spectra (Fig. 3) of the first

principal component (PC) in SST and subsurface tempera-

ture are qualitatively similar in that both are distinctly red

with multiple apparent peaks for periods longer than about

10 years. The dominant SST frequency is slightly higher

than in control runs of CCSM2 (Kwon and Deser 2007) and

in a T31 version of CCSM3 (Zhong et al. 2008); the latter

two experiments have dominant peaks at 16 and 15 years,

respectively. When we examine the corresponding spectra

based on only the first half and only the second half of the

dataset we find that, except for the SST peak at a period of

Fig. 2 EOF1 (left) and EOF2 (right) of annual mean SST (top) and upper-300 m temperature (bottom) in the North Pacific (120�E–110�W,

20�N–65�N) from the 700 year control run. The percent interannual variances explained are given in each panel
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12 years, the exact placement of these peaks is not robust.

We do find, however, that there is a preference for unusually

strong peaks in the subsurface in the 10–30 year range and

that the subsurface spectrum has a sharper drop-off as

frequency increases than the SST spectrum.

In contrast to EOF1, EOF2 is very different for SST and

subsurface temperature (Fig. 2, right panels). The SST

pattern is concentrated in high latitudes while the subsur-

face pattern consists of features in midlatitudes, including

two lobes that resemble eastward shifts of features in

EOF1. The subsurface temperature PC2 has wide fre-

quency peaks ranging from 10 to 20 year periods (Fig. 3,

bottom middle) but only the peak at 12 years is present in

both dataset halves. PC2 for SST has no distinct peaks in

this range.

To determine whether the EOF patterns may be two

phases of a time evolving feature, we carry out a coherency

analysis. While the leading two PCs of SST are related at

only the 30 and 10 year periods (Fig. 3, right panels), the

two PCs of subsurface temperature have significant

coherency at almost all frequency bands, and the coherency

is much stronger than that between the two PCs in SST.

The tight relationship between the two PCs in the subsur-

face temperature suggests that they correspond to a time

dependent physical mode. Taking into consideration their

power spectra, this physical pair has a preference for

variability in the 10–30 year range.

3.2 Leading propagating mode

If there is a prominent time evolving mode in the subsur-

face temperature whose variability is approximately sinu-

soidal, complex EOF (CEOF) analysis (von Storch and

Zwiers 1999) should capture it. When we apply CEOF

analysis to 10–30 year filtered subsurface temperature in

the North Pacific, we find the real and imaginary parts of

CEOF1 resemble EOF1 and EOF2, respectively (Fig. 4

bottom panels). They explain 47% of the variance in this

band. This is consistent with the possibility that subsurface

temperature EOF1 and EOF2 are linked. Furthermore,

since implicit in the CEOF analysis is that the imaginary

part of a CEOF tends to follow the real part, it is apparent

Fig. 3 Power spectra for principal component (PC) of SST EOF1

(top left), SST EOF2 (top middle), upper-300 m temperature EOF1

(bottom left), and upper-300 m temperature EOF2 (bottom middle) in

the control run. The two black dashed lines are first-order autore-

gressive model (AR1) spectra and 99% significance level based on the

1 year lag autocorrelations of the time series. The right panels are the

coherence between the leading two PCs in SST (top) and upper-

300 m temperature (bottom) and the dashed line indicates the 99%

significance level. The three grey vertical reference lines denote

frequencies corresponding to 12, 20 and 30 year periods. The spectra

are based on 7-point modified Daniell smoothing
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from Fig. 4 that the mode that CEOF1 represents is an

eastward propagating mode.

We also apply CEOF analysis to band-pass filtered SST

to detect the dominant propagating mode at the surface.

Interestingly, both the real and imaginary parts of SST

CEOF1 are similar to the corresponding components of

CEOF1 in the subsurface temperature, suggesting that there

are consistent changes in SST associated with the leading

propagating mode in the subsurface temperature. In

agreement with this interpretation, projections of bandpass

filtered fields onto the real part of subsurface CEOF1 and

onto the real part of SST CEOF1 have a correlation coef-

ficient of 0.57 as do projections onto the imaginary parts of

the CEOFs. The real part of SST CEOF1 also looks like

SST EOF1, but the imaginary part is completely different

from the SST EOF2, indicating that the leading propagat-

ing mode is more prominent in the subsurface temperature

than at the surface. In fact, we find in results not shown,

that the imaginary part of SST CEOF1 projects most

strongly onto the fifth EOF of SST, a pattern that represents

only about 4% of SST variability. Hereafter, we focus on

the prominent modes in the subsurface temperature only,

but we will examine whether their expression in SST, as

suggested by the above results, is significant. Since the first

two subsurface EOFs are similar in structure to CEOF1, for

the sake of simplicity, we use the leading two EOFs to

define the leading propagating mode in the remainder of

our study.

