module interpolate_data 63,11 ! Description: ! Routines for interpolation of data in latitude, longitude and time. ! ! Author: Gathered from a number of places and put into the current format by Jim Edwards ! ! Modules Used: ! use shr_kind_mod, only: r8 => shr_kind_r8 use abortutils, only: endrun use scamMod, only: single_column use cam_logfile, only: iulog implicit none private ! ! Public Methods: ! public :: interp_type, lininterp, vertinterp, bilin, get_timeinterp_factors public :: lininterp_init, lininterp_finish type interp_type real(r8), pointer :: wgts(:) real(r8), pointer :: wgtn(:) integer, pointer :: jjm(:) integer, pointer :: jjp(:) end type interp_type interface lininterp 6 module procedure lininterp_original module procedure lininterp_full1d module procedure lininterp1d module procedure lininterp2d2d module procedure lininterp2d1d module procedure lininterp3d2d end interface contains subroutine lininterp_full1d (arrin, yin, nin, arrout, yout, nout) 1,3 integer, intent(in) :: nin, nout real(r8), intent(in) :: arrin(nin), yin(nin), yout(nout) real(r8), intent(out) :: arrout(nout) type (interp_type) :: interp_wgts call lininterp_init(yin, nin, yout, nout, 1, interp_wgts) call lininterp1d(arrin, nin, arrout, nout, interp_wgts) call lininterp_finish(interp_wgts) end subroutine lininterp_full1d subroutine lininterp_init(yin, nin, yout, nout, extrap_method, interp_wgts, & 10,7 cyclicmin, cyclicmax) ! ! Description: ! Initialize a variable of type(interp_type) with weights for linear interpolation. ! this variable can then be used in calls to lininterp1d and lininterp2d. ! yin is a 1d array of length nin of locations to interpolate from - this array must ! be monotonic but can be increasing or decreasing ! yout is a 1d array of length nout of locations to interpolate to, this array need ! not be ordered ! extrap_method determines how to handle yout points beyond the bounds of yin ! if 0 set values outside output grid to 0 ! if 1 set to boundary value ! if 2 set to cyclic boundaries ! optional values cyclicmin and cyclicmax can be used to set the bounds of the ! cyclic mapping - these default to 0 and 360. ! integer, intent(in) :: nin integer, intent(in) :: nout real(r8), intent(in) :: yin(:) ! input mesh real(r8), intent(in) :: yout(:) ! output mesh integer, intent(in) :: extrap_method ! if 0 set values outside output grid to 0 ! if 1 set to boundary value ! if 2 set to cyclic boundaries real(r8), intent(in), optional :: cyclicmin, cyclicmax type (interp_type), intent(out) :: interp_wgts real(r8) :: cmin, cmax real(r8) :: extrap real(r8) :: dyinwrap real(r8) :: ratio real(r8) :: avgdyin integer :: i, j, icount integer :: jj real(r8), pointer :: wgts(:) real(r8), pointer :: wgtn(:) integer, pointer :: jjm(:) integer, pointer :: jjp(:) logical :: increasing ! ! Check validity of input coordinate arrays: must be monotonically increasing, ! and have a total of at least 2 elements ! if (nin.lt.2) then call endrun('LININTERP: Must have at least 2 input points for interpolation') end if if(present(cyclicmin)) then cmin=cyclicmin else cmin=0_r8 end if if(present(cyclicmax)) then cmax=cyclicmax else cmax=360_r8 end if if(cmax<=cmin) then call endrun('LININTERP: cyclic min value must be < max value') end if increasing=.true. icount = 0 do j=1,nin-1 if (yin(j).gt.yin(j+1)) icount = icount + 1 end do if(icount.eq.nin-1) then increasing = .false. icount=0 endif if (icount.gt.0) then call endrun('LININTERP: Non-monotonic input coordinate array found') end if allocate(interp_wgts%jjm(nout), & interp_wgts%jjp(nout), & interp_wgts%wgts(nout), & interp_wgts%wgtn(nout)) jjm => interp_wgts%jjm