module dust_sediment_mod 3,4
!---------------------------------------------------------------------------------
! Purpose:
!
! Contains routines to compute tendencies from sedimentation of dust
!
! Author: Phil Rasch
!
!---------------------------------------------------------------------------------
use shr_kind_mod
, only: r8=>shr_kind_r8
use ppgrid
, only: pcols, pver, pverp
use physconst
, only: gravit, rair
use cam_logfile
, only: iulog
private
public :: dust_sediment_vel, dust_sediment_tend
real (r8), parameter :: vland = 2.8_r8 ! dust fall velocity over land (cm/s)
real (r8), parameter :: vocean = 1.5_r8 ! dust fall velocity over ocean (cm/s)
real (r8), parameter :: mxsedfac = 0.99_r8 ! maximum sedimentation flux factor
contains
!===============================================================================
subroutine dust_sediment_vel (ncol, &
icefrac , landfrac, ocnfrac , pmid , pdel , t , &
dustmr , pvdust )
!----------------------------------------------------------------------
! Compute gravitational sedimentation velocities for dust
implicit none
! Arguments
integer, intent(in) :: ncol ! number of colums to process
real(r8), intent(in) :: icefrac (pcols) ! sea ice fraction (fraction)
real(r8), intent(in) :: landfrac(pcols) ! land fraction (fraction)
real(r8), intent(in) :: ocnfrac (pcols) ! ocean fraction (fraction)
real(r8), intent(in) :: pmid (pcols,pver) ! pressure of midpoint levels (Pa)
real(r8), intent(in) :: pdel (pcols,pver) ! pressure diff across layer (Pa)
real(r8), intent(in) :: t (pcols,pver) ! temperature (K)
real(r8), intent(in) :: dustmr(pcols,pver) ! dust (kg/kg)
real(r8), intent(out) :: pvdust (pcols,pverp) ! vertical velocity of dust (Pa/s)
! -> note that pvel is at the interfaces (loss from cell is based on pvel(k+1))
! Local variables
real (r8) :: rho(pcols,pver) ! air density in kg/m3
real (r8) :: vfall(pcols) ! settling velocity of dust particles (m/s)
integer i,k
real (r8) :: lbound, ac, bc, cc
!-----------------------------------------------------------------------
!--------------------- dust fall velocity ----------------------------
!-----------------------------------------------------------------------
do k = 1,pver
do i = 1,ncol
! merge the dust fall velocities for land and ocean (cm/s)
! SHOULD ALSO ACCOUNT FOR ICEFRAC
vfall(i) = vland*landfrac(i) + vocean*(1._r8-landfrac(i))
!! vfall(i) = vland*landfrac(i) + vocean*ocnfrac(i) + vseaice*icefrac(i)
! fall velocity (assume positive downward)
pvdust(i,k+1) = vfall(i)
end do
end do
return
end subroutine dust_sediment_vel
!===============================================================================
subroutine dust_sediment_tend ( & 2,1
ncol, dtime, pint, pmid, pdel, t, &
dustmr ,pvdust, dusttend, sfdust )
!----------------------------------------------------------------------
! Apply Particle Gravitational Sedimentation
!----------------------------------------------------------------------
implicit none
! Arguments
integer, intent(in) :: ncol ! number of colums to process
real(r8), intent(in) :: dtime ! time step
real(r8), intent(in) :: pint (pcols,pverp) ! interfaces pressure (Pa)
real(r8), intent(in) :: pmid (pcols,pver) ! midpoint pressures (Pa)
real(r8), intent(in) :: pdel (pcols,pver) ! pressure diff across layer (Pa)
real(r8), intent(in) :: t (pcols,pver) ! temperature (K)
real(r8), intent(in) :: dustmr(pcols,pver) ! dust (kg/kg)
real(r8), intent(in) :: pvdust (pcols,pverp) ! vertical velocity of dust drops (Pa/s)
! -> note that pvel is at the interfaces (loss from cell is based on pvel(k+1))
real(r8), intent(out) :: dusttend(pcols,pver) ! dust tend
real(r8), intent(out) :: sfdust (pcols) ! surface flux of dust (rain, kg/m/s)
! Local variables
real(r8) :: fxdust(pcols,pverp) ! fluxes at the interfaces, dust (positive = down)
integer :: i,k
!----------------------------------------------------------------------
! initialize variables
fxdust (:ncol,:) = 0._r8 ! flux at interfaces (dust)
dusttend(:ncol,:) = 0._r8 ! tend (dust)
sfdust(:ncol) = 0._r8 ! sedimentation flux out bot of column (dust)
! fluxes at interior points
call getflx
(ncol, pint, dustmr, pvdust, dtime, fxdust)
! calculate fluxes at boundaries
do i = 1,ncol
fxdust(i,1) = 0
! surface flux by upstream scheme
fxdust(i,pverp) = dustmr(i,pver) * pvdust(i,pverp) * dtime
end do
! filter out any negative fluxes from the getflx routine
do k = 2,pver
fxdust(:ncol,k) = max(0._r8, fxdust(:ncol,k))
end do
! Limit the flux out of the bottom of each cell to the water content in each phase.