Although CEOF1 represents the strongest signature that

can be approximated by an oscillation in the dataset, the

analysis can still correspond to a pair of patterns that are

not a true oscillation. To investigate whether there is true

periodicity in the variability of the patterns that make up

CEOF1, we employ auto- and lag-correlations of PC1 and

PC2 (Fig. 5). The PC1 autocorrelation first crosses zero in

year 8 (Fig. 5a). Thereafter, it remains close to zero, and

there is no indication of growth of the opposite phase. The

PC2 autocorrelation first drops below zero in year 7

(Fig. 5d). Although PC2 seems more oscillatory than PC1,

the autocorrelations are weak after the first zero-crossing.

The strongest lag correlation is found when PC2 lags PC1

(Fig. 5b). There are also significant lag correlations when

PC1 lags PC2 (Fig. 5c), but the amplitude is much smaller

than when PC1 leads PC2. Taken together, these results

indicate that PC2 tends to follow PC1 but PC1 only weakly

follows PC2. Physically, this means that the pair of mid-

latitude temperature anomalies at 150E and 160 W in

EOF1 tends to propagate eastward leading to the lobes at

170�E and 140�W in EOF2. But the features in EOF2 have

only a weak tendency to evolve to (minus) the features in

EOF1. Therefore, we prefer to call the first two EOFs the

leading propagating mode rather than the leading

oscillation.

3.3 Composite and heat budget analysis

To give a more complete representation of the evolution of

the leading propagating mode we use composites applied to

10–30 year bandpass fields from the control. We define the

phase of the propagation by arctan pc2#

pc1#

� �
, where # means

the PCs are normalized by their standard deviation. Sub-

surface temperature composites at phase 0�, 45�, 90�, and

Fig. 4 Real (left) and imaginary (right) part of complex EOF1 of 10–

30 year filtered SST (top) and upper-300 m temperature (bottom) in

the North Pacific in the control run. CEOF1 explains 42.4% and

47.4% of total variance of 10–30 year filtered SST and upper-300 m

temperature, respectively
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135�, with about 60 states contributing to each, are shown

in the left panels of Fig. 6. As expected the composites

correspond to the eastward propagation of the two mid-

latitude warm anomalies present at phase 0� until they

reach the northern and eastern boundary of the basin at

phase 135�. Meanwhile, negative anomalies appear off the

coast of Japan and in the central Pacific at phase 90�, and

strengthen at phase 135�.

Using the phase of the subsurface temperature, we also

generate composites of SST and sea level pressure (SLP)

(Fig. 6, right panels). The structure of the SST anomalies

agrees with the subsurface temperature anomalies at all

four phases, confirming that the leading propagating mode

in the subsurface temperature is associated with consistent

temperature anomalies at the surface. Interestingly, there

are systematic changes in SLP as well. Positive SLP

anomalies prevail in the North Pacific at phase 0�. There-

after, the high pressure center moves slightly northwest-

ward and negative anomalies appear in midlatitudes and

propagate slowly northward. A previous study has found

evidence for two-way coupling between SST and the

atmospheric circulation on the decadal time scale in

CCSM2 (Kwon and Deser 2007). Here we do not attempt

to establish cause and effect but rather simply point out

there is a linkage between the subsurface propagating mode

and SLP. Although the amplitude of the SLP anomalies is

relatively weak (about 0.5 hPa at the center) compared to

interannual variability (*3 hPa), the persistence of the

SLP anomalies may cause a significant impact on other

surface variables that are of direct relevance to humanity.

Next we try to understand what processes produce the

propagation, as the answer may help assess the prospects

for decadal predictability of the propagating mode. To

accomplish this, we apply the temperature tendency

equation to depth averaged conditions in the upper 300 m,

oT

ot
¼ � Qnet

q0CpH
þ Aþ Bþ residual ð8Þ

where T is depth averaged temperature, Qnet is the net air-

sea surface heat flux, H is the layer thickness (=300 m),

q0is depth averaged density, Cp is heat capacity, A and B

are horizontal and vertical convergence of temperature

flux, respectively, averaged over 300 m. Note that we

replace the temperature advection term in the conventional

temperature tendency equation with temperature flux con-

vergence because temperature flux is a standard output of

the model, and such a change is valid under the assumption

that the three dimensional divergence equals zero. We first

Fig. 5 a and d are autocorrelations of PC1 and PC2 of the upper-300 m temperature in the 700 year control run, and b and c are lag correlations

between PC1 and PC2. The grey dashed lines indicate the 99% significant level
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calculate the horizontal convergence of temperature flux on

the native grids at each layer, followed by the vertical

averaging. As for B, in this equation for depth average

temperature, it equals the vertical temperature flux at

300 m. Other terms including diffusion and penetration of

solar radiation etc. make up the residual. Note the rela-

tionship in Eq. 8 remains valid if we bandpass filter each

term provided we make clear that the filtering is of each

term, not of each variable. Below we apply Eq. 8 with

each term filtered by the same 10–30 year filter used in the

Fig. 6 composites. We denote this filter by a prime.