jjp => interp_wgts%jjp wgts => interp_wgts%wgts wgtn => interp_wgts%wgtn ! ! Initialize index arrays for later checking ! jjm = 0 jjp = 0 extrap = 0. if(extrap_method.eq.0) then ! ! For values which extend beyond boundaries, set weights ! such that values will be 0. ! do j=1,nout if(increasing) then if (yout(j).lt.yin(1)) then jjm(j) = 1 jjp(j) = 1 wgts(j) = 0. wgtn(j) = 0. extrap = extrap + 1. else if (yout(j).gt.yin(nin)) then jjm(j) = nin jjp(j) = nin wgts(j) = 0. wgtn(j) = 0. extrap = extrap + 1. end if else if (yout(j).gt.yin(1)) then jjm(j) = 1 jjp(j) = 1 wgts(j) = 0. wgtn(j) = 0. extrap = extrap + 1. else if (yout(j).lt.yin(nin)) then jjm(j) = nin jjp(j) = nin wgts(j) = 0. wgtn(j) = 0. extrap = extrap + 1. end if end if end do else if(extrap_method.eq.1) then ! ! For values which extend beyond boundaries, set weights ! such that values will just be copied. ! do j=1,nout if(increasing) then if (yout(j).le.yin(1)) then jjm(j) = 1 jjp(j) = 1 wgts(j) = 1. wgtn(j) = 0. extrap = extrap + 1. else if (yout(j).gt.yin(nin)) then jjm(j) = nin jjp(j) = nin wgts(j) = 1. wgtn(j) = 0. extrap = extrap + 1. end if else if (yout(j).gt.yin(1)) then jjm(j) = 1 jjp(j) = 1 wgts(j) = 1. wgtn(j) = 0. extrap = extrap + 1. else if (yout(j).le.yin(nin)) then jjm(j) = nin jjp(j) = nin wgts(j) = 1. wgtn(j) = 0. extrap = extrap + 1. end if end if end do else if(extrap_method.eq.2) then ! ! For values which extend beyond boundaries, set weights ! for circular boundaries ! dyinwrap = yin(1) + (cmax-cmin) - yin(nin) avgdyin = abs(yin(nin)-yin(1))/(nin-1.) ratio = dyinwrap/avgdyin if (ratio < 0.9 .or. ratio > 1.1) then write(iulog,*) 'Lininterp: Bad dyinwrap value =',dyinwrap,& ' avg=', avgdyin, yin(1),yin(nin) call endrun('interpolate_data') end if do j=1,nout if(increasing) then if (yout(j) <= yin(1)) then jjm(j) = nin jjp(j) = 1 wgts(j) = (yin(1)-yout(j))/dyinwrap wgtn(j) = (yout(j)+(cmax-cmin) - yin(nin))/dyinwrap else if (yout(j) > yin(nin)) then jjm(j) = nin jjp(j) = 1 wgts(j) = (yin(1)+(cmax-cmin)-yout(j))/dyinwrap wgtn(j) = (yout(j)-yin(nin))/dyinwrap end if else if (yout(j) > yin(1)) then jjm(j) = nin jjp(j) = 1 wgts(j) = (yin(1)-yout(j))/dyinwrap wgtn(j) = (yout(j)+(cmax-cmin) - yin(nin))/dyinwrap else if (yout(j) <= yin(nin)) then jjm(j) = nin jjp(j) = 1 wgts(j) = (yin(1)+(cmax-cmin)-yout(j))/dyinwrap wgtn(j) = (yout(j)+(cmax-cmin)-yin(nin))/dyinwrap end if endif end do end if ! ! Loop though output indices finding input indices and weights ! if(increasing) then do j=1,nout do jj=1,nin-1 if (yout(j).gt.yin(jj) .and. yout(j).le.yin(jj+1)) then jjm(j) = jj jjp(j) = jj + 1 wgts(j) = (yin(jj+1)-yout(j))/(yin(jj+1)-yin(jj)) wgtn(j) = (yout(j)-yin(jj))/(yin(jj+1)-yin(jj)) exit end if end do end do else do j=1,nout do jj=1,nin-1 if (yout(j).le.yin(jj) .and. yout(j).gt.yin(jj+1)) then jjm(j) = jj jjp(j) = jj + 1 wgts(j) = (yin(jj+1)-yout(j))/(yin(jj+1)-yin(jj)) wgtn(j) = (yout(j)-yin(jj))/(yin(jj+1)-yin(jj)) exit end if end do end do end if #ifndef SPMD ! ! Check grid overlap ! extrap = 100.*extrap/real(nout,r8) if (extrap.gt.50. .and. .not. single_column) then write(iulog,*) 'interpolate_data:','yout=',minval(yout),maxval(yout),increasing,nout write(iulog,*) 'interpolate_data:','yin=',yin(1),yin(nin) write(iulog,*) 'interpolate_data:',extrap,' % of output grid will have to be extrapolated' call endrun('interpolate_data: ') end if #endif ! ! Check that interp/extrap points have been found for all outputs ! icount = 0 do j=1,nout if (jjm(j).eq.0 .or. jjp(j).eq.0) icount = icount + 1 ratio=wgts(j)+wgtn(j) if((ratio<0.9.or.ratio>1.1).and.extrap_method.ne.0) then write(iulog,*) j, wgts(j),wgtn(j),jjm(j),jjp(j), increasing,extrap_method call endrun('Bad weight computed in LININTERP_init') end if end do if (icount.gt.0) then call endrun('LININTERP: Point found without interp indices') end if end subroutine lininterp_init subroutine lininterp1d (arrin, n1, arrout, m1, interp_wgts) 2 !