module error_function 8,6 ! This module provides generic interfaces for functions that evaluate ! erf(x), erfc(x), and exp(x*x)*erfc(x) in either single or double precision. implicit none private save ! Public functions public :: erf, erfc, erfcx interface erf module procedure erf_r4 module procedure derf end interface interface erfc module procedure erfc_r4 module procedure derfc end interface interface erfcx module procedure erfcx_r4 module procedure derfcx end interface ! Private variables integer, parameter :: r4 = selected_real_kind(6) ! 4 byte real integer, parameter :: r8 = selected_real_kind(12) ! 8 byte real contains !------------------------------------------------------------------ ! ! 6 December 2006 -- B. Eaton ! The following comments are from the original version of CALERF. ! The only changes in implementing this module are that the function ! names previously used for the single precision versions have been ! adopted for the new generic interfaces. To support these interfaces ! there is now both a single precision version (calerf_r4) and a ! double precision version (calerf_r8) of CALERF below. These versions ! are hardcoded to use IEEE arithmetic. ! !------------------------------------------------------------------ ! ! This packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x) ! for a real argument x. It contains three FUNCTION type ! subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX), ! and one SUBROUTINE type subprogram, CALERF. The calling ! statements for the primary entries are: ! ! Y=ERF(X) (or Y=DERF(X)), ! ! Y=ERFC(X) (or Y=DERFC(X)), ! and ! Y=ERFCX(X) (or Y=DERFCX(X)). ! ! The routine CALERF is intended for internal packet use only, ! all computations within the packet being concentrated in this ! routine. The function subprograms invoke CALERF with the ! statement ! ! CALL CALERF(ARG,RESULT,JINT) ! ! where the parameter usage is as follows ! ! Function Parameters for CALERF ! call ARG Result JINT ! ! ERF(ARG) ANY REAL ARGUMENT ERF(ARG) 0 ! ERFC(ARG) ABS(ARG) .LT. XBIG ERFC(ARG) 1 ! ERFCX(ARG) XNEG .LT. ARG .LT. XMAX ERFCX(ARG) 2 ! ! The main computation evaluates near-minimax approximations ! from "Rational Chebyshev approximations for the error function" ! by W. J. Cody, Math. Comp., 1969, PP. 631-638. This ! transportable program uses rational functions that theoretically ! approximate erf(x) and erfc(x) to at least 18 significant ! decimal digits. The accuracy achieved depends on the arithmetic ! system, the compiler, the intrinsic functions, and proper ! selection of the machine-dependent constants. ! !******************************************************************* !******************************************************************* ! ! Explanation of machine-dependent constants ! ! XMIN = the smallest positive floating-point number. ! XINF = the largest positive finite floating-point number. ! XNEG = the largest negative argument acceptable to ERFCX; ! the negative of the solution to the equation ! 2*exp(x*x) = XINF. ! XSMALL = argument below which erf(x) may be represented by ! 2*x/sqrt(pi) and above which x*x will not underflow. ! A conservative value is the largest machine number X ! such that 1.0 + X = 1.0 to machine precision. ! XBIG = largest argument acceptable to ERFC; solution to ! the equation: W(x) * (1-0.5/x**2) = XMIN, where ! W(x) = exp(-x*x)/[x*sqrt(pi)]. ! XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to ! machine precision. A conservative value is ! 