In Sect. 3b, we have constructed T
0
composites at several

different phases (Fig. 6, left panels). The subsurface tem-

perature change from phase 0� to 90� is plotted in Fig. 7d.

Now we want to quantify how much each of the three terms

on the right-hand side of Eq. 8 contributes to this tem-

perature change. To do this, we make composites of the

three terms, � Q
0
net

q0CpH;A
0
; and B

0
at phases 15�, 45�, 75�.

Assuming it takes about 1 year for the leading propagating

mode to develop 30� (consistent with the robust peak at

12 years we saw in several Fig. 3 spectra), we multiply the

composite of the three terms at phases 15�, 45�, 75�,

respectively, by 1 year to get the corresponding DT 0 from

phase 0� to phase 30�, from 30� to 60�, and from 60� to

90�. Summing DT
0

from each phase for each term in the

tendency equation yields the contribution to the total

temperature change in Fig. 7d by the surface heat flux

Fig. 6 Composite of 10–30 year bandpass filtered upper-300 m

temperature (left panels), SST (shading, right panels) and SLP

(contour, right panels) at phase 0�, 45�, 90� and 135� of the

subsurface propagating mode with the phase calculated using

normalized PC1 and PC2 of upper-300 m temperature in the control

run. Each composite map is derived from about 60 episodes and the

stippling indicates the 95% significance level of Student’s t test
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(Fig. 7a), horizontal convergence of temperature flux

(Fig. 7c) and vertical temperature flux at the layer bottom

(Fig. 7e). If we add the three contributions arrived at in this

fashion (Fig. 7b) we see that this procedure does produce

tendencies which together correspond to the composite

temperature change both in terms of structure and

amplitude.

Examining the contributions from the three terms we

find the horizontal convergence of temperature flux

(Fig. 7c) plays the dominant role. We further decompose

this term into horizontal temperature advection

� uoT
ox þ voT

oy

� �
and the horizontal convergence term

�T ou
ox þ ov

oy

� �
. Again these are calculated for each model

layer and then depth averaged. We find both terms are

important to horizontal convergence of temperature flux

(Fig. 7b) over the Kuroshio Extension region (figure not

shown). In most of the North Pacific basin away from this

region, horizontal advection dominates (figure not show).

To determine whether advection by the mean currents is

primarily responsible for this advection, we recalculate the

horizontal advection term with the currents replaced by

their climatological mean value (Fig. 7f). Though this

component of advection is important, major features in

Fig. 7c, particularly in the Kuroshio Extension region, are

not reproduced by this simplification. This implies that

perturbation currents cannot be ignored and raises the

possibility that atmospheric anomalies are involved in

producing the eastward propagation of the mode.

Unlike horizontal convergence of temperature flux, the

temperature flux at 300 m depth (Fig. 7e) has the opposite

sign of the total temperature change (Fig. 7d) in most

Fig. 7 Contributions from 10–30 year filtered net surface heat flux

(a), horizontal convergence of temperature flux (c) and vertical

temperature flux at 300 m depth (e) to 10–30 year upper-300 m

temperature change (d) from phase 0� to phase 90� of the subsurface

propagating mode. All panels are composite maps based on about 60

episodes from the control run (method described in Sect. 3c) (b) is the

sum of panels (a), (c) and (e), and (f) represents the temperature

change from phase 0� to phase 90� due to climatological mean

currents advecting 10–30 year filtered temperature anomalies, which

is one component of (c)
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regions, except at the beginning of the Kuroshio Extension

and in the eastern Pacific. Therefore, it is not the main

cause for the eastward propagation. The net surface heat

flux (Fig. 7a) does contribute positively to the eastward

propagation, especially in the Kuroshio Extension, but

overall, the eastward propagation is largely driven by

horizontal advection. We also calculate the composite for

the residual in Eq. 8, and it explains the difference between

Fig. 7d, b. It is smaller than the contributions from surface

heat flux and the advection terms. Given the fact that the

analysis does not rule out the possibility that atmospheric

processes, with their high variability, are important con-

tributors to the evolution of the propagating mode associ-

ated with the model PDO, prospects for it having long

predictability are diminished.

4 Predictability of the leading EOF modes in the three

ensembles

Having found nearly 40% of the interannual subsurface

variability is composed of a pair of patterns that act toge-

ther, next we examine initial-value predictability of this

pair in the three ensembles. This involves examining the

PCs resulting from projecting the intrinsic component of

temperature (cf. sect. 2) onto control run EOF1 and EOF2.

Despite the common perception that ensemble spread is the

main determinant of predictability, we find both the mean

and spread make significant contributions.

