!||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| module distribution 22,5 !BOP ! !MODULE: distribution ! ! !DESCRIPTION: ! This module provides data types and routines for distributing ! blocks across processors. ! ! !REVISION HISTORY: ! CVS:$Id: distribution.F90 12674 2008-10-31 22:21:32Z njn01 $ ! CVS:$Name: $ ! !USES: use kinds_mod use communicate use blocks use spacecurve_mod use exit_mod implicit none private save ! !PUBLIC TYPES: type, public :: distrb ! distribution data type integer (int_kind) :: & nprocs ,&! number of processors in this dist communicator ! communicator to use in this dist integer (int_kind), dimension(:), pointer :: & proc ,&! processor location for this block local_block ! block position in local array on proc end type logical, public :: sameDistribution ! !PUBLIC MEMBER FUNCTIONS: public :: create_distribution, & create_local_block_ids !EOP !BOC !EOC !*********************************************************************** contains !*********************************************************************** !BOP ! !IROUTINE: create_distribution ! !INTERFACE: function create_distribution(dist_type, nprocs, workPerBlock) 3,8 ! !DESCRIPTION: ! This routine determines the distribution of blocks across processors ! by call the appropriate subroutine based on distribution type ! requested. Currently only two distributions are supported: ! 2-d Cartesian distribution (cartesian) and a load-balanced ! distribution (balanced) based on an input amount of work per ! block. ! ! !REVISION HISTORY: ! same as module ! !INPUT PARAMETERS: character (*), intent(in) :: & dist_type ! method for distributing blocks ! either cartesian or balanced integer (int_kind), intent(in) :: & nprocs ! number of processors in this distribution integer (int_kind), dimension(:), intent(in) :: & workPerBlock ! amount of work per block ! !OUTPUT PARAMETERS: type (distrb) :: & create_distribution ! resulting structure describing ! distribution of blocks !EOP !BOC integer (int_kind) :: maxWork integer (int_kind), allocatable :: work_per_block(:) !---------------------------------------------------------------------- ! ! select the appropriate distribution type ! !---------------------------------------------------------------------- select case (trim(dist_type)) case('cartesian') !------------------------------------------------ ! The following comments and code were contributed ! by John Dennis, CISL ! ! This particular partitioning algorithm does not ! handle land block elimination anyway ! KLUDGE: probably should do something better here !------------------------------------------------ allocate(work_per_block(size(workPerBlock))) maxWork = MAXVAL(workPerBlock) work_per_block = maxWork create_distribution = create_distrb_cart(nprocs, work_per_block) deallocate(work_per_block) case('balanced') !------------------------------------------------ ! The following comments and code were contributed ! by John Dennis, CISL ! ! This particular partitioning algorithm does not ! handle land block elimination anyway ! KLUDGE: probably should do something better here !------------------------------------------------ allocate(work_per_block(size(workPerBlock))) maxWork = MAXVAL(workPerBlock) work_per_block = maxWork create_distribution = create_distrb_balanced(nprocs, & work_per_block) deallocate(work_per_block) case('spacecurve') create_distribution = create_distrb_spacecurve(nprocs, & workPerBlock) case default call exit_POP(sigAbort,'distribution: unknown distribution type') end select !----------------------------------------------------------------------- !EOC end function create_distribution !*********************************************************************** !BOP ! !IROUTINE: create_local_block_ids ! !INTERFACE: subroutine create_local_block_ids(block_ids, distribution) 3 ! !DESCRIPTION: ! This routine determines which blocks in an input distribution are ! located on the local processor and creates an array of block ids ! for all local blocks. ! ! !REVISION HISTORY: ! same as module ! !INPUT PARAMETERS: type (distrb), intent(in) :: & distribution ! input distribution for which local ! blocks required ! !OUTPUT PARAMETERS: integer (int_kind), dimension(:), pointer :: & block_ids ! array of block ids for every block ! that resides on the local processor !EOP !BOC !----------------------------------------------------------------------- ! ! local variables ! !