module mapz_module 2 use shr_kind_mod, only : r8 => shr_kind_r8 use FVperf_module, only : FVstartclock, FVstopclock use abortutils, only : endrun use cam_logfile, only : iulog public map1_cubic_te, map1_ppm, mapn_ppm, mapn_ppm_tracer, ppme private real(r8), parameter :: D0_0 = 0.0_r8 real(r8), parameter :: D1EM14 = 1.0e-14_r8 real(r8), parameter :: D0_125 = 0.125_r8 real(r8), parameter :: D0_1875 = 0.1875_r8 real(r8), parameter :: D0_25 = 0.25_r8 real(r8), parameter :: D0_5 = 0.5_r8 real(r8), parameter :: D1_0 = 1.0_r8 real(r8), parameter :: D1_5 = 1.5_r8 real(r8), parameter :: D2_0 = 2.0_r8 real(r8), parameter :: D3_0 = 3.0_r8 real(r8), parameter :: D4_0 = 4.0_r8 real(r8), parameter :: D5_0 = 5.0_r8 real(r8), parameter :: D8_0 = 8.0_r8 real(r8), parameter :: D12_0 = 12.0_r8 contains !----------------------------------------------------------------------- !BOP ! !ROUTINE: map1_cubic_te --- Cubic Interpolation for TE mapping ! ! !INTERFACE: subroutine map1_cubic_te ( km, pe1, q1, kn, pe2, q2, & 1 ng_s, ng_n, itot, i1, i2, & j, jfirst, jlast, iv, kord) implicit none ! !INPUT PARAMETERS: integer, intent(in) :: i1 ! Starting longitude integer, intent(in) :: i2 ! Finishing longitude integer, intent(in) :: itot ! Total latitudes integer, intent(in) :: iv ! Mode: 0 == constituents 1 == ??? integer, intent(in) :: kord ! Method order integer, intent(in) :: j ! Current latitude integer, intent(in) :: jfirst ! Starting latitude integer, intent(in) :: jlast ! Finishing latitude integer, intent(in) :: ng_s ! Ghosted latitudes south integer, intent(in) :: ng_n ! Ghosted latitudes north integer, intent(in) :: km ! Original vertical dimension integer, intent(in) :: kn ! Target vertical dimension real(r8), intent(in) :: pe1(itot,km+1) ! pressure at layer edges ! (from model top to bottom surface) ! in the original vertical coordinate real(r8), intent(in) :: pe2(itot,kn+1) ! pressure at layer edges ! (from model top to bottom surface) ! in the new vertical coordinate real(r8), intent(in) :: q1(itot,jfirst-ng_s:jlast+ng_n,km) ! Field input ! !INPUT/OUTPUT PARAMETERS: real(r8), intent(inout):: q2(itot,jfirst-ng_s:jlast+ng_n,kn) ! Field output ! !DESCRIPTION: ! ! Perform Cubic Interpolation a given latitude ! pe1: pressure at layer edges (from model top to bottom surface) ! in the original vertical coordinate ! pe2: pressure at layer edges (from model top to bottom surface) ! in the new vertical coordinate ! ! !REVISION HISTORY: ! 05.11.14 Takacs Initial Code ! !EOP !