! Apply mxsedfac to prevent generating very small negative cloud water/ice
! NOTE, REMOVED CLOUD FACTOR FROM AVAILABLE WATER. ALL CLOUD WATER IS IN CLOUDS.
! ***Should we include the flux in the top, to allow for thin surface layers?
! ***Requires simple treatment of cloud overlap, already included below.
do k = 1,pver
do i = 1,ncol
fxdust(i,k+1) = min( fxdust(i,k+1), mxsedfac * dustmr(i,k) * pdel(i,k) )
!!$ fxdust(i,k+1) = min( fxdust(i,k+1), dustmr(i,k) * pdel(i,k) + fxdust(i,k))
end do
end do
! Now calculate the tendencies
do k = 1,pver
do i = 1,ncol
! net flux into cloud changes cloud dust/ice (all flux is out of cloud)
dusttend(i,k) = (fxdust(i,k) - fxdust(i,k+1)) / (dtime * pdel(i,k))
end do
end do
! convert flux out the bottom to mass units Pa -> kg/m2/s
sfdust(:ncol) = fxdust(:ncol,pverp) / (dtime*gravit)
return
end subroutine dust_sediment_tend
!===============================================================================
subroutine getflx(ncol, xw, phi, vel, deltat, flux) 3,15
!.....xw1.......xw2.......xw3.......xw4.......xw5.......xw6
!....psiw1.....psiw2.....psiw3.....psiw4.....psiw5.....psiw6
!....velw1.....velw2.....velw3.....velw4.....velw5.....velw6
!.........phi1......phi2.......phi3.....phi4.......phi5.......
implicit none
integer ncol ! number of colums to process
integer i
integer k
real (r8) vel(pcols,pverp)
real (r8) flux(pcols,pverp)
real (r8) xw(pcols,pverp)
real (r8) psi(pcols,pverp)
real (r8) phi(pcols,pverp-1)
real (r8) fdot(pcols,pverp)
real (r8) xx(pcols)
real (r8) fxdot(pcols)
real (r8) fxdd(pcols)
real (r8) psistar(pcols)
real (r8) deltat
real (r8) xxk(pcols,pver)
do i = 1,ncol
! integral of phi
psi
(i,1) = 0._r8
! fluxes at boundaries
flux(i,1) = 0
flux(i,pverp) = 0._r8
end do
! integral function
do k = 2,pverp
do i = 1,ncol
psi
(i,k) = phi
(i,k-1)*(xw(i,k)-xw(i,k-1)) + psi
(i,k-1)
end do
end do
! calculate the derivatives for the interpolating polynomial
call cfdotmc_pro
(ncol, xw, psi, fdot)
! NEW WAY
! calculate fluxes at interior pts
do k = 2,pver
do i = 1,ncol
xxk(i,k) = xw(i,k)-vel(i,k)*deltat
end do
end do
do k = 2,pver
call cfint2
(ncol, xw, psi, fdot, xxk(1,k), fxdot, fxdd, psistar)
do i = 1,ncol
flux(i,k) = (psi
(i,k)-psistar(i))
end do
end do
return
end subroutine getflx
!##############################################################################
subroutine cfint2 (ncol, x, f, fdot, xin, fxdot, fxdd, psistar) 2,1
implicit none
! input
integer ncol ! number of colums to process
real (r8) x(pcols, pverp)
real (r8) f(pcols, pverp)
real (r8) fdot(pcols, pverp)
real (r8) xin(pcols)
! output
real (r8) fxdot(pcols)
real (r8) fxdd(pcols)
real (r8) psistar(pcols)
integer i
integer k
integer intz(pcols)
real (r8) dx
real (r8) s
real (r8) c2
real (r8) c3
real (r8) xx
real (r8) xinf
real (r8) psi1, psi2, psi3, psim
real (r8) cfint
real (r8) cfnew
real (r8) xins(pcols)
! the minmod function
