module pkg_cldoptics 3,2
!---------------------------------------------------------------------------------
! Purpose:
!
! Compute cloud optical properties: liquid and ice partical size; emissivity
!
! Author: Byron Boville Sept 06, 2002, assembled from existing subroutines
!
!---------------------------------------------------------------------------------
use shr_kind_mod
, only: r8=>shr_kind_r8
use ppgrid
, only: pcols, pver, pverp
implicit none
private
save
public :: cldefr, cldems, cldovrlap, cldclw, reitab, reltab
contains
!===============================================================================
subroutine cldefr(lchnk ,ncol , & 1,2
landfrac,t ,rel ,rei ,ps ,pmid , landm, icefrac, snowh)
!-----------------------------------------------------------------------
!
! Purpose:
! Compute cloud water and ice particle size
!
! Method:
! use empirical formulas to construct effective radii
!
! Author: J.T. Kiehl, B. A. Boville, P. Rasch
!
!-----------------------------------------------------------------------
!------------------------------Arguments--------------------------------
!
! Input arguments
!
integer, intent(in) :: lchnk ! chunk identifier
integer, intent(in) :: ncol ! number of atmospheric columns
real(r8), intent(in) :: landfrac(pcols) ! Land fraction
real(r8), intent(in) :: icefrac(pcols) ! Ice fraction
real(r8), intent(in) :: t(pcols,pver) ! Temperature
real(r8), intent(in) :: ps(pcols) ! Surface pressure
real(r8), intent(in) :: pmid(pcols,pver) ! Midpoint pressures
real(r8), intent(in) :: landm(pcols)
real(r8), intent(in) :: snowh(pcols) ! Snow depth over land, water equivalent (m)
!
! Output arguments
!
real(r8), intent(out) :: rel(pcols,pver) ! Liquid effective drop size (microns)
real(r8), intent(out) :: rei(pcols,pver) ! Ice effective drop size (microns)
!
! following Kiehl
call reltab
(ncol, t, landfrac, landm, icefrac, rel, snowh)
! following Kristjansson and Mitchell
call reitab
(ncol, t, rei)
return
end subroutine cldefr
!===============================================================================
subroutine cldems(lchnk ,ncol ,clwp ,fice ,rei ,emis ,cldtau) 1,2
!-----------------------------------------------------------------------
!
! Purpose:
! Compute cloud emissivity using cloud liquid water path (g/m**2)
!
! Method:
! <Describe the algorithm(s) used in the routine.>
! <Also include any applicable external references.>
!
! Author: J.T. Kiehl
!
!-----------------------------------------------------------------------
use phys_control
, only: phys_getopts
!------------------------------Parameters-------------------------------
!
real(r8) kabsl ! longwave liquid absorption coeff (m**2/g)
parameter (kabsl = 0.090361_r8)
!
!------------------------------Arguments--------------------------------
!
! Input arguments
!
integer, intent(in) :: lchnk ! chunk identifier
integer, intent(in) :: ncol ! number of atmospheric columns
real(r8), intent(in) :: clwp(pcols,pver) ! cloud liquid water path (g/m**2)
real(r8), intent(in) :: rei(pcols,pver) ! ice effective drop size (microns)
real(r8), intent(in) :: fice(pcols,pver) ! fractional ice content within cloud
!
! Output arguments
!
real(r8), intent(out) :: emis(pcols,pver) ! cloud emissivity (fraction)
real(r8), intent(out) :: cldtau(pcols,pver) ! cloud optical depth
!