----------------------------------------------------------------------- integer (int_kind) :: & n, bid, bcount ! dummy counters !----------------------------------------------------------------------- ! ! first determine number of local blocks to allocate array ! !----------------------------------------------------------------------- bcount = 0 do n=1,size(distribution%proc) if (distribution%proc(n) == my_task+1) bcount = bcount + 1 end do if (bcount > 0) allocate(block_ids(bcount)) !----------------------------------------------------------------------- ! ! now fill array with proper block ids ! !----------------------------------------------------------------------- if (bcount > 0) then do n=1,size(distribution%proc) if (distribution%proc(n) == my_task+1) then block_ids(distribution%local_block(n)) = n endif end do endif !EOC end subroutine create_local_block_ids !*********************************************************************** !BOP ! !IROUTINE: create_distrb_cart ! !INTERFACE: function create_distrb_cart(nprocs, work_per_block) 6,4 ! !DESCRIPTION: ! This function creates a distribution of blocks across processors ! using a 2-d Cartesian distribution. ! ! !REVISION HISTORY: ! same as module ! !INPUT PARAMETERS: integer (int_kind), intent(in) :: & nprocs ! number of processors in this distribution integer (int_kind), dimension(:), intent(in) :: & work_per_block ! amount of work per block ! !OUTPUT PARAMETERS: type (distrb) :: & create_distrb_cart ! resulting structure describing Cartesian ! distribution of blocks !EOP !BOC !---------------------------------------------------------------------- ! ! local variables ! !---------------------------------------------------------------------- integer (int_kind) :: & i, j, n ,&! dummy loop indices iblock, jblock, nblck ,&! is, ie, js, je ,&! start, end block indices for each proc local_block ,&! block location on this processor nprocs_x ,&! num of procs in x for global domain nprocs_y ,&! num of procs in y for global domain nblocks_x_loc ,&! num of blocks per processor in x nblocks_y_loc ! num of blocks per processor in y type (distrb) :: dist ! temp hold distribution !---------------------------------------------------------------------- ! ! create communicator for this distribution ! !---------------------------------------------------------------------- call create_communicator(dist%communicator, nprocs) !---------------------------------------------------------------------- ! ! try to find best processor arrangement ! !---------------------------------------------------------------------- dist%nprocs = nprocs call proc_decomposition(dist%nprocs, nprocs_x, nprocs_y) !---------------------------------------------------------------------- ! ! allocate space for decomposition ! !---------------------------------------------------------------------- allocate (dist%proc (nblocks_tot), & dist%local_block(nblocks_tot)) !---------------------------------------------------------------------- ! ! distribute blocks linearly across processors in each direction ! !---------------------------------------------------------------------- nblocks_x_loc = (nblocks_x-1)/nprocs_x + 1 nblocks_y_loc = (nblocks_y-1)/nprocs_y + 1 do j=1,nprocs_y do i=1,nprocs_x n = (j-1)*nprocs_x + i is = (i-1)*nblocks_x_loc + 1 ie = i *nblocks_x_loc if (ie > nblocks_x) ie = nblocks_x js = (j-1)*nblocks_y_loc + 1 je = j *nblocks_y_loc if (je > nblocks_y) je = nblocks_y local_block = 0 do jblock = js,je do iblock = is,ie nblck = (jblock - 1)*nblocks_x + iblock if (work_per_block(nblck) /= 0) then local_block = local_block + 1 dist%proc(nblck) = n dist%local_block(nblck) = local_block else dist%proc(nblck) = 0 dist%local_block(nblck) = 0 endif end do end do end do end do !---------------------------------------------------------------------- create_distrb_cart = dist ! return the result !---------------------------------------------------------------------- !EOC end function create_distrb_cart !********************************************************************** !BOP ! !IROUTINE: create_distrb_spacecurve ! !INTERFACE: function create_distrb_spacecurve(nprocs,work_per_block) 2,35 ! !Description: ! This function distributes blocks across processors in a ! load-balanced manner using space-filling curves ! ! !REVISION HISTORY: ! added by J. Dennis 3/10/06 ! !INPUT PARAMETERS: integer (int_kind), intent(in) :: & nprocs ! number of processors in this distribution integer (int_kind), dimension(:), intent(in) :: & work_per_block ! amount of work per block ! !OUTPUT PARAMETERS: type (distrb) :: & create_distrb_spacecurve ! resulting structure describing ! load-balanced distribution of blocks !EOP !BOC !