1/[2*sqrt(XSMALL)] ! XMAX = largest acceptable argument to ERFCX; the minimum ! of XINF and 1/[sqrt(pi)*XMIN]. ! ! Approximate values for some important machines are: ! ! XMIN XINF XNEG XSMALL ! ! CDC 7600 (S.P.) 3.13E-294 1.26E+322 -27.220 7.11E-15 ! CRAY-1 (S.P.) 4.58E-2467 5.45E+2465 -75.345 7.11E-15 ! IEEE (IBM/XT, ! SUN, etc.) (S.P.) 1.18E-38 3.40E+38 -9.382 5.96E-8 ! IEEE (IBM/XT, ! SUN, etc.) (D.P.) 2.23D-308 1.79D+308 -26.628 1.11D-16 ! IBM 195 (D.P.) 5.40D-79 7.23E+75 -13.190 1.39D-17 ! UNIVAC 1108 (D.P.) 2.78D-309 8.98D+307 -26.615 1.73D-18 ! VAX D-Format (D.P.) 2.94D-39 1.70D+38 -9.345 1.39D-17 ! VAX G-Format (D.P.) 5.56D-309 8.98D+307 -26.615 1.11D-16 ! ! ! XBIG XHUGE XMAX ! ! CDC 7600 (S.P.) 25.922 8.39E+6 1.80X+293 ! CRAY-1 (S.P.) 75.326 8.39E+6 5.45E+2465 ! IEEE (IBM/XT, ! SUN, etc.) (S.P.) 9.194 2.90E+3 4.79E+37 ! IEEE (IBM/XT, ! SUN, etc.) (D.P.) 26.543 6.71D+7 2.53D+307 ! IBM 195 (D.P.) 13.306 1.90D+8 7.23E+75 ! UNIVAC 1108 (D.P.) 26.582 5.37D+8 8.98D+307 ! VAX D-Format (D.P.) 9.269 1.90D+8 1.70D+38 ! VAX G-Format (D.P.) 26.569 6.71D+7 8.98D+307 ! !******************************************************************* !******************************************************************* ! ! Error returns ! ! The program returns ERFC = 0 for ARG .GE. XBIG; ! ! ERFCX = XINF for ARG .LT. XNEG; ! and ! ERFCX = 0 for ARG .GE. XMAX. ! ! ! Intrinsic functions required are: ! ! ABS, AINT, EXP ! ! ! Author: W. J. Cody ! Mathematics and Computer Science Division ! Argonne National Laboratory ! Argonne, IL 60439 ! ! Latest modification: March 19, 1990 ! !------------------------------------------------------------------ SUBROUTINE CALERF_r8(ARG, RESULT, JINT) 3 !------------------------------------------------------------------ ! This version uses 8-byte reals !------------------------------------------------------------------ integer, parameter :: rk = r8 ! arguments real(rk), intent(in) :: arg integer, intent(in) :: jint real(rk), intent(out) :: result ! local variables INTEGER :: I real(rk) :: X, Y, YSQ, XNUM, XDEN, DEL !------------------------------------------------------------------ ! Mathematical constants !------------------------------------------------------------------ real(rk), parameter :: ZERO = 0.0E0_rk real(rk), parameter :: FOUR = 4.0E0_rk real(rk), parameter :: ONE = 1.0E0_rk real(rk), parameter :: HALF = 0.5E0_rk real(rk), parameter :: TWO = 2.0E0_rk real(rk), parameter :: SQRPI = 5.6418958354775628695E-1_rk real(rk), parameter :: THRESH = 0.46875E0_rk real(rk), parameter :: SIXTEN = 16.0E0_rk !------------------------------------------------------------------ ! Machine-dependent constants: IEEE single precision values !------------------------------------------------------------------ !S real, parameter :: XINF = 3.40E+38 !S real, parameter :: XNEG = -9.382E0 !S real, parameter :: XSMALL = 5.96E-8 !S real, parameter :: XBIG = 9.194E0 !S real, parameter :: XHUGE = 2.90E3 !S real, parameter :: XMAX = 4.79E37 !------------------------------------------------------------------ ! Machine-dependent constants: IEEE double precision values !------------------------------------------------------------------ real(rk), parameter :: XINF = 1.79E308_r8 real(rk), parameter :: XNEG = -26.628E0_r8 real(rk), parameter :: XSMALL = 1.11E-16_r8 real(rk), parameter :: XBIG = 26.543E0_r8 real(rk), parameter :: XHUGE = 6.71E7_r8 real(rk), parameter :: XMAX = 2.53E307_r8 !