----------------------------------------------------------------------- ! ! Purpose: Do a linear interpolation from input mesh to output ! mesh with weights as set in lininterp_init. ! ! ! Author: Jim Edwards ! !----------------------------------------------------------------------- !----------------------------------------------------------------------- implicit none !----------------------------------------------------------------------- ! ! Arguments ! integer, intent(in) :: n1 ! number of input latitudes integer, intent(in) :: m1 ! number of output latitudes real(r8), intent(in) :: arrin(n1) ! input array of values to interpolate type(interp_type), intent(in) :: interp_wgts real(r8), intent(out) :: arrout(m1) ! interpolated array ! ! Local workspace ! integer j ! latitude indices integer, pointer :: jjm(:) integer, pointer :: jjp(:) real(r8), pointer :: wgts(:) real(r8), pointer :: wgtn(:) jjm => interp_wgts%jjm jjp => interp_wgts%jjp wgts => interp_wgts%wgts wgtn => interp_wgts%wgtn ! ! Do the interpolation ! do j=1,m1 arrout(j) = arrin(jjm(j))*wgts(j) + arrin(jjp(j))*wgtn(j) end do return end subroutine lininterp1d subroutine lininterp2d2d(arrin, n1, n2, arrout, m1, m2, wgt1, wgt2) 1 implicit none !----------------------------------------------------------------------- ! ! Arguments ! integer, intent(in) :: n1, n2, m1, m2 real(r8), intent(in) :: arrin(n1,n2) ! input array of values to interpolate type(interp_type), intent(in) :: wgt1, wgt2 real(r8), intent(out) :: arrout(m1,m2) ! interpolated array ! ! locals ! integer i,j ! indices integer, pointer :: iim(:), jjm(:) integer, pointer :: iip(:), jjp(:) real(r8), pointer :: wgts1(:), wgts2(:) real(r8), pointer :: wgtn1(:), wgtn2(:) real(r8) :: arrtmp(n1,m2) jjm => wgt2%jjm jjp => wgt2%jjp wgts2 => wgt2%wgts wgtn2 => wgt2%wgtn iim => wgt1%jjm iip => wgt1%jjp wgts1 => wgt1%wgts wgtn1 => wgt1%wgtn do j=1,m2 do i=1,n1 arrtmp(i,j) = arrin(i,jjm(j))*wgts2(j) + arrin(i,jjp(j))*wgtn2(j) end do end do do j=1,m2 do i=1,m1 arrout(i,j) = arrtmp(iim(i),j)*wgts1(i) + arrtmp(iip(i),j)*wgtn1(i) end do end do end subroutine lininterp2d2d subroutine lininterp2d1d(arrin, n1, n2, arrout, m1, wgt1, wgt2, fldname) 1 implicit none !----------------------------------------------------------------------- ! ! Arguments ! integer, intent(in) :: n1, n2, m1 real(r8), intent(in) :: arrin(n1,n2) ! input array of values to interpolate type(interp_type), intent(in) :: wgt1, wgt2 real(r8), intent(out) :: arrout(m1) ! interpolated array character(len=*), intent(in), optional :: fldname(:) ! ! locals ! integer i ! indices integer, pointer :: iim(:), jjm(:) integer, pointer :: iip(:), jjp(:) real(r8), pointer :: wgts(:), wgte(:) real(r8), pointer :: wgtn(:), wgtw(:) jjm => wgt2%jjm jjp => wgt2%jjp wgts => wgt2%wgts wgtn => wgt2%wgtn iim => wgt1%jjm iip => wgt1%jjp wgtw => wgt1%wgts wgte => wgt1%wgtn do i=1,m1 arrout(i) = arrin(iim(i),jjm(i))*wgtw(i)*wgts(i)+arrin(iip(i),jjm(i))*wgte(i)*wgts(i) + & arrin(iim(i),jjp(i))*wgtw(i)*wgtn(i)+arrin(iip(i),jjp(i))*wgte(i)*wgtn(i) end do end subroutine lininterp2d1d subroutine lininterp3d2d(arrin, n1, n2, n3, arrout, m1, len1, wgt1, wgt2) 1 implicit none !