---------------------------------------------------------------------- ! ! local variables ! !---------------------------------------------------------------------- integer (int_kind) :: & i,j,k,n ,&! dummy loop indices pid ,&! dummy for processor id local_block ,&! local block position on processor max_work ,&! max amount of work in any block nprocs_x ,&! num of procs in x for global domain nprocs_y ! num of procs in y for global domain integer (int_kind), dimension(:),allocatable :: & idxT_i,idxT_j integer (int_kind), dimension(:,:),allocatable :: Mesh, Mesh2, Mesh3 integer (int_kind) :: nblocksL,nblocks,ii,extra,i2,j2,tmp1,s1,ig integer (int_kind) :: ierr logical, parameter :: Debug = .FALSE. integer (int_kind), dimension(:), allocatable :: & priority ,&! priority for moving blocks work_tmp ,&! work per row or column for rake algrthm proc_tmp ,&! temp processor id for rake algrthm block_count ! counter to determine local block indx type (distrb) :: dist ! temp hold distribution type (factor_t) :: xdim,ydim integer (int_kind) :: it,jj integer (int_kind) :: curveSize,sb_x,sb_y,itmp,numfac integer (int_kind) :: subNum, sfcNum logical :: foundx !---------------------------------------------------------------------- ! ! first set up as Cartesian distribution ! retain the Cartesian distribution if nblocks_tot = nprocs ! to avoid processors with no work ! !---------------------------------------------------------------------- !------------------------------------------------------ ! Space filling curves only work if: ! ! nblocks_x = 2^m1 3^n1 5^o1 where m1,n1,o1 are integers ! nblocks_y = 2^m2 3^n2 5^o2 where m2,n2,o2 are integers !------------------------------------------------------ if((.not. IsFactorable(nblocks_y)) .or. (.not. IsFactorable(nblocks_x))) then create_distrb_spacecurve = create_distrb_cart(nprocs, work_per_block) return endif !----------------------------------------------- ! Factor the numbers of blocks in each dimension !----------------------------------------------- xdim = Factor(nblocks_x) ydim = Factor(nblocks_y) numfac = xdim%numfact !--------------------------------------------- ! Match the common factors to create SFC curve !--------------------------------------------- curveSize=1 do it=1,numfac call MatchFactor(xdim,ydim,itmp,foundX) curveSize = itmp*curveSize enddo !-------------------------------------- ! determine the size of the sub-blocks ! within the space-filling curve !-------------------------------------- sb_x = ProdFactor(xdim) sb_y = ProdFactor(ydim) call create_communicator(dist%communicator, nprocs) dist%nprocs = nprocs !---------------------------------------------------------------------- ! ! allocate space for decomposition ! !---------------------------------------------------------------------- allocate (dist%proc (nblocks_tot), & dist%local_block(nblocks_tot)) dist%proc=0 dist%local_block=0 !---------------------------------------------------------------------- ! Create the array to hold the SFC !---------------------------------------------------------------------- allocate(Mesh(curveSize,curveSize)) allocate(Mesh2(nblocks_x,nblocks_y),Mesh3(nblocks_x,nblocks_y)) Mesh = 0 Mesh2 = 0 Mesh3 = 0 allocate(idxT_i(nblocks_tot),idxT_j(nblocks_tot)) !---------------------------------------------------------------------- ! Generate the space-filling curve !---------------------------------------------------------------------- call GenSpaceCurve(Mesh) Mesh = Mesh + 1 ! make it 1-based indexing if(Debug) then if(my_task ==0) call PrintCurve(Mesh) endif !----------------------------------------------- ! Reindex the SFC to address internal sub-blocks !----------------------------------------------- do j=1,curveSize do i=1,curveSize sfcNum = (Mesh(i,j) - 1)*(sb_x*sb_y) + 1 do jj=1,sb_y do ii=1,sb_x subNum = (jj-1)*sb_x + (ii-1) i2 = (i-1)*sb_x + ii j2 = (j-1)*sb_y + jj Mesh2(i2,j2) = sfcNum + subNum enddo enddo enddo enddo !------------------------------------------------ ! create a linear array of i,j coordinates of SFC !------------------------------------------------ idxT_i=0;idxT_j=0 do j=1,nblocks_y do i=1,nblocks_x n = (j-1)*nblocks_x + i ig = Mesh2(i,j) if(work_per_block(n) /= 0) then idxT_i(ig)=i;idxT_j(ig)=j endif enddo enddo !