------------------------------------------------------------------ ! Coefficients for approximation to erf in first interval !------------------------------------------------------------------ real(rk), parameter :: A(5) = (/ 3.16112374387056560E00_rk, 1.13864154151050156E02_rk, & 3.77485237685302021E02_rk, 3.20937758913846947E03_rk, & 1.85777706184603153E-1_rk /) real(rk), parameter :: B(4) = (/ 2.36012909523441209E01_rk, 2.44024637934444173E02_rk, & 1.28261652607737228E03_rk, 2.84423683343917062E03_rk /) !------------------------------------------------------------------ ! Coefficients for approximation to erfc in second interval !------------------------------------------------------------------ real(rk), parameter :: C(9) = (/ 5.64188496988670089E-1_rk, 8.88314979438837594E00_rk, & 6.61191906371416295E01_rk, 2.98635138197400131E02_rk, & 8.81952221241769090E02_rk, 1.71204761263407058E03_rk, & 2.05107837782607147E03_rk, 1.23033935479799725E03_rk, & 2.15311535474403846E-8_rk /) real(rk), parameter :: D(8) = (/ 1.57449261107098347E01_rk, 1.17693950891312499E02_rk, & 5.37181101862009858E02_rk, 1.62138957456669019E03_rk, & 3.29079923573345963E03_rk, 4.36261909014324716E03_rk, & 3.43936767414372164E03_rk, 1.23033935480374942E03_rk /) !------------------------------------------------------------------ ! Coefficients for approximation to erfc in third interval !------------------------------------------------------------------ real(rk), parameter :: P(6) = (/ 3.05326634961232344E-1_rk, 3.60344899949804439E-1_rk, & 1.25781726111229246E-1_rk, 1.60837851487422766E-2_rk, & 6.58749161529837803E-4_rk, 1.63153871373020978E-2_rk /) real(rk), parameter :: Q(5) = (/ 2.56852019228982242E00_rk, 1.87295284992346047E00_rk, & 5.27905102951428412E-1_rk, 6.05183413124413191E-2_rk, & 2.33520497626869185E-3_rk /) !------------------------------------------------------------------ X = ARG Y = ABS(X) IF (Y .LE. THRESH) THEN !------------------------------------------------------------------ ! Evaluate erf for |X| <= 0.46875 !------------------------------------------------------------------ YSQ = ZERO IF (Y .GT. XSMALL) YSQ = Y * Y XNUM = A(5)*YSQ XDEN = YSQ DO I = 1, 3 XNUM = (XNUM + A(I)) * YSQ XDEN = (XDEN + B(I)) * YSQ end do RESULT = X * (XNUM + A(4)) / (XDEN + B(4)) IF (JINT .NE. 0) RESULT = ONE - RESULT IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT GO TO 80 ELSE IF (Y .LE. FOUR) THEN !------------------------------------------------------------------ ! Evaluate erfc for 0.46875 <= |X| <= 4.0 !------------------------------------------------------------------ XNUM = C(9)*Y XDEN = Y DO I = 1, 7 XNUM = (XNUM + C(I)) * Y XDEN = (XDEN + D(I)) * Y end do RESULT = (XNUM + C(8)) / (XDEN + D(8)) IF (JINT .NE. 2) THEN YSQ = AINT(Y*SIXTEN)/SIXTEN DEL = (Y-YSQ)*(Y+YSQ) RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT END IF ELSE !------------------------------------------------------------------ ! Evaluate erfc for |X| > 4.0 !------------------------------------------------------------------ RESULT = ZERO IF (Y .GE. XBIG) THEN IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 30 IF (Y .GE. XHUGE) THEN RESULT = SQRPI / Y GO TO 30 END IF END IF YSQ = ONE / (Y * Y) XNUM = P(6)*YSQ XDEN = YSQ DO I = 1, 4 XNUM = (XNUM + P(I)) * YSQ XDEN = (XDEN + Q(I)) * YSQ end do RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5)) RESULT = (SQRPI - RESULT) / Y IF (JINT .NE. 2) THEN YSQ = AINT(Y*SIXTEN)/SIXTEN DEL = (Y-YSQ)*(Y+YSQ) RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT END IF END IF 30 continue !