----------------------------------------------------------------------- ! ! Arguments ! integer, intent(in) :: n1, n2, n3, m1, len1 ! m1 is to len1 as ncols is to pcols real(r8), intent(in) :: arrin(n1,n2,n3) ! input array of values to interpolate type(interp_type), intent(in) :: wgt1, wgt2 real(r8), intent(out) :: arrout(len1, n3) ! interpolated array ! ! locals ! integer i, k ! indices integer, pointer :: iim(:), jjm(:) integer, pointer :: iip(:), jjp(:) real(r8), pointer :: wgts(:), wgte(:) real(r8), pointer :: wgtn(:), wgtw(:) jjm => wgt2%jjm jjp => wgt2%jjp wgts => wgt2%wgts wgtn => wgt2%wgtn iim => wgt1%jjm iip => wgt1%jjp wgtw => wgt1%wgts wgte => wgt1%wgtn do k=1,n3 do i=1,m1 arrout(i,k) = arrin(iim(i),jjm(i),k)*wgtw(i)*wgts(i)+arrin(iip(i),jjm(i),k)*wgte(i)*wgts(i) + & arrin(iim(i),jjp(i),k)*wgtw(i)*wgtn(i)+arrin(iip(i),jjp(i),k)*wgte(i)*wgtn(i) end do end do end subroutine lininterp3d2d subroutine lininterp_finish(interp_wgts) 10 type(interp_type) :: interp_wgts deallocate(interp_wgts%jjm, & interp_wgts%jjp, & interp_wgts%wgts, & interp_wgts%wgtn) nullify(interp_wgts%jjm, & interp_wgts%jjp, & interp_wgts%wgts, & interp_wgts%wgtn) end subroutine lininterp_finish subroutine lininterp_original (arrin, yin, nlev, nlatin, arrout, & 1,3 yout, nlatout) !----------------------------------------------------------------------- ! ! Purpose: Do a linear interpolation from input mesh defined by yin to output ! mesh defined by yout. Where extrapolation is necessary, values will ! be copied from the extreme edge of the input grid. Vectorization is over ! the vertical (nlev) dimension. ! ! Method: Check validity of input, then determine weights, then do the N-S interpolation. ! ! Author: Jim Rosinski ! Modified: Jim Edwards so that there is no requirement of monotonacity on the yout array ! !----------------------------------------------------------------------- implicit none !----------------------------------------------------------------------- ! ! Arguments ! integer, intent(in) :: nlev ! number of vertical levels integer, intent(in) :: nlatin ! number of input latitudes integer, intent(in) :: nlatout ! number of output latitudes real(r8), intent(in) :: arrin(nlev,nlatin) ! input array of values to interpolate real(r8), intent(in) :: yin(nlatin) ! input mesh real(r8), intent(in) :: yout(nlatout) ! output mesh real(r8), intent(out) :: arrout(nlev,nlatout) ! interpolated array ! ! Local workspace ! integer j, jj ! latitude indices integer jjprev ! latitude indices integer k ! level index integer icount ! number of values real(r8) extrap ! percent grid non-overlap ! ! Dynamic ! integer :: jjm(nlatout) integer :: jjp(nlatout) real(r8) :: wgts(nlatout) real(r8) :: wgtn(nlatout) ! ! Check validity of input coordinate arrays: must be monotonically increasing, ! and have a total of at least 2 elements ! if (nlatin.lt.2) then call endrun('LININTERP: Must have at least 2 input points for interpolation') end if icount = 0 do j=1,nlatin-1 if (yin(j).gt.yin(j+1)) icount = icount + 1 end do if (icount.gt.0) then call endrun('LININTERP: Non-monotonic coordinate array(s) found') end if ! ! Initialize index arrays for later checking ! do j=1,nlatout jjm(j) = 0 jjp(j) = 0 end do ! ! For values which extend beyond N and S boundaries, set weights ! such that values will just be copied. ! extrap = 0. do j=1,nlatout if (yout(j).le.yin(1)) then jjm(j) = 1 jjp(j) = 1 wgts(j) = 1. wgtn(j) = 0. extrap=extrap+1. else if (yout(j).gt.yin(nlatin)) then jjm(j) = nlatin jjp(j) = nlatin wgts(j) = 1. wgtn(j) = 0. extrap=extrap+1. endif end do ! ! Loop though output indices finding input indices and weights ! do j=1,nlatout do jj=1,nlatin-1 if (yout(j).gt.yin(jj) .and. yout(j).le.yin(jj+1)) then jjm(j) = jj jjp(j) = jj + 1 wgts(j) = (yin(jj+1)-yout(j))/(yin(jj+1)-yin(jj)) wgtn(j) = (yout(j)-yin(jj))/(yin(jj+1)-yin(jj)) exit