Ensemble means of PC1 and PC2 as a function of pre-

diction time are presented in Fig. 8a, b. As mentioned

earlier, each ensemble has unique characteristics in its

initial condition. The initial values of PC1 and PC2 in

Ensemble I corresponds to the 68th and 66th percentile of

the control amplitude, respectively. Since the one standard

deviation boundaries of a normal distribution equal the

16th and 85th percentiles, Ensemble I’s initial values for

PC1 and PC2 are both small. Ensemble II has an extremely

large positive PC1 (99th percentile) but a small negative

PC2 (37th percentile), and Ensemble III has a small posi-

tive PC1 (70th percentile) but a very large positive PC2

(92nd percentile). In the first 20 years of integration, the

mean PCs of Ensemble I oscillate but the small amplitudes

do not give much predictive information. In Ensemble II as

PC1 decays PC2 strengthens in the first 6 years. Ensemble

III also starts with strong amplitude in a leading PC, but in

this case it is PC2 and as that coefficient decays there is no

compensation in PC1. The difference between Ensemble II

and III is consistent with our analysis of intrinsic variability

in the previous section where we found that a strong EOF1

pattern can lead to a strong EOF2 pattern, but a strong

EOF2 does not necessarily produce a strong negative

EOF1.

As for the ensemble spread (Fig. 8c, d), in all three

ensembles during the first 8 years the standard deviation is

less for normalized PC2 than for normalized PC1; it takes

about 5 years for the standard deviation of PC1, and

8 years for that of PC2, to exceed one standard deviation of

Fig. 8 40-member ensemble

mean subsurface temperature

PC1 (top left) and PC2 (top
right), and normalized ensemble

standard deviations of PC1

(bottom left) and PC2 (bottom
right) in the three ensembles.

The PCs are calculated by

projecting the detrended upper-

300 m temperature in the North

Pacific onto the corresponding

EOFs from the control run

H. Teng, G. Branstator: Predictability of north pacific subsurface temperature

123



the control run. So from the standpoint of spread, pre-

dictability of PC2 is lost much later than for PC1. Another

interesting feature is that the spread in all three ensembles

grows at a similar pace, despite the large differences

among the initial conditions. This latter fact will be

important in the next section. When considering Fig. 8, it is

important to recognize that the range at which the standard

deviation of an ensemble exceeds the climatological stan-

dard deviation is only a rough indication of when pre-

dictability is lost. For an infinite ensemble the approach is

asymptotic and so the predicted standard deviation is never

greater than the climatological standard deviation, while

for a finite ensemble sampling effects can erroneously

produce an apparent convergence of the two distributions

before it has actually taken place.

As we have pointed out, relative entropy measures the

difference between predicted and climatological distribu-

tions in terms of both mean and spread. We use univariate

relative entropy of PC1 and PC2 (Fig. 9 left and middle

panels), and bivariate relative entropy of the two PCs

(Fig. 9 right panel) to quantify the predictability of EOF1

and EOF2 and of the leading propagating mode, respec-

tively. Furthermore, we decompose the relative entropy

into its signal and dispersion components to distinguish the

effects of departures of the mean and spread from clima-

tology. The grey dashed lines in Fig. 9 show the 95%

significance values for 40-member ensembles as derived in

the way explained in Sect. 2. We consider predictability to

be lost when relative entropy dips below this level.

In both Ensemble I and III, where the initial projection

onto PC1 is small, PC1 is predictable for about 4 years, and

the predictability mainly comes from the dispersion com-

ponent (Fig. 9, left column). PC1 is more predictable in

Ensemble II due to large contributions from the signal

component (Fig. 9, left middle). The total relative entropy

does not drop to the threshold level until year 6 when the

Fig. 9 Univariate relative entropy for PC1 (left) and PC2 (middle)

and bivariate relative entropy for PC1 and PC2 (right) of the upper-

300 m temperature. Top, middle, and bottom panels represent

Ensemble I, II, and III, respectively. The grey dashed lines indicate

the 95% percentile of relative entropy values from 40 random states

(drawn 10,000 times) in the control run. The black, red, and blue lines
indicate the total relative entropy, its signal component, and its

dispersion component, respectively
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ensemble mean drops to zero. From year 6 to year 20,

relative entropy stays above the threshold as the mean PC1

remains different from climatology.

For all three ensembles, PC2 is more predictable than

PC1 and the enhanced predictability comes from two

sources. First, the dispersion component of relative entropy

for PC2 decays more slowly than for PC1, which is con-

sistent with Fig. 8c, d. Second, when the prediction starts

with a strong PC1, the initial signal propagates to PC2 (as

in Ensemble II), but a strong initial PC2 signal does not

always produce a strong PC1 (as in Ensemble III). The

combination of these two factors is that PC2 is predictable

for 7–10 years in our experiments (Fig. 9, middle panel).

We have argued that EOF1 and EOF2 are dynamically

linked through advection, so it makes sense to consider the

predictability of PC1 and PC2 simultaneously. This is done

in the right column of Fig. 9, which displays bivariate

relative entropy for these two quantities. Again we see

predictability in the 7–10 year range. Ensemble I benefits

from contributions from both PCs. Ensemble II has the

longest predictability with our predictability criterion even

being met at year 20, but keep in mind that the strong

initial projection onto EOF1 that is probably responsible is

a very rare (99th percentile) event. Ensemble III is not

especially predictable in spite of a strong initial anomaly,

presumably because PC2 tends to simply decay. We also

note that though the initial projections onto EOF1 and

EOF2 are weak in Ensemble I, they stay predictable for

approximately as long in this experiment as in Ensemble

III. This suggests that other system components can influ-

ence the evolution of these structures.

