#undef OLDLIQSED module pkg_cld_sediment 2,8 !--------------------------------------------------------------------------------- ! Purpose: ! ! Contains routines to compute tendencies from sedimentation of cloud liquid and ! ice particles ! ! Author: Byron Boville Sept 19, 2002 from code by P. J. Rasch ! !--------------------------------------------------------------------------------- use shr_kind_mod, only: r8=>shr_kind_r8 use spmd_utils, only: masterproc use ppgrid, only: pcols, pver, pverp use physconst, only: gravit, latvap, latice, rair, rhoh2o use cldwat, only: icritc use pkg_cldoptics, only: reitab, reltab use abortutils, only: endrun use cam_logfile, only: iulog implicit none private save public :: cld_sediment_readnl, cld_sediment_vel, cld_sediment_tend real (r8), parameter :: vland = 1.5_r8 ! liquid fall velocity over land (cm/s) real (r8), parameter :: vocean = 2.8_r8 ! liquid fall velocity over ocean (cm/s) real (r8), parameter :: mxsedfac = 0.99_r8 ! maximum sedimentation flux factor logical, parameter :: stokes = .true. ! use Stokes velocity instead of McFarquhar and Heymsfield ! parameter for modified McFarquhar and Heymsfield real (r8), parameter :: vice_small = 1._r8 ! ice fall velocity for small concentration (cm/s) ! parameters for Stokes velocity real (r8), parameter :: eta = 1.7e-5_r8 ! viscosity of air (kg m / s) real (r8), parameter :: r40 = 40._r8 ! 40 micron radius real (r8), parameter :: r400= 400._r8 ! 400 micron radius real (r8), parameter :: v400= 1.00_r8 ! fall velocity of 400 micron sphere (m/s) real (r8) :: v40 ! = (2._r8/9._r8) * rhoh2o * gravit/eta * r40**2 * 1.e-12_r8 ! Stokes fall velocity of 40 micron sphere (m/s) real (r8) :: vslope ! = (v400 - v40)/(r400 -r40) ! linear slope for large particles m/s/micron ! namelist variables real(r8) :: cldsed_ice_stokes_fac = huge(1._r8) ! factor applied to the ice fall velocity computed from ! stokes terminal velocity !=============================================================================== contains !=============================================================================== subroutine cld_sediment_readnl(nlfile) 1,8 use namelist_utils, only: find_group_name use units, only: getunit, freeunit use mpishorthand character(len=*), intent(in) :: nlfile ! filepath for file containing namelist input ! Local variables integer :: unitn, ierr character(len=*), parameter :: subname = 'cld_sediment_readnl' namelist /cldsed_nl/ cldsed_ice_stokes_fac !----------------------------------------------------------------------------- if (masterproc) then unitn = getunit() open( unitn, file=trim(nlfile), status='old' ) call find_group_name(unitn, 'cldsed_nl', status=ierr) if (ierr == 0) then read(unitn, cldsed_nl, iostat=ierr) if (ierr /= 0) then call endrun(subname // ':: ERROR reading namelist') end if end if close(unitn) call freeunit(unitn) write(iulog,*) subname//': cldsed_ice_stokes_fac = ', cldsed_ice_stokes_fac end if #ifdef SPMD ! Broadcast namelist variables call mpibcast(cldsed_ice_stokes_fac, 1, mpir8, 0, mpicom) #endif end subroutine cld_sediment_readnl !=============================================================================== subroutine cld_sediment_vel (ncol, & 1,2 icefrac , landfrac, ocnfrac , pmid , pdel , t , & cloud , cldliq , cldice , pvliq , pvice , landm, snowh) !