!---------------------------Local workspace-----------------------------
!
integer i,k ! longitude, level indices
real(r8) kabs ! longwave absorption coeff (m**2/g)
real(r8) kabsi ! ice absorption coefficient
character(len=16) :: microp_scheme ! microphysics scheme
!-----------------------------------------------------------------------
!
call phys_getopts
(microp_scheme_out=microp_scheme)
do k=1,pver
do i=1,ncol
!note that optical properties for ice valid only
!in range of 13 > rei > 130 micron (Ebert and Curry 92)
if ( microp_scheme .eq. 'MG' ) then
kabsi = 0.005_r8 + 1._r8/min(max(13._r8,rei(i,k)),130._r8)
else if ( microp_scheme .eq. 'RK' ) then
kabsi = 0.005_r8 + 1._r8/rei(i,k)
end if
kabs = kabsl*(1._r8-fice(i,k)) + kabsi*fice(i,k)
emis(i,k) = 1._r8 - exp(-1.66_r8*kabs*clwp(i,k))
cldtau(i,k) = kabs*clwp(i,k)
end do
end do
!
return
end subroutine cldems
!===============================================================================
subroutine cldovrlap(lchnk ,ncol ,pint ,cld ,nmxrgn ,pmxrgn ) 1
!-----------------------------------------------------------------------
!
! Purpose:
! Partitions each column into regions with clouds in neighboring layers.
! This information is used to implement maximum overlap in these regions
! with random overlap between them.
! On output,
! nmxrgn contains the number of regions in each column
! pmxrgn contains the interface pressures for the lower boundaries of
! each region!
! Method:
!
! Author: W. Collins
!
!-----------------------------------------------------------------------
!
! Input arguments
!
integer, intent(in) :: lchnk ! chunk identifier
integer, intent(in) :: ncol ! number of atmospheric columns
real(r8), intent(in) :: pint(pcols,pverp) ! Interface pressure
real(r8), intent(in) :: cld(pcols,pver) ! Fractional cloud cover
!
! Output arguments
!
real(r8), intent(out) :: pmxrgn(pcols,pverp)! Maximum values of pressure for each
! maximally overlapped region.
! 0->pmxrgn(i,1) is range of pressure for
! 1st region,pmxrgn(i,1)->pmxrgn(i,2) for
! 2nd region, etc
integer nmxrgn(pcols) ! Number of maximally overlapped regions
!
!---------------------------Local variables-----------------------------
!
integer i ! Longitude index
integer k ! Level index
integer n ! Max-overlap region counter
real(r8) pnm(pcols,pverp) ! Interface pressure
logical cld_found ! Flag for detection of cloud
logical cld_layer(pver) ! Flag for cloud in layer
!
!------------------------------------------------------------------------
!
do i = 1, ncol
cld_found = .false.
cld_layer(:) = cld(i,:) > 0.0_r8
pmxrgn(i,:) = 0.0_r8
pnm(i,:)=pint(i,:)*10._r8
n = 1
do k = 1, pver
if (cld_layer(k) .and. .not. cld_found) then
cld_found = .true.
else if ( .not. cld_layer(k) .and. cld_found) then
cld_found = .false.
if (count(cld_layer(k:pver)) == 0) then
exit
endif
pmxrgn(i,n) = pnm(i,k)
n = n + 1
endif
end do
pmxrgn(i,n) = pnm(i,pverp)
nmxrgn(i) = n
end do
return
end subroutine cldovrlap
!===============================================================================
subroutine cldclw(lchnk ,ncol ,zi ,clwp ,tpw ,hl ) 1
!-----------------------------------------------------------------------
!
! Purpose:
! Evaluate cloud liquid water path clwp (g/m**2)
!
! Method:
! <Describe the algorithm(s) used in the routine.>
! <Also include any applicable external references.>
!
! Author: J.T. Kiehl
!
!-----------------------------------------------------------------------
!
! Input arguments
!
integer, intent(in) :: lchnk ! chunk identifier
integer, intent(in) :: ncol ! number of atmospheric columns
real(r8), intent(in) :: zi(pcols,pverp) ! height at layer interfaces(m)
real(r8), intent(in) :: tpw(pcols) ! total precipitable water (mm)
!
! Output arguments
!
real(r8) clwp(pcols,pver) ! cloud liquid water path (g/m**2)
real(r8) hl(pcols) ! liquid water scale height
real(r8) rhl(pcols) ! 1/hl
!