5 Predictability estimated from a linear stochastic

model

As explained in Sect. 2, we have constructed a LIM that

approximates CCSM3. In that section we explained why it

is reasonable to think that our LIM behavior should be a

good approximation to CCSM3 subsurface temperature

behavior. Further evidence of its validity is the fact that we

found in Sect. 4 that there is no obvious dependence of the

rate at which PCs disperse on the particular initial condi-

tions employed in our three ensembles. Recall from Sect. 2

that this is a property that one expects to be true for sys-

tems that satisfy the assumptions that LIMs are based on.

As a final test of the appropriateness of the LIM for our

predictability investigation, we evaluate whether it can

reproduce major predictability characteristics of the first

two PCs seen in the three CCSM3 ensemble experiments.

For each of the three ensemble experiments we use the

year 0 values of the first 15 PCs as an initial condition and

use Eq. 6 and Eq. 7 to estimate the mean and standard

deviation of the distributions that would occur each year in

(infinite) ensembles of forecasts. These are compared with

values from the corresponding CCSM3 ensemble in

Fig. 10. For both PCs, the LIM reproduces the mean in the

first 6 years in each ensemble (Fig. 10a, b) including the

propagation of the signal from the PC1 to PC2 in Ensemble

II. Moreover, it reproduces Ensemble IIIs characteristic of

having a strong PC2 that does not initiate later growth in

PC1. The spread of the LIM ensembles is also a good

match to CCSM3 behavior (Fig. 10c, d). The LIM result

saturates at a similar rate as the spread in each of the three

ensembles thus reproducing the tendency of PC2 spread to

saturate more slowly than that of PC1. The similarity of the

evolution of CCSM3 and LIM ensembles indicates the LIM

is indeed an appropriate tool for investigating predictability

properties of the leading CCSM3 modes.

Now we use the LIM to see whether the predictability

properties of PC1 and PC2 that are present in the three

CCSM3 ensembles are valid for other initial states. For it

may be that attributes other than the initial values of PC1 and

PC2 have influenced the characteristics we have noted. First,

to consider cases with strong PC1, we select the 50 states

from the 700 year control run with the strongest PC1, and

use them as initial conditions for 50 LIM solutions, again

employing Eq. 6 and Eq. 7. For each initial condition, we

calculate the relative entropy of PC1 and PC2, individually

and combined. The 50 case average relative entropy and its

signal and dispersion components, as well as the envelope of

relative entropy for all 50 cases, are presented in the top

panel of Fig. 11. These results suggest that two of the major

attributes we saw in the CCSM3 experiments are likely to be

more generally valid: first, predictability in strong PC1

amplitude cases is dominated by contributions from the

signal component; second, signals propagate from EOF1 to

EOF2, and EOF2 can extend the lifetime of information

initially in EOF1. Note from the envelope of solutions in the

figure that this second attribute is not true for all initial

conditions, but it does hold for most situations.1

Next, we consider cases with strong PC2 initial condi-

tions. We select the 50 states from the control run with the

strongest PC2, and repeat the above LIM simulation and

analysis procedures. When we do this we confirm our main

result concerning this pattern, namely that there is little if

any tendency for initial information in PC2 to transfer to

PC1 (Fig. 11, middle panels). There are cases when PC1

contributes to predictability but this happens early in the

integrations and so is not a result of propagation.

Finally, to examine predictability from a still richer

distribution of initial states, we make LIM predictions

using each annual mean in the control run as an initial state.

1 Note that in contrast to results for finite ensembles, here relative

entropy does converge to zero.
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Averaged relative entropy and its components derived from

predictions from the 700 initial states is shown in the

bottom panel of Fig. 11. It suggests that at the start of the

prediction, mean and spread contribute about equally to

predictability. But after 3 years for PC1, and 6 years for

PC2, predictability mainly comes from signals. Interest-

ingly, the envelopes of relative entropy in these diagrams

indicate that predictability of both PC1 and PC2 may be

enhanced by the presence of initial anomalies in subsurface

structures other than EOF1 and EOF2. This can be seen, for

example at year 6 of PC1, where the most predictable cases

out of the 700 tested have relative entropy that is 28%

larger than any of the cases with strong PC1 or PC2.

6 Comparison to other EOF modes

After having quantified the predictability limits of the most

prominent patterns, now we investigate whether and how

much the presence of the two leading EOFs enhances

predictability of the North Pacific subsurface temperature.

This involves comparing their predictability attributes to

those of other major patterns of variability. Again we

consider that part of subsurface temperature that is repre-

sented by its first 15 EOFs, and we examine each of the

CCSM3 ensembles as well as the 700 LIM solutions used

in Sect. 5.