------------------------------------------------------------------ ! Fix up for negative argument, erf, etc. !------------------------------------------------------------------ IF (JINT .EQ. 0) THEN RESULT = (HALF - RESULT) + HALF IF (X .LT. ZERO) RESULT = -RESULT ELSE IF (JINT .EQ. 1) THEN IF (X .LT. ZERO) RESULT = TWO - RESULT ELSE IF (X .LT. ZERO) THEN IF (X .LT. XNEG) THEN RESULT = XINF ELSE YSQ = AINT(X*SIXTEN)/SIXTEN DEL = (X-YSQ)*(X+YSQ) Y = EXP(YSQ*YSQ) * EXP(DEL) RESULT = (Y+Y) - RESULT END IF END IF END IF 80 continue end SUBROUTINE CALERF_r8 !------------------------------------------------------------------------------------------ SUBROUTINE CALERF_r4(ARG, RESULT, JINT) 3 !------------------------------------------------------------------ ! This version uses 4-byte reals !------------------------------------------------------------------ integer, parameter :: rk = r4 ! arguments real(rk), intent(in) :: arg integer, intent(in) :: jint real(rk), intent(out) :: result ! local variables INTEGER :: I real(rk) :: X, Y, YSQ, XNUM, XDEN, DEL !------------------------------------------------------------------ ! Mathematical constants !------------------------------------------------------------------ real(rk), parameter :: ZERO = 0.0E0_rk real(rk), parameter :: FOUR = 4.0E0_rk real(rk), parameter :: ONE = 1.0E0_rk real(rk), parameter :: HALF = 0.5E0_rk real(rk), parameter :: TWO = 2.0E0_rk real(rk), parameter :: SQRPI = 5.6418958354775628695E-1_rk real(rk), parameter :: THRESH = 0.46875E0_rk real(rk), parameter :: SIXTEN = 16.0E0_rk !------------------------------------------------------------------ ! Machine-dependent constants: IEEE single precision values !------------------------------------------------------------------ real(rk), parameter :: XINF = 3.40E+38_r4 real(rk), parameter :: XNEG = -9.382E0_r4 real(rk), parameter :: XSMALL = 5.96E-8_r4 real(rk), parameter :: XBIG = 9.194E0_r4 real(rk), parameter :: XHUGE = 2.90E3_r4 real(rk), parameter :: XMAX = 4.79E37_r4 !------------------------------------------------------------------ ! Coefficients for approximation to erf in first interval !------------------------------------------------------------------ real(rk), parameter :: A(5) = (/ 3.16112374387056560E00_rk, 1.13864154151050156E02_rk, & 3.77485237685302021E02_rk, 3.20937758913846947E03_rk, & 1.85777706184603153E-1_rk /) real(rk), parameter :: B(4) = (/ 2.36012909523441209E01_rk, 2.44024637934444173E02_rk, & 1.28261652607737228E03_rk, 2.84423683343917062E03_rk /) !------------------------------------------------------------------ ! Coefficients for approximation to erfc in second interval !------------------------------------------------------------------ real(rk), parameter :: C(9) = (/ 5.64188496988670089E-1_rk, 8.88314979438837594E00_rk, & 6.61191906371416295E01_rk, 2.98635138197400131E02_rk, & 8.81952221241769090E02_rk, 1.71204761263407058E03_rk, & 2.05107837782607147E03_rk, 1.23033935479799725E03_rk, & 2.15311535474403846E-8_rk /) real(rk), parameter :: D(8) = (/ 1.57449261107098347E01_rk, 1.17693950891312499E02_rk, & 5.37181101862009858E02_rk, 1.62138957456669019E03_rk, & 3.29079923573345963E03_rk, 4.36261909014324716E03_rk, & 3.43936767414372164E03_rk, 1.23033935480374942E03_rk /) !------------------------------------------------------------------ ! Coefficients for approximation to erfc in third interval !