----------------------------- ! Compress out the land blocks !----------------------------- ii=0 do i=1,nblocks_tot if(IdxT_i(i) .gt. 0) then ii=ii+1 Mesh3(idxT_i(i),idxT_j(i)) = ii endif enddo if(Debug) then if(my_task==0) call PrintCurve(Mesh3) endif nblocks=ii nblocksL = nblocks/nprocs ! every cpu gets nblocksL blocks, but the first 'extra' get nblocksL+1 extra = mod(nblocks,nprocs) s1 = extra*(nblocksL+1) ! split curve into two curves: ! 1 ... s1 s2 ... nblocks ! ! s1 = extra*(nblocksL+1) (count be 0) ! s2 = s1+1 ! ! First region gets nblocksL+1 blocks per partition ! Second region gets nblocksL blocks per partition if(Debug) print *,'nprocs,extra,nblocks,nblocksL,s1: ', & nprocs,extra,nblocks,nblocksL,s1 do j=1,nblocks_y do i=1,nblocks_x n = (j-1)*nblocks_x + i ! i2 = idxT_i(n) ! j2 = idxT_j(n) ii = Mesh3(i,j) if(ii>0) then !DBG if(my_task ==0) print *,'i,j,ii:= ',i,j,ii if(ii<=s1) then ii=ii-1 tmp1 = ii/(nblocksL+1) dist%proc(n) = tmp1+1 else ii=ii-s1-1 tmp1 = ii/nblocksL dist%proc(n) = extra + tmp1 + 1 endif endif enddo enddo !---------------------------------------------------------------------- ! Reset the dist data structure !---------------------------------------------------------------------- allocate(proc_tmp(nprocs)) proc_tmp = 0 do n=1,nblocks_tot pid = dist%proc(n) if(pid>0) then proc_tmp(pid) = proc_tmp(pid) + 1 dist%local_block(n) = proc_tmp(pid) endif enddo if(Debug) then if(my_task==0) print *,'dist%proc:= ',dist%proc print *,'IAM: ',my_task,' SpaceCurve: Number of blocks {total,local} :=', & nblocks_tot,nblocks,proc_tmp(my_task+1) endif deallocate(proc_tmp) ierr=1 deallocate(Mesh,Mesh2,Mesh3) deallocate(idxT_i,idxT_j) !---------------------------------------------------------------------- create_distrb_spacecurve = dist ! return the result !---------------------------------------------------------------------- !EOC end function create_distrb_spacecurve !********************************************************************** !BOP ! !IROUTINE: create_distrb_balanced ! !INTERFACE: function create_distrb_balanced(nprocs, work_per_block) 1,5 ! !DESCRIPTION: ! This function distributes blocks across processors in a ! load-balanced manner based on the amount of work per block. ! A rake algorithm is used in which the blocks are first distributed ! in a Cartesian distribution and then a rake is applied in each ! Cartesian direction. ! ! !REVISION HISTORY: ! same as module ! !INPUT PARAMETERS: integer (int_kind), intent(in) :: & nprocs ! number of processors in this distribution integer (int_kind), dimension(:), intent(in) :: & work_per_block ! amount of work per block ! !OUTPUT PARAMETERS: type (distrb) :: & create_distrb_balanced ! resulting structure describing ! load-balanced distribution of blocks !EOP !BOC !---------------------------------------------------------------------- ! ! local variables ! !---------------------------------------------------------------------- integer (int_kind) :: & i,j,k,n ,&! dummy loop indices pid ,&! dummy for processor id local_block ,&! local block position on processor max_work ,&! max amount of work in any block nprocs_x ,&! num of procs in x for global domain nprocs_y ! num of procs in y for global domain integer (int_kind), dimension(:), allocatable :: & priority ,&! priority for moving blocks work_tmp ,&! work per row or column for rake algrthm proc_tmp ,&! temp processor id for rake algrthm block_count ! counter to determine local block indx type (distrb) :: dist ! temp hold distribution !---------------------------------------------------------------------- ! ! first set up as Cartesian distribution ! retain the Cartesian distribution if nblocks_tot = nprocs ! to avoid processors with no work ! !---------------------------------------------------------------------- dist = create_distrb_cart(nprocs, work_per_block) if (nblocks_tot == nprocs) then create_distrb_balanced = dist ! return the result return endif !---------------------------------------------------------------------- ! ! now re-distribute blocks using a rake in each direction ! !---------------------------------------------------------------------- max_work = maxval(work_per_block) call proc_decomposition(dist%nprocs, nprocs_x, nprocs_y) !---------------------------------------------------------------------- ! ! load-balance using a rake algorithm in the x-direction first ! !