---------------------------------------------------------------------- ! Compute gravitational sedimentation velocities for cloud liquid water ! and ice, based on Lawrence and Crutzen (1998). ! LIQUID ! The fall velocities assume that droplets have a gamma distribution ! with effective radii for land and ocean as assessed by Han et al.; ! see Lawrence and Crutzen (1998) for a derivation. ! ICE ! The fall velocities are based on data from McFarquhar and Heymsfield ! or on Stokes terminal velocity for spheres and the effective radius. ! NEED TO BE CAREFUL - VELOCITIES SHOULD BE AT THE *LOWER* INTERFACE ! (THAT IS, FOR K+1), FLUXES ARE ALSO AT THE LOWER INTERFACE (K+1), ! BUT MIXING RATIOS ARE AT THE MIDPOINTS (K)... ! NOTE THAT PVEL IS ON PVERP (INTERFACES), WHEREAS VFALL IS FOR THE CELL ! AVERAGES (I.E., MIDPOINTS); ASSUME THE FALL VELOCITY APPLICABLE TO THE ! LOWER INTERFACE (K+1) IS THE SAME AS THAT APPLICABLE FOR THE CELL (V(K)) !----------------------------------------------------------------------- ! MATCH-MPIC version 2.0, Author: mgl, March 1998 ! adapted by P. J. Rasch ! B. A. Boville, September 19, 2002 ! P. J. Rasch May 22, 2003 (added stokes flow calc for liquid ! drops based on effect radii) !----------------------------------------------------------------------- ! Arguments integer, intent(in) :: ncol ! number of colums to process real(r8), intent(in) :: icefrac (pcols) ! sea ice fraction (fraction) real(r8), intent(in) :: landfrac(pcols) ! land fraction (fraction) real(r8), intent(in) :: ocnfrac (pcols) ! ocean fraction (fraction) real(r8), intent(in) :: pmid (pcols,pver) ! pressure of midpoint levels (Pa) real(r8), intent(in) :: pdel (pcols,pver) ! pressure diff across layer (Pa) real(r8), intent(in) :: cloud (pcols,pver) ! cloud fraction (fraction) real(r8), intent(in) :: t (pcols,pver) ! temperature (K) real(r8), intent(in) :: cldliq(pcols,pver) ! cloud water, liquid (kg/kg) real(r8), intent(in) :: cldice(pcols,pver) ! cloud water, ice (kg/kg) real(r8), intent(in) :: snowh(pcols) ! Snow depth over land, water equivalent (m) real(r8), intent(out) :: pvliq (pcols,pverp) ! vertical velocity of cloud liquid drops (Pa/s) real(r8), intent(out) :: pvice (pcols,pverp) ! vertical velocity of cloud ice particles (Pa/s) real(r8), intent(in) :: landm(pcols) ! land fraction ramped over water ! -> note that pvel is at the interfaces (loss from cell is based on pvel(k+1)) ! Local variables real (r8) :: rho(pcols,pver) ! air density in kg/m3 real (r8) :: vfall ! settling velocity of cloud particles (m/s) real (r8) :: icice ! in cloud ice water content (kg/kg) real (r8) :: iciwc ! in cloud ice water content in g/m3 real (r8) :: icefac real (r8) :: logiwc real (r8) :: rei(pcols,pver) ! effective radius of ice particles (microns) real (r8) :: rel(pcols,pver) ! effective radius of liq particles (microns) real(r8) pvliq2 (pcols,pverp) ! vertical velocity of cloud liquid drops (Pa/s) integer i,k real (r8) :: lbound, ac, bc, cc !----------------------------------------------------------------------- !------- initialize linear ramp variables for fall velocity ------------ !----------------------------------------------------------------------- v40 = (2._r8/9._r8) * rhoh2o * gravit/eta * r40**2 * 1.e-12_r8 vslope = (v400 - v40)/(r400 -r40) !----------------------------------------------------------------------- !--------------------- liquid fall velocity ---------------------------- !