end if end do end do ! ! Check that interp/extrap points have been found for all outputs ! icount = 0 do j=1,nlatout if (jjm(j).eq.0 .or. jjp(j).eq.0) then icount = icount + 1 end if end do if (icount.gt.0) then call endrun('LININTERP: Point found without interp indices') end if ! ! Do the interpolation ! do j=1,nlatout do k=1,nlev arrout(k,j) = arrin(k,jjm(j))*wgts(j) + arrin(k,jjp(j))*wgtn(j) end do end do return end subroutine lininterp_original subroutine bilin (arrin, xin, yin, nlondin, nlonin, &,13 nlevdin, nlev, nlatin, arrout, xout, & yout, nlondout, nlonout, nlevdout, nlatout) !----------------------------------------------------------------------- ! ! Purpose: ! ! Do a bilinear interpolation from input mesh defined by xin, yin to output ! mesh defined by xout, yout. Circularity is assumed in the x-direction so ! input x-grid must be in degrees east and must start from Greenwich. When ! extrapolation is necessary in the N-S direction, values will be copied ! from the extreme edge of the input grid. Vectorization is over the ! longitude dimension. Input grid is assumed rectangular. Output grid ! is assumed ragged, i.e. xout is a 2-d mesh. ! ! Method: Interpolate first in longitude, then in latitude. ! ! Author: Jim Rosinski ! !----------------------------------------------------------------------- use shr_kind_mod, only: r8 => shr_kind_r8 use abortutils, only: endrun !----------------------------------------------------------------------- implicit none !----------------------------------------------------------------------- ! ! Input arguments ! integer, intent(in) :: nlondin ! longitude dimension of input grid integer, intent(in) :: nlonin ! number of real longitudes (input) integer, intent(in) :: nlevdin ! vertical dimension of input grid integer, intent(in) :: nlev ! number of vertical levels integer, intent(in) :: nlatin ! number of input latitudes integer, intent(in) :: nlatout ! number of output latitudes integer, intent(in) :: nlondout ! longitude dimension of output grid integer, intent(in) :: nlonout(nlatout) ! number of output longitudes per lat integer, intent(in) :: nlevdout ! vertical dimension of output grid real(r8), intent(in) :: arrin(nlondin,nlevdin,nlatin) ! input array of values to interpolate real(r8), intent(in) :: xin(nlondin) ! input x mesh real(r8), intent(in) :: yin(nlatin) ! input y mesh real(r8), intent(in) :: xout(nlondout,nlatout) ! output x mesh real(r8), intent(in) :: yout(nlatout) ! output y mesh ! ! Output arguments ! real(r8), intent(out) :: arrout(nlondout,nlevdout,nlatout) ! interpolated array ! ! Local workspace ! integer :: i, ii, iw, ie, iiprev ! longitude indices integer :: j, jj, js, jn, jjprev ! latitude indices integer :: k ! level index integer :: icount ! number of bad values real(r8) :: extrap ! percent grid non-overlap real(r8) :: dxinwrap ! delta-x on input grid for 2-pi real(r8) :: avgdxin ! avg input delta-x real(r8) :: ratio ! compare dxinwrap to avgdxin real(r8) :: sum ! sum of weights (used for testing) ! ! Dynamic ! integer :: iim(nlondout) ! interpolation index to the left integer :: iip(nlondout) ! interpolation index to the right integer :: jjm(nlatout) ! interpolation index to the south integer :: jjp(nlatout) ! interpolation index to the north real(r8) :: wgts(nlatout) ! interpolation weight to the north real(r8) :: wgtn(nlatout) ! interpolation weight to the north real(r8) :: wgte(nlondout) ! interpolation weight to the north real(r8) :: wgtw(nlondout) ! interpolation weight to the north real(r8) :: igrid(nlonin) ! interpolation weight to the north ! ! Check