---------------------------------------------------------------------- allocate(priority(nblocks_tot)) !*** set highest priority such that eastern-most blocks !*** and blocks with the least amount of work are !*** moved first do j=1,nblocks_y do i=1,nblocks_x n=(j-1)*nblocks_x + i if (work_per_block(n) > 0) then priority(n) = (max_work + 1)*(nblocks_x + i) - & work_per_block(n) else priority(n) = 0 endif end do end do allocate(work_tmp(nprocs_x), & proc_tmp(nprocs_x)) do j=1,nprocs_y work_tmp(:) = 0 do i=1,nprocs_x pid = (j-1)*nprocs_x + i proc_tmp(i) = pid do n=1,nblocks_tot if (dist%proc(n) == pid) then work_tmp(i) = work_tmp(i) + work_per_block(n) endif end do end do call rake (work_tmp, proc_tmp, work_per_block, priority, dist) end do deallocate(work_tmp, proc_tmp) !---------------------------------------------------------------------- ! ! use a rake algorithm in the y-direction now ! !---------------------------------------------------------------------- !*** set highest priority for northern-most blocks do j=1,nblocks_y do i=1,nblocks_x n=(j-1)*nblocks_x + i if (work_per_block(n) > 0) then priority(n) = (max_work + 1)*(nblocks_y + j) - & work_per_block(n) else priority(n) = 0 endif end do end do allocate(work_tmp(nprocs_y), & proc_tmp(nprocs_y)) do i=1,nprocs_x work_tmp(:) = 0 do j=1,nprocs_y pid = (j-1)*nprocs_x + i proc_tmp(j) = pid do n=1,nblocks_tot if (dist%proc(n) == pid) then work_tmp(j) = work_tmp(j) + work_per_block(n) endif end do end do call rake (work_tmp, proc_tmp, work_per_block, priority, dist) end do deallocate(work_tmp, proc_tmp) deallocate(priority) !---------------------------------------------------------------------- ! ! reset local_block info based on new distribution ! !---------------------------------------------------------------------- allocate(proc_tmp(nprocs)) proc_tmp = 0 do pid=1,nprocs local_block = 0 do n=1,nblocks_tot if (dist%proc(n) == pid) then local_block = local_block + 1 dist%local_block(n) = local_block proc_tmp(pid) = proc_tmp(pid) + 1 endif end do end do if (minval(proc_tmp) < 1) then call exit_POP(sigAbort,'Load-balanced distribution failed') endif deallocate(proc_tmp) !---------------------------------------------------------------------- create_distrb_balanced = dist ! return the result !---------------------------------------------------------------------- !EOC end function create_distrb_balanced !********************************************************************** !BOP ! !IROUTINE: proc_decomposition ! !INTERFACE: subroutine proc_decomposition(nprocs, nprocs_x, nprocs_y) 4,3 ! !DESCRIPTION: ! This subroutine attempts to find an optimal (nearly square) ! 2d processor decomposition for a given number of processors. ! ! !REVISION HISTORY: ! same as module ! !INPUT PARAMETERS: integer (int_kind), intent(in) :: & nprocs ! total number or processors ! !OUTPUT PARAMETERS: integer (int_kind), intent(out) :: & nprocs_x, nprocs_y ! number of procs in each dimension !EOP !BOC !---------------------------------------------------------------------- ! ! local variables ! !---------------------------------------------------------------------- integer (int_kind) :: & iguess, jguess ! guesses for nproc_x,y real (r4) :: & square ! square root of nprocs !---------------------------------------------------------------------- ! ! start with an initial guess that is closest to square decomp ! !---------------------------------------------------------------------- square = sqrt(real(nprocs)) nprocs_x = 0 nprocs_y = 0 iguess = nint(square) !---------------------------------------------------------------------- ! ! try various decompositions to find the best ! !---------------------------------------------------------------------- proc_loop: do jguess = nprocs/iguess if (iguess*jguess == nprocs) then ! valid decomp !*** !*** if the blocks can be evenly distributed, it is a !*** good decomposition !*** if (mod(nblocks_x,iguess) == 0 .and. & mod(nblocks_y,jguess) == 0) then nprocs_x = iguess nprocs_y = jguess exit proc_loop !*** !*** if the blocks can be evenly distributed in a !*** transposed direction, it is a good decomposition !*** else if (mod(nblocks_x,jguess) == 0 .and. & mod(nblocks_y,iguess) == 0) then nprocs_x = jguess nprocs_y = iguess exit proc_loop !*** !*** A valid decomposition, but keep searching for !*** a better one !