We first consider predictability due to spread by using

the dispersion component of relative entropy. We find that

among the leading 15 EOFs, EOF1 has the fastest growth

of spread, while EOF2 and EOF5 have the slowest

(Fig. 12; for the sake of clarity, here we only display

results for the first five EOFs). This is generally true for all

three CCSM3 ensembles as well as for the LIM solutions

(all of which have the same spread). This similarity is a

further indication that dispersion is not very sensitive to

initial conditions. Thus, from the standpoint of spread

EOF1 is the least predictable pattern, and it cannot enhance

Fig. 10 Same as Fig. 8 but with

the LIM simulation results

added. We apply the LIM to

three different initial conditions

taken from the three ensemble

experiments. There is only one

curve representing the LIM

results in c and d because the

spread of PCs from LIM

simulations is independent of

the initial state
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predictability of the system by itself. On the other hand,

EOF1 can induce EOF2, and the latter is one of the two

most predictable modes. The other highly predictable pat-

tern is EOF5. It has the slowest dispersion rate among the

leading 15 EOFs in Ensemble II, III, and LIM. Unfortu-

nately, it only explains 5% of total variance. Earlier in

Fig. 1, we have shown that it takes about 10 years for the

RMSD of the North Pacific upper-300 m temperature to

saturate. Given the dispersion rates of EOF1 and 2 in

Fig. 12, it appears that EOF1 and EOF2 are not primarily

responsible for the basin averaged saturation time in Fig. 1.

This is confirmed when we reproduce the calculation of

Fig. 1 with these EOFs removed from the data (figure not

shown).

Another way for the prominent modes to enhance pre-

dictability of the system is through the signal component.

In Fig. 13 we compare the signal component of relative

entropy from the leading two EOFs with that from EOFs

3–15. The sum of the two curves equals the signal com-

ponent of relative entropy from EOFs 1–15. In contrast to

the dispersion component’s insensitivity to the initial

conditions (Fig. 12), there are large variations among the

three ensembles in the signal component. In Ensemble I,

the contribution from the first two EOFs is almost zero, and

the signal mainly comes from other EOFs. In contrast,

EOFs 1–2 explain about 20–30% of the signal from the

leading 15 EOFs during the first 6 years in Ensemble II

(Fig. 13b), and during the first 4 years in Ensemble III

(Fig. 13c), well above the average contribution from any

other two EOFs. So, since the signal component is often

such a large part of the predictable information, the degree

to which the leading two EOFs contribute to predictability

depends strongly on the initial state. But based on the 700

LIM solutions (Fig. 13d), on average these two EOFs make

Fig. 11 Univariate relative entropy for PC1 (left) and PC2 (middle)

and bivariate relative entropy for PC1 and PC2 combined (right) from

three groups of LIM simulations. The first group (top) uses initial

conditions associated with the 50 states in the CCSM3 control with

the strongest PC1 s. The black, red, and blue lines indicate 50-case

averaged total relative entropy, and its signal and dispersion

components, respectively, and the grey shading represents the

envelope of the 50 cases’ total relative entropy. The second group

(middle) uses initial conditions associated with the 50 CCSM3 states

with the strongest PC2, and the third group (bottom) uses all 700

control states as initial conditions
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up just 10–20% of the predictable information during the

first five forecast years.

One needs to be cautious of a property of relative

entropy when interpreting the top row of Fig. 13. Although

relative entropy can measure predictability of a system

consisting of several variables, contributions from these

variables are given equal weight, as indicated by the nor-

malization of the ensemble means in Eq. 2. And the more

variables one considers, the larger the relative entropy will

be, so the percentage contributions presented above would

be different if we had used a different number of EOFs to

describe the temperature field. A modification that is

sometimes used to the definition of entropy can avoid this

situation. This modification (Karmeshu and Pal 2003)

corresponds to including a weighting function in the inte-

grand of Eq. 1 that is a function of x. Following this idea,

we have recalculated the top row of Fig. 13 with the con-

tribution to the signal term from each PC weighted by the

variance of that PC in the control. This has the effect of

removing the division by r2
c in Eq. 2. In doing this, we are

reasoning that information associated with a variable that

tends to have high amplitude is more useful than

information associated with low amplitude variables. The

results are shown in the bottom row of that figure. As one

would expect, with this weighting the contribution to the

signal from PC1 and PC2 becomes much more important.

Especially in Ensemble II and III, but even for the average

LIM case, for at least 6 years the contribution from these

two components is comparable to that from the other 13

combined. A second finding of interest that comes from

using relative entropy weighted in this way is contained in

the grey curve in the bottom panels of Fig. 13. It shows the

signal component of weighted relative entropy if one uses

20 EOFs to represent the subsurface temperature state. In

all four panels the signal is almost the same as that for 15

EOFs suggesting that when employing 15 EOFs we have

included essentially all of the important contributions to

information content.

