module gauaw_mod,2 !----------------------------------------------------------------------- ! ! Purpose: ! ! Module to calculate the Gaussian Weights. Public interface is ! the subroutine "gauaw( a, w, k )". ! ! Method: ! ! The algorithm is described in Davis and Rabinowitz, ! Journal of Research of the NBS, V 56, Jan 1956. ! ! Author: David Williamson, Jim Hack ! !----------------------------------------------------------------------- use abortutils, only: endrun use shr_kind_mod, only: r8 => shr_kind_r8 #ifdef NO_R16 integer,parameter :: r16= selected_real_kind(12) ! 8 byte real #else integer,parameter :: r16= selected_real_kind(24) ! 16 byte real #endif save ! ! Public subroutines ! public gauaw ! ! Variables private to routines inside this module ! real(r16), private :: pi ! value of pi real(r16), private, parameter :: one = 1.0_r16 ! 1. in real(r16). Needed by atan ! ! Functions private to routines inside this module ! private bsslzr contains subroutine gauaw(a, w, k),2 !----------------------------------------------------------------------- ! ! Calculate sine of latitudes a(k) and weights w(k) for the gaussian ! quadrature. The algorithm is described in Davis and Rabinowitz, ! Journal of Research of the NBS, V 56, Jan 1956. ! The zeros of the bessel function j0, which are obtained from bsslzr, ! are used as a first guess for the abscissa. ! ! Modified 1/23/97 by Jim Rosinski to use real*16 arithmetic in order to ! achieve (nearly) identical weights and latitudes on all machines. ! !---------------------------Code history-------------------------------- ! ! Original version: CCM1 ! Standardized: L. Bath, Jun 1992 ! L. Buja, Feb 1996 ! Reviewed: D. Williamson, J. Hack, Aug 1992 ! D. Williamson, J. Hack, Feb 1996 ! !----------------------------------------------------------------------- ! ! $Id$ ! $Author$ ! !----------------------------------------------------------------------- implicit none !------------------------------Arguments-------------------------------- ! integer , intent(in) :: k ! number of latitudes pole to pole real(r8), intent(out) :: a(k) ! sine of latitudes real(r8), intent(out) :: w(k) ! gaussian weights ! !---------------------------Local workspace----------------------------- ! real(r16) sinlat(k) ! sine of latitudes real(r16) wgt(k) ! gaussian weights real(r16) eps ! convergence criterion real(r16) c ! constant combination real(r16) fk ! real k real(r16) xz ! abscissa estimate real(r16) pkm1 ! | real(r16) pkm2 ! |-polynomials real(r16) pkmrk ! | real(r16) pk ! | real(r16) sp ! current iteration latitude increment real(r16) avsp ! |sp| real(r16) fn ! real n #ifdef NO_R16 parameter (eps = 1.e-15_r16) #else parameter (eps = 1.e-27_r16) #endif integer kk ! k/2 (number of latitudes in hemisphere) integer is ! latitude index integer iter ! iteration counter integer n,l ! indices ! !----------------------------------------------------------------------- ! pi = 4._r16*atan(one) ! ! The value eps, used for convergence tests in the iterations, ! can be changed. Newton iteration is used to find the abscissas. ! c = (1._r16-(2._r16/pi)**2)*0.25_r16 fk = k kk = k/2 call bsslzr(sinlat,kk) do is=1,kk xz = cos(sinlat(is)/(((fk+0.5_r16)**2+c)**0.5_r16)) ! ! This is the first approximation to xz ! iter = 0 10 continue pkm2 = 1._r16 pkm1 = xz iter = iter + 1 if (iter.gt.10) then ! ! Error exit ! call endrun ('GAUAW: no convergence in 10 iterations') end if ! ! Computation of the legendre polynomial ! do n=2,k fn = n pk = ((2._r16*fn-1._r16)*xz*pkm1-(fn-1._r16)*pkm2)/fn pkm2 = pkm1 pkm1 = pk enddo pkm1 = pkm2 pkmrk = (fk*(pkm1-xz*pk))/(1._r16-xz**2) sp = pk/pkmrk xz = xz - sp avsp = abs(sp) if (avsp.gt.eps) go to 10 sinlat(is) = xz wgt(is) = (2._r16*(1._r16-xz**2))/(fk*pkm1)**2 end do ! if (k.ne.kk*2) then ! ! For odd k computation of weight at the equator ! sinlat(kk+1) = 0._r16 pk = 2._r16/fk**2 do n=2,k,2 fn = n pk = pk*fn**2/(fn-1._r16)**2 end do wgt(kk+1) = pk end if ! ! Complete the sets of abscissas and weights, using the symmetry. ! Also note truncation from real(r16) to real*8 ! do n=1,kk l = k + 1 - n a(n) = sinlat(n) a(l) = -sinlat(n) w(n) = wgt(n) w(l) = wgt(n) end do return end subroutine gauaw !=========================================================================== subroutine bsslzr(bes, n) 2 !----------------------------------------------- ! M o d u l e s !----------------------------------------------- ! ! Return n zeros (or if n>50, approximate zeros), of the Bessel function ! j0,in the array bes. The first 50 zeros will be given exactly, and the ! remaining zeros are computed by extrapolation,and therefore not exact. ! ! Modified 1/23/97 by Jim Rosinski to use real*16 arithmetic ! !---------------------------Code history-------------------------------- ! ! Original version: CCM1 ! Standardized: J. Rosinski, June 1992 ! Reviewed: J. Hack, D. Williamson, August 1992 ! Reviewed: J. Hack, D. Williamson, April 1996 ! !----------------------------------------------------------------------- implicit none !----------------------------------------------- ! D u m m y A r g u m e n t s !----------------------------------------------- integer , intent(in) :: n real(r16) , intent(inout) :: bes(n) !----------------------------------------------- ! L o c a l V a r i a b l e s !----------------------------------------------- integer :: j, nn real(r16), dimension(50) :: bz save bz !----------------------------------------------- !------------------------------Arguments-------------------------------- ! ! !---------------------------Local workspace----------------------------- ! ! data bz/ 2.4048255577_r16, 5.5200781103_r16, 8.6537279129_r16, 11.7915344391_r16, & 14.9309177086_r16, 18.0710639679_r16, 21.2116366299_r16, 24.3524715308_r16, & 27.4934791320_r16, 30.6346064684_r16, 33.7758202136_r16, 36.9170983537_r16, & 40.0584257646_r16, 43.1997917132_r16, 46.3411883717_r16, 49.4826098974_r16, & 52.6240518411_r16, 55.7655107550_r16, 58.9069839261_r16, 62.0484691902_r16, & 65.1899648002_r16, 68.3314693299_r16, 71.4729816036_r16, 74.6145006437_r16, & 77.7560256304_r16, 80.8975558711_r16, 84.0390907769_r16, 87.1806298436_r16, & 90.3221726372_r16, 93.4637187819_r16, 96.6052679510_r16, 99.7468198587_r16, & 102.8883742542_r16, 106.0299309165_r16, 109.1714896498_r16, 112.3130502805_r16, & 115.4546126537_r16, 118.5961766309_r16, 121.7377420880_r16, 124.8793089132_r16, & 128.0208770059_r16, 131.1624462752_r16, 134.3040166383_r16, 137.4455880203_r16, & 140.5871603528_r16, 143.7287335737_r16, 146.8703076258_r16, 150.0118824570_r16, & 153.1534580192_r16, 156.2950342685_r16/ ! nn = n if (n > 50) then bes(50) = bz(50) do j = 51, n bes(j) = bes(j-1) + pi end do nn = 49 endif bes(:nn) = bz(:nn) return end subroutine bsslzr end module gauaw_mod