*** else if (nprocs_x == 0) then nprocs_x = iguess nprocs_y = jguess endif iguess = iguess - 1 if (iguess == 0) then exit proc_loop else cycle proc_loop endif endif else ! invalid decomp - keep trying iguess = iguess - 1 if (iguess == 0) then exit proc_loop else cycle proc_loop endif endif end do proc_loop if (nprocs_x == 0) then call exit_POP(sigAbort,'Unable to find 2d processor config') endif !---------------------------------------------------------------------- !EOC end subroutine proc_decomposition !********************************************************************** !BOP ! !IROUTINE: rake ! !INTERFACE: subroutine rake (proc_work, proc_id, block_work, priority, dist) 2 ! !DESCRIPTION: ! This subroutine performs a rake algorithm to distribute the work ! along a vector of processors. In the rake algorithm, a work ! threshold is first set. Then, moving from left to right, work ! above that threshold is raked to the next processor in line. ! The process continues until the end of the vector is reached ! and then the threshold is reduced by one for a second rake pass. ! In this implementation, a priority for moving blocks is defined ! such that the rake algorithm chooses the highest priority ! block to be moved to the next processor. This can be used ! for example to always choose the eastern-most block or to ! ensure a block does not stray too far from its neighbors. ! ! !REVISION HISTORY: ! same as module ! !INPUT/OUTPUT PARAMETERS: integer (int_kind), intent(inout), dimension(:) :: & proc_work ,&! amount of work per processor priority ! priority for moving a given block integer (int_kind), intent(in), dimension(:) :: & block_work ,&! amount of work per block proc_id ! global processor number type (distrb), intent(inout) :: & dist ! distribution to change !EOP !BOC !---------------------------------------------------------------------- ! ! local variables ! !---------------------------------------------------------------------- integer (int_kind) :: & i, j, n, m, np1, & iproc, inext, & nprocs, nblocks, & last_priority, last_loc, & residual, & work_mean, work_max, work_diff, & iter, niters, itransfer, ntransfers, & min_priority !---------------------------------------------------------------------- ! ! initialization ! !---------------------------------------------------------------------- nprocs = size(proc_work) nblocks = size(block_work) !*** mean work per processor work_mean = sum(proc_work)/nprocs + 1 work_max = maxval(proc_work) residual = mod(work_mean,nprocs) min_priority = 1000000 do n=1,nprocs iproc = proc_id(n) do i=1,nblocks if (dist%proc(i) == iproc) then min_priority = min(min_priority,priority(i)) endif end do end do !---------------------------------------------------------------------- ! ! do two sets of transfers ! !---------------------------------------------------------------------- transfer_loop: do !---------------------------------------------------------------------- ! ! do rake across the processors ! !---------------------------------------------------------------------- ntransfers = 0 do n=1,nprocs if (n < nprocs) then np1 = n+1 else np1 = 1 endif iproc = proc_id(n) inext = proc_id(np1) if (proc_work(n) > work_mean) then !*** pass work to next work_diff = proc_work(n) - work_mean rake1: do while (work_diff > 1) !*** attempt to find a block with the required !*** amount of work and with the highest priority !*** for moving (eg boundary blocks first) last_priority = 0 last_loc = 0 do i=1,nblocks if (dist%proc(i) == iproc) then if (priority(i) > last_priority ) then last_priority = priority(i) last_loc = i endif endif end do if (last_loc == 0) exit rake1 ! could not shift work ntransfers = ntransfers + 1 dist%proc(last_loc) = inext if (np1 == 1) priority(last_loc) = min_priority work_diff = work_diff - block_work(last_loc) proc_work(n ) = proc_work(n )-block_work(last_loc) proc_work(np1) = proc_work(np1)+block_work(last_loc) end do rake1 endif end do !---------------------------------------------------------------------- ! ! increment work_mean by one and repeat ! !---------------------------------------------------------------------- work_mean = work_mean + 1 if (ntransfers == 0 .or. work_mean > work_max) exit transfer_loop end do transfer_loop !---------------------------------------------------------------------- !EOC end subroutine rake !*********************************************************************** end module distribution !|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||