A good example of the motivation behind weighted

relative entropy, namely that high predictability in con-

junction with large amplitude can lead to a useful forecast,

is provided by the propagating mode in Ensemble II. The

ensemble averaged subsurface temperature and SST

anomalies in year 2, 6, and 8 for this experiment are

Fig. 12 Dispersion component

of univariate relative entropy of

the leading five EOFs in

Ensemble I (a), Ensemble II (b),

Ensemble III (c), and from

LIM (d)
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presented in Fig. 14. These 3 years correspond to phase

32�, 95� and 136�, respectively, of the subsurface propa-

gating mode defined by EOF1 and EOF2. No temporal

filtering has been applied to these two fields yet the evo-

lution of both the subsurface temperature and SST resem-

bles the control run composites of filtered fields in Fig. 6.

This indicates that SST anomalies in Ensemble II may be

linked to the subsurface mode that has decadal predict-

ability. We also calculate the ensemble average of 10–

30 year filtered SLP anomalies for this experiment, and

they are shown in the right column of Fig. 14. Similar to

the control composite of Fig. 6, during the transitional

phase from EOF1 to EOF2 (year 2), North Pacific SLP is

governed by positive anomalies north of 50�N. SLP

changes to negative anomalies at year 6, again in a fashion

similar to the corresponding control composite at about

phase 90�. Further analysis would be required to establish

whether these atmospheric circulation anomalies are

caused by the underlying ocean. But the fact that they

match relationships seen in the control and the fact that

they evolve in a coherent fashion on such long time scales

even though intrinsic atmospheric variability on these time

scales is typically weak suggests that they may be linked to

the oceanic mode, which in this case is predictable for

about a decade.

7 Concluding remarks

While numerous studies have hypothesized that the pro-

nounced decadal variability in the North Pacific, and

especially that associated with the PDO, may give rise to

decadal predictability, few have carried out experiments

specifically designed to measure the predictability of this

region and its dominant modes. Here we employ three sets

of 40-member ensemble simulations and a 700 year control

run from CCSM3 to quantify initial-value predictability in

the North Pacific. We focus on the leading subsurface

temperature modes and our major results are summarized

as follows:

• For average amplitude events, EOF1 (the PDO) is

predictable for less than 6 years.

• In terms of ensemble dispersion EOF1 is the least

predictable of the leading 15 EOFs while EOF2 is one

of the two most predictable.

Fig. 13 The top panels are the signal component of relative entropy

of the leading 15 EOFs (black), EOF3-15 (blue), and EOF1-2 (red) in

Ensemble I (a), II (b), III (c), and for the average of 700 LIM

simulations (d). The bottom panels are the same as the top panels but

the signals have not been standardized. Therefore, the signal relative

entropy contribution from each EOF is weighted by its explained

variance. A grey line for EOF1-20 is also included in (h)
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• The leading two EOFs together produce an eastward

propagating mode driven by horizontal advection. This

mode is not oscillatory; EOF1 tends to evolve to EOF2

but it is much less likely that EOF2 will evolve to

(minus) EOF1.

• For initial conditions with average amplitude the

propagating mode is predictable for about a decade.

Higher predictability results from events beginning

with large amplitude PC1 than events beginning with

large amplitude PC2.

• For the leading mode information in the ensemble mean

tends to be longer lasting than information in the spread

about the mean. On average the ensemble spread is

indistinguishable from the climatological spread within

5 years while the mean signal lasts nearly a decade. For

events with unusually high initial amplitude the mean

signal can last even longer.

• The predictability of the leading propagating mode

appears to make no larger contribution to basin wide

predictability than other patterns of variability from the

standpoint of information. But when one considers the

high average amplitude of this mode, then its impres-

sive contribution to useful forecasts becomes apparent.

An important lesson from this study is that the intrinsic

time scale of a pattern is not necessarily a good indicator

of its predictability. We find that PC1 of subsurface

temperature has pronounced variance on decadal time

scales, but its averaged predictability limit is less than

6 years, perhaps because the atmosphere may be an

important contributor to its maintenance and evolution.

By contrast, PC2 has an average predictability limit of

about 8 years even though the peaks in its spectrum are at

somewhat higher frequencies than those for PC1. This

contrast is also seen in the characteristic times of these

two PCs: PC1 amplitudes are reduced by a factor of e

after 4.5 years while it takes only 3.6 years for such a

reduction in the more predictable PC2. The unreliability

of time scale as an indicator of predictability is even more

dramatic when we consider EOF5. It is the most pre-

dictable among the leading 15 EOFs with regard to dis-

persion rate, yet its e-damping time is 3.5 years. The

leading EOF of a geophysical field often possesses the

longest intrinsic time scales, and it has been found to

have enhanced predictability in studies of weather pre-

diction and intraseasonal variability. Such characteristics

have partly motivated us to focus on the leading

Fig. 14 40-member averaged upper-300 m temperature (left), SST and 10–30 year filtered SLP (right) in year 2 (top), year 6 (middle) and year 8

(bottom) from Ensemble II. Stippling indicates the 95% significance level from Student’s t test
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prominent modes as a first step toward quantifying pre-

dictability in the North Pacific. But our results here pro-

vide a counterexample to a correspondence between time

scales of a pattern and its predictability and indicate one

must take a prognostic approach in order to get an

accurate estimate of predictability limits.