------------------------------------------------------------------ real(rk), parameter :: P(6) = (/ 3.05326634961232344E-1_rk, 3.60344899949804439E-1_rk, & 1.25781726111229246E-1_rk, 1.60837851487422766E-2_rk, & 6.58749161529837803E-4_rk, 1.63153871373020978E-2_rk /) real(rk), parameter :: Q(5) = (/ 2.56852019228982242E00_rk, 1.87295284992346047E00_rk, & 5.27905102951428412E-1_rk, 6.05183413124413191E-2_rk, & 2.33520497626869185E-3_rk /) !------------------------------------------------------------------ X = ARG Y = ABS(X) IF (Y .LE. THRESH) THEN !------------------------------------------------------------------ ! Evaluate erf for |X| <= 0.46875 !------------------------------------------------------------------ YSQ = ZERO IF (Y .GT. XSMALL) YSQ = Y * Y XNUM = A(5)*YSQ XDEN = YSQ DO I = 1, 3 XNUM = (XNUM + A(I)) * YSQ XDEN = (XDEN + B(I)) * YSQ end do RESULT = X * (XNUM + A(4)) / (XDEN + B(4)) IF (JINT .NE. 0) RESULT = ONE - RESULT IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT GO TO 80 ELSE IF (Y .LE. FOUR) THEN !------------------------------------------------------------------ ! Evaluate erfc for 0.46875 <= |X| <= 4.0 !------------------------------------------------------------------ XNUM = C(9)*Y XDEN = Y DO I = 1, 7 XNUM = (XNUM + C(I)) * Y XDEN = (XDEN + D(I)) * Y end do RESULT = (XNUM + C(8)) / (XDEN + D(8)) IF (JINT .NE. 2) THEN YSQ = AINT(Y*SIXTEN)/SIXTEN DEL = (Y-YSQ)*(Y+YSQ) RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT END IF ELSE !------------------------------------------------------------------ ! Evaluate erfc for |X| > 4.0 !------------------------------------------------------------------ RESULT = ZERO IF (Y .GE. XBIG) THEN IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 30 IF (Y .GE. XHUGE) THEN RESULT = SQRPI / Y GO TO 30 END IF END IF YSQ = ONE / (Y * Y) XNUM = P(6)*YSQ XDEN = YSQ DO I = 1, 4 XNUM = (XNUM + P(I)) * YSQ XDEN = (XDEN + Q(I)) * YSQ end do RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5)) RESULT = (SQRPI - RESULT) / Y IF (JINT .NE. 2) THEN YSQ = AINT(Y*SIXTEN)/SIXTEN DEL = (Y-YSQ)*(Y+YSQ) RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT END IF END IF 30 continue !------------------------------------------------------------------ ! Fix up for negative argument, erf, etc. !------------------------------------------------------------------ IF (JINT .EQ. 0) THEN RESULT = (HALF - RESULT) + HALF IF (X .LT. ZERO) RESULT = -RESULT ELSE IF (JINT .EQ. 1) THEN IF (X .LT. ZERO) RESULT = TWO - RESULT ELSE IF (X .LT. ZERO) THEN IF (X .LT. XNEG) THEN RESULT = XINF ELSE YSQ = AINT(X*SIXTEN)/SIXTEN DEL = (X-YSQ)*(X+YSQ) Y = EXP(YSQ*YSQ) * EXP(DEL) RESULT = (Y+Y) - RESULT END IF END IF END IF 80 continue end SUBROUTINE CALERF_r4 !------------------------------------------------------------------------------------------ FUNCTION DERF(X) 1,1 !-------------------------------------------------------------------- ! ! This subprogram computes approximate values for erf(x). ! (see comments heading CALERF). ! ! Author/date: W. J. Cody, January 8, 1985 ! !-------------------------------------------------------------------- integer, parameter :: rk = r8 ! 8 byte real ! argument real(rk), intent(in) :: X ! return value real(rk) :: DERF ! local variables INTEGER :: JINT = 0 !------------------------------------------------------------------ CALL CALERF_r8(X, DERF, JINT) END FUNCTION DERF !