----------------------------------------------------------------------- ! compute air density rho(:ncol,:) = pmid(:ncol,:) / (rair * t(:ncol,:)) pvliq(:ncol,:) = 0._r8 ! get effective radius of liquid drop call reltab(ncol, t, landfrac, landm, icefrac, rel, snowh) do k = 1,pver do i = 1,ncol if (cloud(i,k) > 0._r8 .and. cldliq(i,k) > 0._r8) then #ifdef OLDLIQSED ! oldway ! merge the liquid fall velocities for land and ocean (cm/s) ! SHOULD ALSO ACCOUNT FOR ICEFRAC vfall = vland*landfrac(i) + vocean*(1._r8-landfrac(i)) !!$ vfall = vland*landfrac(i) + vocean*ocnfrac(i) + vseaice*icefrac(i) ! convert the fall speed to pressure units, but do not apply the traditional ! negative convention for pvel. pvliq(i,k+1) = vfall & * 0.01_r8 & ! cm to meters * rho(i,k)*gravit ! meters/sec to pascals/sec #else ! newway if (rel(i,k) < 40._r8 ) then vfall = 2._r8/9._r8 * rhoh2o * gravit * rel(i,k)**2 / eta * 1.e-12_r8 ! micons^2 -> m^2 else vfall = v40 + vslope * (rel(i,k)-r40) ! linear above 40 microns end if ! convert the fall speed to pressure units ! but do not apply the traditional ! negative convention for pvel. ! pvliq2(i,k+1) = vfall * rho(i,k)*gravit ! meters/sec to pascals/sec pvliq(i,k+1) = vfall * rho(i,k)*gravit ! meters/sec to pascals/sec #endif end if end do end do !----------------------------------------------------------------------- !--------------------- ice fall velocity ------------------------------- !----------------------------------------------------------------------- pvice(:ncol,:) = 0._r8 if (stokes) then !----------------------------------------------------------------------- !--------------------- stokes terminal velocity < 40 microns ----------- !----------------------------------------------------------------------- ! get effective radius call reitab(ncol, t, rei) do k = 1,pver do i = 1,ncol if (cloud(i,k) > 0._r8 .and. cldice(i,k) > 0._r8) then if (rei(i,k) < 40._r8 ) then vfall = 2._r8/9._r8 * rhoh2o * gravit * rei(i,k)**2 / eta * 1.e-12_r8 ! micons^2 -> m^2 vfall = vfall * cldsed_ice_stokes_fac else vfall = v40 + vslope * (rei(i,k)-r40) ! linear above 40 microns end if ! convert the fall speed to pressure units, but do not apply the traditional ! negative convention for pvel. pvice(i,k+1) = vfall * rho(i,k)*gravit ! meters/sec to pascals/sec end if end do end do else !----------------------------------------------------------------------- !--------------------- McFarquhar and Heymsfield > icritc -------------- !----------------------------------------------------------------------- ! lower bound for iciwc cc = 128.64_r8 bc = 53.242_r8 ac = 5.4795_r8 lbound = (-bc + sqrt(bc*bc-4*ac*cc))/(2*ac) lbound = 10._r8**lbound do k = 1,pver do i = 1,ncol if (cloud(i,k) > 0._r8 .and. cldice(i,k) > 0._r8) then ! compute the in-cloud ice concentration (kg/kg) icice = cldice(i,k) / cloud(i,k) ! compute the ice water content in g/m3 iciwc = icice * rho(i,k) * 1.e3_r8 ! set the fall velocity (cm/s) to depend on the ice water content in g/m3, if (iciwc > lbound) then ! need this because of log10 logiwc = log10(iciwc) ! Median - vfall = 128.64_r8 + 53.242_r8*logiwc + 5.4795_r8*logiwc**2 ! Average - !!$ vfall = 122.63 + 44.111*logiwc + 4.2144*logiwc**2 else vfall = 0._r8 end if ! set ice velocity to 1 cm/s if ice mixing ratio < icritc, ramp to value ! calculated above at 2*icritc if (icice <= icritc) then vfall = vice_small else if(icice < 2*icritc) then icefac = (icice-icritc)/icritc vfall = vice_small * (1._r8-icefac) + vfall * icefac end if ! bound the terminal velocity of ice particles at high concentration vfall = min(100.0_r8, vfall) ! convert the fall speed to pressure units, but do not apply the traditional ! negative convention for pvel. pvice(i,k+1) = vfall & * 0.01_r8 & ! cm to meters * rho(i,k)*gravit ! meters/sec to pascals/sec end if end do end do end if end subroutine cld_sediment_vel !