real (r8) a, b, c
real (r8) minmod
real (r8) medan
minmod(a,b) = 0.5_r8*(sign(1._r8,a) + sign(1._r8,b))*min(abs(a),abs(b))
medan(a,b,c) = a + minmod(b-a,c-a)
do i = 1,ncol
xins(i) = medan(x(i,1), xin(i), x(i,pverp))
intz(i) = 0
end do
! first find the interval
do k = 1,pverp-1
do i = 1,ncol
if ((xins(i)-x(i,k))*(x(i,k+1)-xins(i)).ge.0) then
intz(i) = k
endif
end do
end do
do i = 1,ncol
if (intz(i).eq.0._r8) then
write(iulog,*) ' interval was not found for col i ', i
stop
endif
end do
! now interpolate
do i = 1,ncol
k = intz(i)
dx = (x(i,k+1)-x(i,k))
s = (f(i,k+1)-f(i,k))/dx
c2 = (3*s-2*fdot(i,k)-fdot(i,k+1))/dx
c3 = (fdot(i,k)+fdot(i,k+1)-2*s)/dx**2
xx = (xins(i)-x(i,k))
fxdot(i) = (3*c3*xx + 2*c2)*xx + fdot(i,k)
fxdd(i) = 6*c3*xx + 2*c2
cfint = ((c3*xx + c2)*xx + fdot(i,k))*xx + f(i,k)
! limit the interpolant
psi1 = f(i,k)+(f(i,k+1)-f(i,k))*xx/dx
if (k.eq.1) then
psi2 = f(i,1)
else
psi2 = f(i,k) + (f(i,k)-f(i,k-1))*xx/(x(i,k)-x(i,k-1))
endif
if (k+1.eq.pverp) then
psi3 = f(i,pverp)
else
psi3 = f(i,k+1) - (f(i,k+2)-f(i,k+1))*(dx-xx)/(x(i,k+2)-x(i,k+1))
endif
psim = medan(psi1, psi2, psi3)
cfnew = medan(cfint, psi1, psim)
if (abs(cfnew-cfint)/(abs(cfnew)+abs(cfint)+1.e-36_r8) .gt..03_r8) then
! CHANGE THIS BACK LATER!!!
! $ .gt..1) then
! UNCOMMENT THIS LATER!!!
! write(iulog,*) ' cfint2 limiting important ', cfint, cfnew
endif
psistar(i) = cfnew
end do
return
end subroutine cfint2
!##############################################################################
subroutine cfdotmc_pro (ncol, x, f, fdot) 2
! prototype version; eventually replace with final SPITFIRE scheme
! calculate the derivative for the interpolating polynomial
! multi column version
implicit none
! input
integer ncol ! number of colums to process
real (r8) x(pcols, pverp)
real (r8) f(pcols, pverp)
! output
real (r8) fdot(pcols, pverp) ! derivative at nodes
! assumed variable distribution
! x1.......x2.......x3.......x4.......x5.......x6 1,pverp points
! f1.......f2.......f3.......f4.......f5.......f6 1,pverp points
! ...sh1.......sh2......sh3......sh4......sh5.... 1,pver points
! .........d2.......d3.......d4.......d5......... 2,pver points
! .........s2.......s3.......s4.......s5......... 2,pver points
! .............dh2......dh3......dh4............. 2,pver-1 points
! .............eh2......eh3......eh4............. 2,pver-1 points
! ..................e3.......e4.................. 3,pver-1 points
! .................ppl3......ppl4................ 3,pver-1 points
! .................ppr3......ppr4................ 3,pver-1 points
! .................t3........t4.................. 3,pver-1 points
! ................fdot3.....fdot4................ 3,pver-1 points
! work variables
integer i
integer k
real (r8) a ! work var
real (r8) b ! work var
real (r8) c ! work var
real (r8) s(pcols,pverp) ! first divided differences at nodes
real (r8) sh(pcols,pverp) ! first divided differences between nodes