------------------------------------------------------------------------------------------ FUNCTION ERF_r4(X) 1,1 !-------------------------------------------------------------------- ! ! This subprogram computes approximate values for erf(x). ! (see comments heading CALERF). ! ! Author/date: W. J. Cody, January 8, 1985 ! !-------------------------------------------------------------------- integer, parameter :: rk = r4 ! 4 byte real ! argument real(rk), intent(in) :: X ! return value real(rk) :: ERF_r4 ! local variables INTEGER :: JINT = 0 !------------------------------------------------------------------ CALL CALERF_r4(X, ERF_r4, JINT) END FUNCTION ERF_r4 !------------------------------------------------------------------------------------------ FUNCTION DERFC(X) 1,1 !-------------------------------------------------------------------- ! ! This subprogram computes approximate values for erfc(x). ! (see comments heading CALERF). ! ! Author/date: W. J. Cody, January 8, 1985 ! !-------------------------------------------------------------------- integer, parameter :: rk = r8 ! 8 byte real ! argument real(rk), intent(in) :: X ! return value real(rk) :: DERFC ! local variables INTEGER :: JINT = 1 !------------------------------------------------------------------ CALL CALERF_r8(X, DERFC, JINT) END FUNCTION DERFC !------------------------------------------------------------------------------------------ FUNCTION ERFC_r4(X) 1,1 !-------------------------------------------------------------------- ! ! This subprogram computes approximate values for erfc(x). ! (see comments heading CALERF). ! ! Author/date: W. J. Cody, January 8, 1985 ! !-------------------------------------------------------------------- integer, parameter :: rk = r4 ! 4 byte real ! argument real(rk), intent(in) :: X ! return value real(rk) :: ERFC_r4 ! local variables INTEGER :: JINT = 1 !------------------------------------------------------------------ CALL CALERF_r4(X, ERFC_r4, JINT) END FUNCTION ERFC_r4 !------------------------------------------------------------------------------------------ FUNCTION DERFCX(X) 1,1 !-------------------------------------------------------------------- ! ! This subprogram computes approximate values for exp(x*x) * erfc(x). ! (see comments heading CALERF). ! ! Author/date: W. J. Cody, March 30, 1987 ! !-------------------------------------------------------------------- integer, parameter :: rk = r8 ! 8 byte real ! argument real(rk), intent(in) :: X ! return value real(rk) :: DERFCX ! local variables INTEGER :: JINT = 2 !------------------------------------------------------------------ CALL CALERF_r8(X, DERFCX, JINT) END FUNCTION DERFCX !------------------------------------------------------------------------------------------ FUNCTION ERFCX_R4(X) 1,1 !-------------------------------------------------------------------- ! ! This subprogram computes approximate values for exp(x*x) * erfc(x). ! (see comments heading CALERF). ! ! Author/date: W. J. Cody, March 30, 1987 ! !-------------------------------------------------------------------- integer, parameter :: rk = r4 ! 8 byte real ! argument real(rk), intent(in) :: X ! return value real(rk) :: ERFCX_R4 ! local variables INTEGER :: JINT = 2 !------------------------------------------------------------------ CALL CALERF_r4(X, ERFCX_R4, JINT) END FUNCTION ERFCX_R4 !------------------------------------------------------------------------------------------ end module error_function