!---------------------------Local workspace-----------------------------
!
integer i,k ! longitude, level indices
real(r8) clwc0 ! reference liquid water concentration (g/m**3)
real(r8) emziohl(pcols,pverp) ! exp(-zi/hl)
!
!-----------------------------------------------------------------------
!
! Set reference liquid water concentration
!
clwc0 = 0.21_r8
!
! Diagnose liquid water scale height from precipitable water
!
do i=1,ncol
hl(i) = 700.0_r8*log(max(tpw(i)+1.0_r8,1.0_r8))
rhl(i) = 1.0_r8/hl(i)
end do
!
! Evaluate cloud liquid water path (vertical integral of exponential fn)
!
do k=1,pverp
do i=1,ncol
emziohl(i,k) = exp(-zi(i,k)*rhl(i))
end do
end do
do k=1,pver
do i=1,ncol
clwp(i,k) = clwc0*hl(i)*(emziohl(i,k+1) - emziohl(i,k))
end do
end do
!
return
end subroutine cldclw
!===============================================================================
subroutine reltab(ncol, t, landfrac, landm, icefrac, rel, snowh) 2,1
!-----------------------------------------------------------------------
!
! Purpose:
! Compute cloud water size
!
! Method:
! analytic formula following the formulation originally developed by J. T. Kiehl
!
! Author: Phil Rasch
!
!-----------------------------------------------------------------------
use physconst
, only: tmelt
!------------------------------Arguments--------------------------------
!
! Input arguments
!
integer, intent(in) :: ncol
real(r8), intent(in) :: landfrac(pcols) ! Land fraction
real(r8), intent(in) :: icefrac(pcols) ! Ice fraction
real(r8), intent(in) :: snowh(pcols) ! Snow depth over land, water equivalent (m)
real(r8), intent(in) :: landm(pcols) ! Land fraction ramping to zero over ocean
real(r8), intent(in) :: t(pcols,pver) ! Temperature
!
! Output arguments
!
real(r8), intent(out) :: rel(pcols,pver) ! Liquid effective drop size (microns)
!
!---------------------------Local workspace-----------------------------
!
integer i,k ! Lon, lev indices
real(r8) rliqland ! liquid drop size if over land
real(r8) rliqocean ! liquid drop size if over ocean
real(r8) rliqice ! liquid drop size if over sea ice
!
!-----------------------------------------------------------------------
!
rliqocean = 14.0_r8
rliqice = 14.0_r8
rliqland = 8.0_r8
do k=1,pver
do i=1,ncol
! jrm Reworked effective radius algorithm
! Start with temperature-dependent value appropriate for continental air
! Note: findmcnew has a pressure dependence here
rel(i,k) = rliqland + (rliqocean-rliqland) * min(1.0_r8,max(0.0_r8,(tmelt-t(i,k))*0.05_r8))
! Modify for snow depth over land
rel(i,k) = rel(i,k) + (rliqocean-rel(i,k)) * min(1.0_r8,max(0.0_r8,snowh(i)*10._r8))
! Ramp between polluted value over land to clean value over ocean.
rel(i,k) = rel(i,k) + (rliqocean-rel(i,k)) * min(1.0_r8,max(0.0_r8,1.0_r8-landm(i)))
! Ramp between the resultant value and a sea ice value in the presence of ice.
rel(i,k) = rel(i,k) + (rliqice-rel(i,k)) * min(1.0_r8,max(0.0_r8,icefrac(i)))
! end jrm
end do
end do
end subroutine reltab
!===============================================================================
subroutine reitab(ncol, t, re) 2
!
integer, intent(in) :: ncol
real(r8), intent(out) :: re(pcols,pver)
real(r8), intent(in) :: t(pcols,pver)
#if ( defined WACCM_PHYS )
integer , parameter :: len_retab = 138
real(r8), parameter :: min_retab = 136._r8
#else
integer , parameter :: len_retab = 95
real(r8), parameter :: min_retab = 179._r8
#endif
real(r8) retab(len_retab)
real(r8) corr
integer i
integer k
integer index
!