validity of input coordinate arrays: must be monotonically increasing, ! and have a total of at least 2 elements ! if (nlonin < 2 .or. nlatin < 2) then call endrun ('BILIN: Must have at least 2 input points for interpolation') end if if (xin(1) < 0._r8 .or. xin(nlonin) > 360._r8) then call endrun ('BILIN: Input x-grid must be between 0 and 360') end if icount = 0 do i=1,nlonin-1 if (xin(i) >= xin(i+1)) icount = icount + 1 end do do j=1,nlatin-1 if (yin(j) >= yin(j+1)) icount = icount + 1 end do do j=1,nlatout-1 if (yout(j) >= yout(j+1)) icount = icount + 1 end do do j=1,nlatout do i=1,nlonout(j)-1 if (xout(i,j) >= xout(i+1,j)) icount = icount + 1 end do end do if (icount > 0) then call endrun ('BILIN: Non-monotonic coordinate array(s) found') end if if (yout(nlatout) <= yin(1) .or. yout(1) >= yin(nlatin)) then call endrun ('BILIN: No overlap in y-coordinates') end if do j=1,nlatout if (xout(1,j) < 0._r8 .or. xout(nlonout(j),j) > 360._r8) then call endrun ('BILIN: Output x-grid must be between 0 and 360') end if if (xout(nlonout(j),j) <= xin(1) .or. & xout(1,j) >= xin(nlonin)) then call endrun ('BILIN: No overlap in x-coordinates') end if end do ! ! Initialize index arrays for later checking ! do j=1,nlatout jjm(j) = 0 jjp(j) = 0 end do ! ! For values which extend beyond N and S boundaries, set weights ! such that values will just be copied. ! do js=1,nlatout if (yout(js) > yin(1)) exit jjm(js) = 1 jjp(js) = 1 wgts(js) = 1._r8 wgtn(js) = 0._r8 end do do jn=nlatout,1,-1 if (yout(jn) <= yin(nlatin)) exit jjm(jn) = nlatin jjp(jn) = nlatin wgts(jn) = 1._r8 wgtn(jn) = 0._r8 end do ! ! Loop though output indices finding input indices and weights ! jjprev = 1 do j=js,jn do jj=jjprev,nlatin-1 if (yout(j) > yin(jj) .and. yout(j) <= yin(jj+1)) then jjm(j) = jj jjp(j) = jj + 1 wgts(j) = (yin(jj+1) - yout(j)) / (yin(jj+1) - yin(jj)) wgtn(j) = (yout(j) - yin(jj)) / (yin(jj+1) - yin(jj)) goto 30 end if end do call endrun ('BILIN: Failed to find interp values') 30 jjprev = jj end do dxinwrap = xin(1) + 360._r8 - xin(nlonin) ! ! Check for sane dxinwrap values. Allow to differ no more than 10% from avg ! avgdxin = (xin(nlonin)-xin(1))/(nlonin-1._r8) ratio = dxinwrap/avgdxin if (ratio < 0.9_r8 .or. ratio > 1.1_r8) then write(iulog,*)'BILIN: Insane dxinwrap value =',dxinwrap,' avg=', avgdxin call endrun end if ! ! Check grid overlap ! Do not do on spmd since distributed output grid may be expected to fail this test #ifndef SPMD extrap = 100._r8*((js - 1._r8) + real(nlatout - jn,r8))/nlatout if (extrap > 20._r8) then write(iulog,*)'BILIN:',extrap,' % of N/S output grid will have to be extrapolated' end if #endif ! ! Check that interp/extrap points have been found for all outputs, and that ! they are reasonable (i.e. within 32-bit roundoff) ! icount = 0 do j=1,nlatout if (jjm(j) == 0 .or. jjp(j) == 0) icount = icount + 1 sum = wgts(j) + wgtn(j) if (sum < 0.99999_r8 .or. sum > 1.00001_r8) icount = icount + 1 if (wgts(j) < 0._r8 .or. wgts(j) > 1._r8) icount = icount + 1 if (wgtn(j) < 0._r8 .or. wgtn(j) > 1._r8) icount = icount + 1 end do if (icount > 0) then call endrun ('BILIN: something bad in latitude indices or weights') end if ! ! Do the bilinear interpolation ! do j=1,nlatout ! ! Initialize index arrays for later checking ! do i=1,nlondout iim(i) = 0 iip(i) = 0 end do ! ! For values which extend beyond E and W boundaries, set weights such that ! values will be interpolated between E and W edges of input grid. ! do iw=1,nlonout(j) if (xout(iw,j) > xin(1)) exit iim(iw) = nlonin iip(iw) = 1 wgtw(iw) = (xin(1) - xout(iw,j)) /dxinwrap wgte(iw) = (xout(iw,j)+360._r8 - xin(nlonin))/dxinwrap