real (r8) d(pcols,pverp) ! second divided differences at nodes
real (r8) dh(pcols,pverp) ! second divided differences between nodes
real (r8) e(pcols,pverp) ! third divided differences at nodes
real (r8) eh(pcols,pverp) ! third divided differences between nodes
real (r8) pp ! p prime
real (r8) ppl(pcols,pverp) ! p prime on left
real (r8) ppr(pcols,pverp) ! p prime on right
real (r8) qpl
real (r8) qpr
real (r8) ttt
real (r8) t
real (r8) tmin
real (r8) tmax
real (r8) delxh(pcols,pverp)
! the minmod function
real (r8) minmod
real (r8) medan
minmod(a,b) = 0.5_r8*(sign(1._r8,a) + sign(1._r8,b))*min(abs(a),abs(b))
medan(a,b,c) = a + minmod(b-a,c-a)
do k = 1,pver
! first divided differences between nodes
do i = 1, ncol
delxh(i,k) = (x(i,k+1)-x(i,k))
sh(i,k) = (f(i,k+1)-f(i,k))/delxh(i,k)
end do
! first and second divided differences at nodes
if (k.ge.2) then
do i = 1,ncol
d(i,k) = (sh(i,k)-sh(i,k-1))/(x(i,k+1)-x(i,k-1))
s(i,k) = minmod(sh(i,k),sh(i,k-1))
end do
endif
end do
! second and third divided diffs between nodes
do k = 2,pver-1
do i = 1, ncol
eh(i,k) = (d(i,k+1)-d(i,k))/(x(i,k+2)-x(i,k-1))
dh(i,k) = minmod(d(i,k),d(i,k+1))
end do
end do
! treat the boundaries
do i = 1,ncol
e(i,2) = eh(i,2)
e(i,pver) = eh(i,pver-1)
! outside level
fdot(i,1) = sh(i,1) - d(i,2)*delxh(i,1) &
- eh(i,2)*delxh(i,1)*(x(i,1)-x(i,3))
fdot(i,1) = minmod(fdot(i,1),3*sh(i,1))
fdot(i,pverp) = sh(i,pver) + d(i,pver)*delxh(i,pver) &
+ eh(i,pver-1)*delxh(i,pver)*(x(i,pverp)-x(i,pver-1))
fdot(i,pverp) = minmod(fdot(i,pverp),3*sh(i,pver))
! one in from boundary
fdot(i,2) = sh(i,1) + d(i,2)*delxh(i,1) - eh(i,2)*delxh(i,1)*delxh(i,2)
fdot(i,2) = minmod(fdot(i,2),3*s(i,2))
fdot(i,pver) = sh(i,pver) - d(i,pver)*delxh(i,pver) &
- eh(i,pver-1)*delxh(i,pver)*delxh(i,pver-1)
fdot(i,pver) = minmod(fdot(i,pver),3*s(i,pver))
end do
do k = 3,pver-1
do i = 1,ncol
e(i,k) = minmod(eh(i,k),eh(i,k-1))
end do
end do
do k = 3,pver-1
do i = 1,ncol
! p prime at k-0.5
ppl(i,k)=sh(i,k-1) + dh(i,k-1)*delxh(i,k-1)
! p prime at k+0.5
ppr(i,k)=sh(i,k) - dh(i,k) *delxh(i,k)
t = minmod(ppl(i,k),ppr(i,k))
! derivate from parabola thru f(i,k-1), f(i,k), and f(i,k+1)
pp = sh(i,k-1) + d(i,k)*delxh(i,k-1)
! quartic estimate of fdot
fdot(i,k) = pp &
- delxh(i,k-1)*delxh(i,k) &
*( eh(i,k-1)*(x(i,k+2)-x(i,k )) &
+ eh(i,k )*(x(i,k )-x(i,k-2)) &
)/(x(i,k+2)-x(i,k-2))
! now limit it
qpl = sh(i,k-1) &
+ delxh(i,k-1)*minmod(d(i,k-1)+e(i,k-1)*(x(i,k)-x(i,k-2)), &
d(i,k) -e(i,k)*delxh(i,k))
qpr = sh(i,k) &
+ delxh(i,k )*minmod(d(i,k) +e(i,k)*delxh(i,k-1), &
d(i,k+1)+e(i,k+1)*(x(i,k)-x(i,k+2)))
fdot(i,k) = medan(fdot(i,k), qpl, qpr)
ttt = minmod(qpl, qpr)
tmin = min(0._r8,3*s(i,k),1.5_r8*t,ttt)
tmax = max(0._r8,3*s(i,k),1.5_r8*t,ttt)
fdot(i,k) = fdot(i,k) + minmod(tmin-fdot(i,k), tmax-fdot(i,k))
end do
end do
return
end subroutine cfdotmc_pro
end module dust_sediment_mod