! Tabulated values of re(T) in the temperature interval
! 180 K -- 274 K; hexagonal columns assumed:
!
! Modified for pmc formation: 136K -- 274K
!
data retab / &
#ifdef WACCM_PHYS
0.05_r8, 0.05_r8, 0.05_r8, 0.05_r8, 0.05_r8, 0.05_r8, &
0.055_r8, 0.06_r8, 0.07_r8, 0.08_r8, 0.09_r8, 0.1_r8, &
0.2_r8, 0.3_r8, 0.40_r8, 0.50_r8, 0.60_r8, 0.70_r8, &
0.8_r8 , 0.9_r8, 1.0_r8, 1.1_r8, 1.2_r8, 1.3_r8, &
1.4_r8, 1.5_r8, 1.6_r8, 1.8_r8, 2.0_r8, 2.2_r8, &
2.4_r8, 2.6_r8, 2.8_r8, 3.0_r8, 3.2_r8, 3.5_r8, &
3.8_r8, 4.1_r8, 4.4_r8, 4.7_r8, 5.0_r8, 5.3_r8, &
5.6_r8, &
#endif
5.92779_r8, 6.26422_r8, 6.61973_r8, 6.99539_r8, 7.39234_r8, &
7.81177_r8, 8.25496_r8, 8.72323_r8, 9.21800_r8, 9.74075_r8, 10.2930_r8, &
10.8765_r8, 11.4929_r8, 12.1440_r8, 12.8317_r8, 13.5581_r8, 14.2319_r8, &
15.0351_r8, 15.8799_r8, 16.7674_r8, 17.6986_r8, 18.6744_r8, 19.6955_r8, &
20.7623_r8, 21.8757_r8, 23.0364_r8, 24.2452_r8, 25.5034_r8, 26.8125_r8, &
27.7895_r8, 28.6450_r8, 29.4167_r8, 30.1088_r8, 30.7306_r8, 31.2943_r8, &
31.8151_r8, 32.3077_r8, 32.7870_r8, 33.2657_r8, 33.7540_r8, 34.2601_r8, &
34.7892_r8, 35.3442_r8, 35.9255_r8, 36.5316_r8, 37.1602_r8, 37.8078_r8, &
38.4720_r8, 39.1508_r8, 39.8442_r8, 40.5552_r8, 41.2912_r8, 42.0635_r8, &
42.8876_r8, 43.7863_r8, 44.7853_r8, 45.9170_r8, 47.2165_r8, 48.7221_r8, &
50.4710_r8, 52.4980_r8, 54.8315_r8, 57.4898_r8, 60.4785_r8, 63.7898_r8, &
65.5604_r8, 71.2885_r8, 75.4113_r8, 79.7368_r8, 84.2351_r8, 88.8833_r8, &
93.6658_r8, 98.5739_r8, 103.603_r8, 108.752_r8, 114.025_r8, 119.424_r8, &
124.954_r8, 130.630_r8, 136.457_r8, 142.446_r8, 148.608_r8, 154.956_r8, &
161.503_r8, 168.262_r8, 175.248_r8, 182.473_r8, 189.952_r8, 197.699_r8, &
205.728_r8, 214.055_r8, 222.694_r8, 231.661_r8, 240.971_r8, 250.639_r8/
!
save retab
!
do k=1,pver
do i=1,ncol
index = int(t(i,k)-min_retab)
index = min(max(index,1),len_retab-1)
corr = t(i,k) - int(t(i,k))
re(i,k) = retab(index)*(1._r8-corr) &
+retab(index+1)*corr
! re(i,k) = amax1(amin1(re(i,k),30.),10.)
end do
end do
!
return
end subroutine reitab
end module pkg_cldoptics