A second clear lesson from our investigation is the need

to allow for time evolving modes when examining pre-

dictability. EOF1 appears to have low predictability when

considered in isolation. But this conclusion changes when

one takes into account its tendency to evolve to EOF2,

which is one of the most predictable patterns. Interestingly

it is also apparent that the initial phase of such time

dependent modes must be accounted for when quantifying

their predictability.

We are uncertain which physical process determines

the 20 year dominant frequency peak of the prominent

mode captured by EOF1 and EOF2. Our result that the

dominant eastward propagation of this mode is mainly

caused by horizontal advection does not eliminate the

possibility suggested by some studies (Jin 1997; Qiu

2003) that baroclinic Rossby waves resulting from ocean–

atmosphere interactions may play a role in timescale

selection of prominent North Pacific modes. In results not

displayed in this paper, we have found suggestions of

westward propagating features in sea surface height to the

north of the eastward propagating features we have

focused on. In addition, we find hints of anomalies

propagating southwestward along the subtropical sub-

duction pathway in composites of subsurface temperature,

but they don’t propagate all the way to the western

boundary. Our main point, from the perspective of pre-

dictability, is that in CCSM3 westward propagating fea-

tures are not prominent enough to sustain full oscillations

as exemplified by the fact that in the CCSM3 ensemble

experiments and in the LIM, EOF2 does not necessarily

lead to growth of EOF1.

A third important lesson from our work is that both the

mean and spread of an ensemble should be taken into

account when assessing initial-value predictability. A

common question for predictability studies is whether there

exist some initial ocean states that are more predictable

than others. In contrast to common perceptions that

ensemble spread is the primary factor that distinguishes the

most predictable situations (Palmer 1993), all three of our

ensembles show similar rates of spread; the longest pre-

dictability is found in the ensemble with an especially

strong initial anomaly that leads to a long lasting mean

signal. This behavior resembles the predictability charac-

teristics of a stochastically forced damped linear system

(Kleeman 2002). The fact that we were able to replicate the

statistics of the prominent propagating mode in the three

ensembles rather well by a LIM further implies that the

PDO in CCSM3 may to a large extent be approximated as a

stochastic, damped mode.

Beyond these results and their implications, our work

adds to previous predictability studies in the following

ways: First, we focus on subsurface temperature. Our

results suggest that the subsurface propagating mode,

which has decadal predictability, is associated with signa-

tures in SST and atmospheric surface pressure. This finding

opens the possibility that filtering surface conditions to

retain anomalies that are associated with predictable sub-

surface structures might be a way of isolating those com-

ponents of surface conditions that are most predictable on

decadal time scales. Second, our predictability limit is

estimated using relative entropy, which can assess the

forecast range at which information present in the initial

condition is lost based on all aspects of a predicted distri-

bution. An additional benefit of relative entropy is that it

can measure information flow in a multivariate distribution

making it ideal for considering modes with more than one

spatial degree of freedom. Methodologies based only on

isolated geographical locations or single patterns, e.g.

univariate AR1 modeling, would be misleading under these

circumstances.

Though we believe the various implications of our work

are worthwhile, it is best to also keep in mind various

limitations to the conclusions that should be drawn from

our results because of our experimental design and model

errors. Perhaps paramount among these is that just because

we have measured the predictability of certain modes does

not mean that this predictability can be attained; it is only

an upper bound on what can be attained. Furthermore the

predictability limits we report above are only valid for

CCSM3. Other models and nature may well have different

limits.

Beyond these unavoidable shortcomings in our investi-

gation, there are others gaps in our study that can be

addressed through additional work. Our current study has

focused on prominent modes that explain 40% of the total

variance. It would be worthwhile to expand the analysis

from individual modes to generic forecast fields. Second,

investigations in other ocean basins would be useful. In

preliminary work, we have calculated the RMSD of SST

and subsurface temperature in several ocean basins and

find the saturation time is highly dependent on region.

Figure 1b gives one example of this, namely the equatorial

Pacific, where saturation is reached much earlier than in the

North Pacific. Third, though we have shown that the sub-

surface propagating mode carries a signature in SST and

atmospheric surface pressure, it would be useful to quantify

the predictability of this component of low-frequency SST

and atmospheric variability. Fourth, we have not investi-

gated the structure of those perturbations that lead to the

fastest loss of predictability though such information is
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needed for designing the climate observational system.

Fifth, we have only considered predictability of the first

kind while there is a forecast range at which predictability

of the second kind should dominate (Hawkins and Sutton

2009; Meehl et al. 2009). We expect to consider these

topics in future investigations.
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