=============================================================================== subroutine cld_sediment_tend (ncol, dtime , & 1,2 pint , pmid , pdel , t , & cloud , cldliq , cldice , pvliq , pvice , & liqtend, icetend, wvtend , htend , sfliq , sfice ) !---------------------------------------------------------------------- ! Apply Cloud Particle Gravitational Sedimentation to Condensate !---------------------------------------------------------------------- ! Arguments integer, intent(in) :: ncol ! number of colums to process real(r8), intent(in) :: dtime ! time step real(r8), intent(in) :: pint (pcols,pverp) ! interfaces pressure (Pa) real(r8), intent(in) :: pmid (pcols,pver) ! midpoint pressures (Pa) real(r8), intent(in) :: pdel (pcols,pver) ! pressure diff across layer (Pa) real(r8), intent(in) :: cloud (pcols,pver) ! cloud fraction (fraction) real(r8), intent(in) :: t (pcols,pver) ! temperature (K) real(r8), intent(in) :: cldliq(pcols,pver) ! cloud liquid water (kg/kg) real(r8), intent(in) :: cldice(pcols,pver) ! cloud ice water (kg/kg) real(r8), intent(in) :: pvliq (pcols,pverp) ! vertical velocity of liquid drops (Pa/s) real(r8), intent(in) :: pvice (pcols,pverp) ! vertical velocity of ice particles (Pa/s) ! -> note that pvel is at the interfaces (loss from cell is based on pvel(k+1)) real(r8), intent(out) :: liqtend(pcols,pver) ! liquid condensate tend real(r8), intent(out) :: icetend(pcols,pver) ! ice condensate tend real(r8), intent(out) :: wvtend (pcols,pver) ! water vapor tend real(r8), intent(out) :: htend (pcols,pver) ! heating rate real(r8), intent(out) :: sfliq (pcols) ! surface flux of liquid (rain, kg/m/s) real(r8), intent(out) :: sfice (pcols) ! surface flux of ice (snow, kg/m/s) ! Local variables real(r8) :: fxliq(pcols,pverp) ! fluxes at the interfaces, liquid (positive = down) real(r8) :: fxice(pcols,pverp) ! fluxes at the interfaces, ice (positive = down) real(r8) :: cldab(pcols) ! cloud in layer above real(r8) :: evapliq ! evaporation of cloud liquid into environment real(r8) :: evapice ! evaporation of cloud ice into environment real(r8) :: cldovrl ! cloud overlap factor integer :: i,k !---------------------------------------------------------------------- ! initialize variables fxliq (:ncol,:) = 0._r8 ! flux at interfaces (liquid) fxice (:ncol,:) = 0._r8 ! flux at interfaces (ice) liqtend(:ncol,:) = 0._r8 ! condensate tend (liquid) icetend(:ncol,:) = 0._r8 ! condensate tend (ice) wvtend(:ncol,:) = 0._r8 ! environmental moistening htend(:ncol,:) = 0._r8 ! evaporative cooling sfliq(:ncol) = 0._r8 ! condensate sedimentation flux out bot of column (liquid) sfice(:ncol) = 0._r8 ! condensate sedimentation flux out bot of column (ice) ! fluxes at interior points call getflx(ncol, pint, cldliq, pvliq, dtime, fxliq) call getflx(ncol, pint, cldice, pvice, dtime, fxice) ! calculate fluxes at boundaries do i = 1,ncol fxliq(i,1) = 0 fxice(i,1) = 0 ! surface flux by upstream scheme fxliq(i,pverp) = cldliq(i,pver) * pvliq(i,pverp) * dtime fxice(i,pverp) = cldice(i,pver) * pvice(i,pverp) * dtime end do ! filter out any negative fluxes from the