end do do ie=nlonout(j),1,-1 if (xout(ie,j) <= xin(nlonin)) exit iim(ie) = nlonin iip(ie) = 1 wgtw(ie) = (xin(1)+360._r8 - xout(ie,j)) /dxinwrap wgte(ie) = (xout(ie,j) - xin(nlonin))/dxinwrap end do ! ! Loop though output indices finding input indices and weights ! iiprev = 1 do i=iw,ie do ii=iiprev,nlonin-1 if (xout(i,j) > xin(ii) .and. xout(i,j) <= xin(ii+1)) then iim(i) = ii iip(i) = ii + 1 wgtw(i) = (xin(ii+1) - xout(i,j)) / (xin(ii+1) - xin(ii)) wgte(i) = (xout(i,j) - xin(ii)) / (xin(ii+1) - xin(ii)) goto 60 end if end do call endrun ('BILIN: Failed to find interp values') 60 iiprev = ii end do icount = 0 do i=1,nlonout(j) if (iim(i) == 0 .or. iip(i) == 0) icount = icount + 1 sum = wgtw(i) + wgte(i) if (sum < 0.99999_r8 .or. sum > 1.00001_r8) icount = icount + 1 if (wgtw(i) < 0._r8 .or. wgtw(i) > 1._r8) icount = icount + 1 if (wgte(i) < 0._r8 .or. wgte(i) > 1._r8) icount = icount + 1 end do if (icount > 0) then write(iulog,*)'BILIN: j=',j,' Something bad in longitude indices or weights' call endrun end if ! ! Do the interpolation, 1st in longitude then latitude ! do k=1,nlev do i=1,nlonin igrid(i) = arrin(i,k,jjm(j))*wgts(j) + arrin(i,k,jjp(j))*wgtn(j) end do do i=1,nlonout(j) arrout(i,k,j) = igrid(iim(i))*wgtw(i) + igrid(iip(i))*wgte(i) end do end do end do return end subroutine bilin subroutine vertinterp(ncol, ncold, nlev, pmid, pout, arrin, arrout) 28,1 !----------------------------------------------------------------------- ! ! Purpose: ! Vertically interpolate input array to output pressure level ! Copy values at boundaries. ! ! Method: ! ! Author: ! !----------------------------------------------------------------------- implicit none !------------------------------Arguments-------------------------------- integer , intent(in) :: ncol ! column dimension integer , intent(in) :: ncold ! declared column dimension integer , intent(in) :: nlev ! vertical dimension real(r8), intent(in) :: pmid(ncold,nlev) ! input level pressure levels real(r8), intent(in) :: pout ! output pressure level real(r8), intent(in) :: arrin(ncold,nlev) ! input array real(r8), intent(out) :: arrout(ncold) ! output array (interpolated) !-------------------------------------------------------------------------- !---------------------------Local variables----------------------------- integer i,k ! indices integer kupper(ncold) ! Level indices for interpolation real(r8) dpu ! upper level pressure difference real(r8) dpl ! lower level pressure difference logical found(ncold) ! true if input levels found logical error ! error flag !----------------------------------------------------------------- ! ! Initialize index array and logical flags ! do i=1,ncol found(i) = .false. kupper(i) = 1 end do error = .false. ! ! Store level indices for interpolation. ! If all indices for this level have been found, ! do the interpolation ! do k=1,nlev-1 do i=1,ncol if ((.not. found(i)) .and. pmid(i,k)<pout .and. pout<=pmid(i,k+1)) then found(i) = .true. kupper(i) = k end if end do end do ! ! If we've fallen through the k=1,nlev-1 loop, we cannot interpolate and ! must extrapolate from the bottom or top data level for at least some ! of the longitude points. ! do i=1,ncol if (pout <= pmid(i,1)) then arrout(i) = arrin(i,1) else if (pout >= pmid(i,nlev)) then arrout(i) = arrin(i,nlev) else if (found(i)) then dpu = pout - pmid(i,kupper(i)) dpl = pmid(i,kupper(i)+1) - pout arrout(i) = (arrin(i,kupper(i) )*dpl + arrin(i,kupper(i)+1)*dpu)/(dpl + dpu) else error = .true. end if end do ! ! Error check ! if (error) then call endrun ('VERTINTERP: ERROR FLAG') end if return end subroutine vertinterp subroutine get_timeinterp_factors (cycflag, np1, cdayminus, cdayplus, cday, & 4,5 fact1, fact2, str) !