ENSO in the GFDL Coupled Model

Andrew Wittenberg AOS Program, Princeton University

> Tony Rosati & Isaac Held GFDL/NOAA

> > and the

GFDL Model Development Teams

Email: andyw@aos.princeton.edu

Coupled model as of May 2003...

OM2p2 ocean

- MOM4: tripolar grid, 2° Mercator south of 65°N, telescoping to $\frac{2}{3}$ ° latitude within 12° of equator
- 50 levels (10m thickness above 220m)
- explicit free surface
- Quicker advection, KPP, neutral physics, sigma diffusion, Smagorinsky friction, 1-hour timestep
- diurnal cycle, shortwave penetration depends on spatially-varying climatological "color"

AM2p11 atmosphere

- B-grid core: 2.5° lon $\times 2^{\circ}$ lat $\times 18$ levels
- RAS convection
- MY 2.5 dry PBL w/ prognostic TKE
- "gustiness" & enhanced ocean roughness for weak winds; surface stress depends on ocean currents
- diurnal cycle w/ 3-hour radiation, 30min physics
- cumulus momentum transport (CMT): vertical diffusion of momentum where convection occurs

Coupled to ocean every 3 hours.

Interannual SST variability: Obs vs. CGCM

CMT Impact on Coupled ENSO Simulation

"AMIP" Response to Observed NINO3 SST Anomalies

Impact of CMT in the Coupled Model

Why does CMT affect the ENSO period?

Ocean response to equatorial westerlies

Intermediate coupled model studies (Kirtman 1997, An & Wang 2000):

 τ'_x widens \Rightarrow weaker discharge, weaker $u' \Rightarrow$ longer period τ'_x shifts east \Rightarrow u' less of a transitioner \Rightarrow longer period

ENSO Mechanism: Lag-Regressions onto NINO3 SSTA

Summary

- The GFDL coupled model with CMT gives a decadally-modulated ENSO with reasonable amplitude, period, structure, and mechanism,
- 2. but the simulated ENSO variability is too regular in time, too far west, and shows too much westward propagation of SSTAs. Seasonal phaselocking is also a problem.
- 3. Precip & τ'_x are highly sensitive to CMT. As τ'_x spreads eastward & poleward $\Rightarrow u'$ and recharge are weakened & delayed \Rightarrow longer ENSO period (2.0 \rightarrow 3.6 yr)
- 4. Equatorial cold bias splits the precip response to SSTAs. The τ'_x response remains weak, narrow, and too far west.

SST (°C) precip (mm/day) au_{x} (dPa) 10°N OBS 0° 10°S റ 10°N no CMT-0° 10°S 10°N CMT 0° · · · · · 10°S 150°E 150°W 90°W 90°W 150°E 150°W 150°E 150°W 90°W

Annual-Mean Tropical Pacific Climatology

Spectrum of NINO3 SST Anomalies

Impact of Coupling