getflx routine ! (typical fluxes are of order > 1e-3 when clouds are present) do k = 2,pver fxliq(:ncol,k) = max(0._r8, fxliq(:ncol,k)) fxice(:ncol,k) = max(0._r8, fxice(:ncol,k)) end do ! Limit the flux out of the bottom of each cell to the water content in each phase. ! Apply mxsedfac to prevent generating very small negative cloud water/ice ! NOTE, REMOVED CLOUD FACTOR FROM AVAILABLE WATER. ALL CLOUD WATER IS IN CLOUDS. ! ***Should we include the flux in the top, to allow for thin surface layers? ! ***Requires simple treatment of cloud overlap, already included below. do k = 1,pver do i = 1,ncol fxliq(i,k+1) = min( fxliq(i,k+1), mxsedfac * cldliq(i,k) * pdel(i,k) ) fxice(i,k+1) = min( fxice(i,k+1), mxsedfac * cldice(i,k) * pdel(i,k) ) !!$ fxliq(i,k+1) = min( fxliq(i,k+1), cldliq(i,k) * pdel(i,k) + fxliq(i,k)) !!$ fxice(i,k+1) = min( fxice(i,k+1), cldice(i,k) * pdel(i,k) + fxice(i,k)) !!$ fxliq(i,k+1) = min( fxliq(i,k+1), cloud(i,k) * cldliq(i,k) * pdel(i,k) ) !!$ fxice(i,k+1) = min( fxice(i,k+1), cloud(i,k) * cldice(i,k) * pdel(i,k) ) end do end do ! Now calculate the tendencies assuming that condensate evaporates when ! it falls into environment, and does not when it falls into cloud. ! All flux out of the layer comes from the cloudy part. ! Assume maximum overlap for stratiform clouds ! if cloud above < cloud, all water falls into cloud below ! if cloud above > cloud, water split between cloud and environment do k = 1,pver cldab(:ncol) = 0._r8 do i = 1,ncol ! cloud overlap cloud factor cldovrl = min( cloud(i,k) / (cldab(i)+.0001_r8), 1._r8 ) cldab(i) = cloud(i,k) ! evaporation into environment cause moistening and cooling evapliq = fxliq(i,k) * (1._r8-cldovrl) / (dtime * pdel(i,k)) ! into env (kg/kg/s) evapice = fxice(i,k) * (1._r8-cldovrl) / (dtime * pdel(i,k)) ! into env (kg/kg/s) wvtend(i,k) = evapliq + evapice ! evaporation into environment (kg/kg/s) htend (i,k) = -latvap*evapliq -(latvap+latice)*evapice ! evaporation (W/kg) ! net flux into cloud changes cloud liquid/ice (all flux is out of cloud) liqtend(i,k) = (fxliq(i,k)*cldovrl - fxliq(i,k+1)) / (dtime * pdel(i,k)) icetend(i,k) = (fxice(i,k)*cldovrl - fxice(i,k+1)) / (dtime * pdel(i,k)) end do end do ! convert flux out the bottom to mass units Pa -> kg/m2/s sfliq(:ncol) = fxliq(:ncol,pverp) / (dtime*gravit) sfice(:ncol) = fxice(:ncol,pverp) / (dtime*gravit) return end subroutine cld_sediment_tend !=============================================================================== subroutine getflx(ncol, xw, phi, vel, deltat, flux) 3,15 !.....xw1.......xw2.......xw3.......xw4.......xw5.......xw6 !....psiw1.....psiw2.....psiw3.....psiw4.....psiw5.....psiw6 !....velw1.....velw2.....velw3.....velw4.....velw5.....velw6 !.........phi1......phi2.......phi3.....phi4.......phi5....... integer, intent(in) :: ncol ! number of colums to process integer i integer k real (r8), intent(in) :: vel(pcols,pverp) real (r8) flux(pcols,pverp) real (r8) xw(pcols,pverp) real (r8) psi(pcols,pverp) real (r8), intent(in) :: phi(pcols,pverp-1) real (r8) fdot(pcols,pverp) real (r8) xx(pcols) real (r8) fxdot(pcols) real (r8) fxdd(pcols) real (r8) psistar(pcols) real (r8) deltat real (r8) xxk(pcols,pver) do i = 1,ncol ! integral of phi psi(i,1) = 0._r8 ! fluxes at boundaries flux(i,1) = 0 flux(i,pverp) = 0._r8 end do ! integral function do k = 2,pverp do i = 1,ncol psi(i,k) = phi(i,k-1)*(xw(i,k)-xw(i,k-1)) + psi(i,k-1) end do end do ! calculate the derivatives for the interpolating polynomial call cfdotmc_pro (ncol, xw, psi, fdot) ! NEW WAY ! calculate fluxes at interior pts do k = 2,pver do i = 1,ncol xxk(i,k) = xw(i,k)-vel(i,k)*deltat end do end do do k = 2,pver call cfint2(ncol, xw, psi, fdot, xxk(1,k), fxdot, fxdd, psistar) do i = 1,ncol flux(i,k) = (psi(i,k)-psistar(i)) end do end do return end subroutine getflx !