--------------------------------------------------------------------------- ! ! Purpose: Determine time interpolation factors (normally for a boundary dataset) ! for linear interpolation. ! ! Method: Assume 365 days per year. Output variable fact1 will be the weight to ! apply to data at calendar time "cdayminus", and fact2 the weight to apply ! to data at time "cdayplus". Combining these values will produce a result ! valid at time "cday". Output arguments fact1 and fact2 will be between ! 0 and 1, and fact1 + fact2 = 1 to roundoff. ! ! Author: Jim Rosinski ! !--------------------------------------------------------------------------- implicit none ! ! Arguments ! logical, intent(in) :: cycflag ! flag indicates whether dataset is being cycled yearly integer, intent(in) :: np1 ! index points to forward time slice matching cdayplus real(r8), intent(in) :: cdayminus ! calendar day of rearward time slice real(r8), intent(in) :: cdayplus ! calendar day of forward time slice real(r8), intent(in) :: cday ! calenar day to be interpolated to real(r8), intent(out) :: fact1 ! time interpolation factor to apply to rearward time slice real(r8), intent(out) :: fact2 ! time interpolation factor to apply to forward time slice character(len=*), intent(in) :: str ! string to be added to print in case of error (normally the callers name) ! ! Local workspace ! real(r8) :: deltat ! time difference (days) between cdayminus and cdayplus real(r8), parameter :: daysperyear = 365. ! number of days in a year ! ! Initial sanity checks ! if (np1 == 1 .and. .not. cycflag) then call endrun ('GETFACTORS:'//str//' cycflag false and forward month index = Jan. not allowed') end if if (np1 < 1) then call endrun ('GETFACTORS:'//str//' input arg np1 must be > 0') end if if (cycflag) then if ((cday < 1.) .or. (cday > (daysperyear+1.))) then write(iulog,*) 'GETFACTORS:', str, ' bad cday=',cday call endrun () end if else if (cday < 1.) then write(iulog,*) 'GETFACTORS:', str, ' bad cday=',cday call endrun () end if end if ! ! Determine time interpolation factors. Account for December-January ! interpolation if dataset is being cycled yearly. ! if (cycflag .and. np1 == 1) then ! Dec-Jan interpolation deltat = cdayplus + daysperyear - cdayminus if (cday > cdayplus) then ! We are in December fact1 = (cdayplus + daysperyear - cday)/deltat fact2 = (cday - cdayminus)/deltat else ! We are in January fact1 = (cdayplus - cday)/deltat fact2 = (cday + daysperyear - cdayminus)/deltat end if else deltat = cdayplus - cdayminus fact1 = (cdayplus - cday)/deltat fact2 = (cday - cdayminus)/deltat end if if (.not. valid_timeinterp_factors (fact1, fact2)) then write(iulog,*) 'GETFACTORS: ', str, ' bad fact1 and/or fact2=', fact1, fact2 call endrun () end if return end subroutine get_timeinterp_factors logical function valid_timeinterp_factors (fact1, fact2) !--------------------------------------------------------------------------- ! ! Purpose: check sanity of time interpolation factors to within 32-bit roundoff ! !--------------------------------------------------------------------------- implicit none real(r8), intent(in) :: fact1, fact2 ! time interpolation factors valid_timeinterp_factors = .true. ! The fact1 .ne. fact1 and fact2 .ne. fact2 comparisons are to detect NaNs. if (abs(fact1+fact2-1.) > 1.e-6 .or. & fact1 > 1.000001 .or. fact1 < -1.e-6 .or. & fact2 > 1.000001 .or. fact2 < -1.e-6 .or. & fact1 .ne. fact1 .or. fact2 .ne. fact2) then valid_timeinterp_factors = .false. end if return end function valid_timeinterp_factors end module interpolate_data