############################################################################## subroutine cfint2 (ncol, x, f, fdot, xin, fxdot, fxdd, psistar) 2,1 ! input integer ncol ! number of colums to process real (r8) x(pcols, pverp) real (r8) f(pcols, pverp) real (r8) fdot(pcols, pverp) real (r8) xin(pcols) ! output real (r8) fxdot(pcols) real (r8) fxdd(pcols) real (r8) psistar(pcols) integer i integer k integer intz(pcols) real (r8) dx real (r8) s real (r8) c2 real (r8) c3 real (r8) xx real (r8) xinf real (r8) psi1, psi2, psi3, psim real (r8) cfint real (r8) cfnew real (r8) xins(pcols) ! the minmod function real (r8) a, b, c real (r8) minmod real (r8) medan logical found_error minmod(a,b) = 0.5_r8*(sign(1._r8,a) + sign(1._r8,b))*min(abs(a),abs(b)) medan(a,b,c) = a + minmod(b-a,c-a) do i = 1,ncol xins(i) = medan(x(i,1), xin(i), x(i,pverp)) intz(i) = 0 end do ! first find the interval do k = 1,pverp-1 do i = 1,ncol if ((xins(i)-x(i,k))*(x(i,k+1)-xins(i)).ge.0) then intz(i) = k endif end do end do found_error=.false. do i = 1,ncol if (intz(i).eq.0._r8) found_error=.true. end do if(found_error) then do i = 1,ncol if (intz(i).eq.0._r8) then write(iulog,*) ' interval was not found for col i ', i call endrun('CFINT2') endif end do endif ! now interpolate do i = 1,ncol k = intz(i) dx = (x(i,k+1)-x(i,k)) s = (f(i,k+1)-f(i,k))/dx c2 = (3*s-2*fdot(i,k)-fdot(i,k+1))/dx c3 = (fdot(i,k)+fdot(i,k+1)-2*s)/dx**2 xx = (xins(i)-x(i,k)) fxdot(i) = (3*c3*xx + 2*c2)*xx + fdot(i,k) fxdd(i) = 6*c3*xx + 2*c2 cfint = ((c3*xx + c2)*xx + fdot(i,k))*xx + f(i,k) ! limit the interpolant psi1 = f(i,k)+(f(i,k+1)-f(i,k))*xx/dx if (k.eq.1) then psi2 = f(i,1) else psi2 = f(i,k) + (f(i,k)-f(i,k-1))*xx/(x(i,k)-x(i,k-1)) endif if (k+1.eq.pverp) then psi3 = f(i,pverp) else psi3 = f(i,k+1) - (f(i,k+2)-f(i,k+1))*(dx-xx)/(x(i,k+2)-x(i,k+1)) endif psim = medan(psi1, psi2, psi3) cfnew = medan(cfint, psi1, psim) if (abs(cfnew-cfint)/(abs(cfnew)+abs(cfint)+1.e-36_r8) .gt..03_r8) then ! CHANGE THIS BACK LATER!!! ! $ .gt..1) then ! UNCOMMENT THIS LATER!!! ! write(iulog,*) ' cfint2 limiting important ', cfint, cfnew endif psistar(i) = cfnew end do return end subroutine cfint2 !############################################################################## subroutine cfdotmc_pro (ncol, x, f, fdot) 2 ! prototype version; eventually replace with final SPITFIRE scheme ! calculate the derivative for the interpolating polynomial ! multi column version ! input integer ncol ! number of colums to process real (r8) x(pcols, pverp) real (r8) f(pcols, pverp) ! output real (r8) fdot(pcols, pverp) ! derivative at nodes ! assumed variable distribution ! x1.......x2.......x3.......x4.......x5.......x6 1,pverp points ! f1.......f2.......f3.......f4.......f5.......f6 1,pverp points ! ...sh1.......sh2......sh3......sh4......sh5.... 1,pver points ! .........d2.......d3.......d4.......d5......... 2,pver points ! .........s2.......s3.......s4.......s5......... 2,pver points ! .............dh2......dh3......dh4............. 2,pver-1 points ! .............eh2......eh3......eh4............. 2,pver-1 points ! ..................e3.......e4.................. 3,pver-1 points ! .................ppl3......ppl4................ 3,pver-1 points ! .................ppr3......ppr4................ 3,pver-1 points ! .................t3........t4.................. 3,pver-1 points ! ................fdot3.....fdot4................ 3,pver-1 points ! work variables integer i integer k real (r8) a ! work var real (r8) b ! work var real (r8) c ! work var real (r8) s(pcols,pverp) ! first divided differences at nodes real (r8) sh(pcols,pverp) ! first divided differences between nodes real (r8) d(pcols,pverp) ! second divided differences at nodes real (r8) dh(pcols,pverp) ! second divided differences between nodes real (r8) e(pcols,pverp) ! third divided differences at nodes real (r8) eh(pcols,pverp) ! third divided differences between nodes real (r8) pp ! p prime real (r8) ppl(pcols,pverp) ! p prime on left real (r8) ppr(pcols,pverp) ! p prime on right real (r8) qpl real (r8) qpr real (r8) ttt real (r8) t real (r8) tmin real (r8) tmax real (r8) delxh(pcols,pverp) ! the minmod function real (r8) minmod real (r8) medan minmod(a,b) = 0.5_r8*(sign(1._r8,a) + sign(1._r8,b))*min(abs(a),abs(b)) medan(a,b,c) = a + minmod(b-a,c-a) do k = 1,pver ! first divided differences between nodes do i = 1, ncol delxh(i,k) = (x(i,k+1)-x(i,k)) sh(i,k) = (f(i,k+1)-f(i,k))/delxh(i,k) end do ! first and second divided differences at nodes if (k.ge.2) then do i = 1,ncol d(i,k) = (sh(i,k)-sh(i,k-1))/(x(i,k+1)-x(i,k-1)) s(i,k) = minmod(sh(i,k),sh(i,k-1)) end do endif end do ! second and third divided diffs between nodes do k = 2,pver-1 do i = 1, ncol eh(i,k) = (d(i,k+1)-d(i,k))/(x(i,k+2)-x(i,k-1)) dh(i,k) = minmod(d(i,k),d(i,k+1)) end do end do ! treat the boundaries do i = 1,ncol e(i,2) = eh(i,2) e(i,pver) = eh(i,pver-1) ! outside level fdot(i,1) = sh(i,1) - d(i,2)*delxh(i,1) & - eh(i,2)*delxh(i,1)*(x(i,1)-x(i,3)) fdot(i,1) = minmod(fdot(i,1),3*sh(i,1)) fdot(i,pverp) = sh(i,pver) + d(i,pver)*delxh(i,pver) & + eh(i,pver-1)*delxh(i,pver)*(x(i,pverp)-x(i,pver-1)) fdot(i,pverp) = minmod(fdot(i,pverp),3*sh(i,pver)) ! one in from boundary fdot(i,2) = sh(i,1) + d(i,2)*delxh(i,1) - eh(i,2)*delxh(i,1)*delxh(i,2) fdot(i,2) = minmod(fdot(i,2),3*s(i,2)) fdot(i,pver) = sh(i,pver) - d(i,pver)*delxh(i,pver) & - eh(i,pver-1)*delxh(i,pver)*delxh(i,pver-1) fdot(i,pver) = minmod(fdot(i,pver),3*s(i,pver)) end do do k = 3,pver-1 do i = 1,ncol e(i,k) = minmod(eh(i,k),eh(i,k-1)) end do end do do k = 3,pver-1 do i = 1,ncol ! p prime at k-0.5 ppl(i,k)=sh(i,k-1) + dh(i,k-1)*delxh(i,k-1) ! p prime at k+0.5 ppr(i,k)=sh(i,k) - dh(i,k) *delxh(i,k) t = minmod(ppl(i,k),ppr(i,k)) ! derivate from parabola thru f(i,k-1), f(i,k), and f(i,k+1) pp = sh(i,k-1) + d(i,k)*delxh(i,k-1) ! quartic estimate of fdot fdot(i,k) = pp & - delxh(i,k-1)*delxh(i,k) & *( eh(i,k-1)*(x(i,k+2)-x(i,k )) & + eh(i,k )*(x(i,k )-x(i,k-2)) & )/(x(i,k+2)-x(i,k-2)) ! now limit it qpl = sh(i,k-1) & + delxh(i,k-1)*minmod(d(i,k-1)+e(i,k-1)*(x(i,k)-x(i,k-2)), & d(i,k) -e(i,k)*delxh(i,k)) qpr = sh(i,k) & + delxh(i,k )*minmod(d(i,k) +e(i,k)*delxh(i,k-1), & d(i,k+1)+e(i,k+1)*(x(i,k)-x(i,k+2))) fdot(i,k) = medan(fdot(i,k), qpl, qpr) ttt = minmod(qpl, qpr) tmin = min(0._r8,3*s(i,k),1.5_r8*t,ttt) tmax = max(0._r8,3*s(i,k),1.5_r8*t,ttt) fdot(i,k) = fdot(i,k) + minmod(tmin-fdot(i,k), tmax-fdot(i,k)) end do end do return end subroutine cfdotmc_pro end module pkg_cld_sediment