----------------------------------------------------------------------- !BOC ! ! !LOCAL VARIABLES: real(r8) qx(i1:i2,km) real(r8) logpl1(i1:i2,km) real(r8) logpl2(i1:i2,kn) real(r8) dlogp1(i1:i2,km) real(r8) vsum1(i1:i2) real(r8) vsum2(i1:i2) real(r8) am2,am1,ap0,ap1,P,PLP1,PLP0,PLM1,PLM2,DLP0,DLM1,DLM2 integer i, k, LM2,LM1,LP0,LP1 ! Initialization ! -------------- do k=1,km qx(:,k) = q1(:,j,k) logpl1(:,k) = log( D0_5*(pe1(:,k)+pe1(:,k+1)) ) enddo do k=1,kn logpl2(:,k) = log( D0_5*(pe2(:,k)+pe2(:,k+1)) ) enddo do k=1,km-1 dlogp1(:,k) = logpl1(:,k+1)-logpl1(:,k) enddo ! Compute vertical integral of Input TE ! ------------------------------------- vsum1(:) = D0_0 do i=i1,i2 do k=1,km vsum1(i) = vsum1(i) + qx(i,k)*( pe1(i,k+1)-pe1(i,k) ) enddo vsum1(i) = vsum1(i) / ( pe1(i,km+1)-pe1(i,1) ) enddo ! Interpolate TE onto target Pressures ! ------------------------------------ do i=i1,i2 do k=1,kn LM1 = 1 LP0 = 1 do while( logpl1(i,LP0).lt.logpl2(i,k) .and. LP0.le.km ) LP0 = LP0+1 enddo LM1 = max(LP0-1,1) LP0 = min(LP0, km) ! Extrapolate Linearly in LogP above first model level ! ---------------------------------------------------- if( LM1.eq.1 .and. LP0.eq.1 ) then q2(i,j,k) = qx(i,1) + ( qx(i,2)-qx(i,1) )*( logpl2(i,k)-logpl1(i,1) ) & /( logpl1(i,2)-logpl1(i,1) ) ! Extrapolate Linearly in LogP below last model level ! --------------------------------------------------- else if( LM1.eq.km .and. LP0.eq.km ) then q2(i,j,k) = qx(i,km) + ( qx(i,km)-qx(i,km-1) )*( logpl2(i,k )-logpl1(i,km ) ) & /( logpl1(i,km)-logpl1(i,km-1) ) ! Interpolate Linearly in LogP between levels 1 => 2 and km-1 => km ! ----------------------------------------------------------------- else if( LM1.eq.1 .or. LP0.eq.km ) then q2(i,j,k) = qx(i,LP0) + ( qx(i,LM1)-qx(i,LP0) )*( logpl2(i,k )-logpl1(i,LP0) ) & /( logpl1(i,LM1)-logpl1(i,LP0) ) ! Interpolate Cubicly in LogP between other model levels ! ------------------------------------------------------ else LP1 = LP0+1 LM2 = LM1-1 P = logpl2(i,k) PLP1 = logpl1(i,LP1) PLP0 = logpl1(i,LP0) PLM1 = logpl1(i,LM1) PLM2 = logpl1(i,LM2) DLP0 = dlogp1(i,LP0) DLM1 = dlogp1(i,LM1) DLM2 = dlogp1(i,LM2) ap1 = (P-PLP0)*(P-PLM1)*(P-PLM2)/( DLP0*(DLP0+DLM1)*(DLP0+DLM1+DLM2) ) ap0 = (PLP1-P)*(P-PLM1)*(P-PLM2)/( DLP0* DLM1 *( DLM1+DLM2) ) am1 = (PLP1-P)*(PLP0-P)*(P-PLM2)/( DLM1* DLM2 *(DLP0+DLM1 ) ) am2 = (PLP1-P)*(PLP0-P)*(PLM1-P)/( DLM2*(DLM1+DLM2)*(DLP0+DLM1+DLM2) ) q2(i,j,k) = ap1*qx(i,LP1) + ap0*qx(i,LP0) + am1*qx(i,LM1) + am2*qx(i,LM2) endif enddo enddo ! Compute vertical integral of Output TE ! -------------------------------------- vsum2(:) = D0_0 do i=i1,i2 do k=1,kn vsum2(i) = vsum2(i) + q2(i,j,k)*( pe2(i,k+1)-pe2(i,k) ) enddo vsum2(i) = vsum2(i) / ( pe2(i,kn+1)-pe2(i,1) ) enddo ! Adjust Final TE to conserve ! --------------------------- do i=i1,i2 do k=1,kn q2(i,j,k) = q2(i,j,k) + vsum1(i)-vsum2(i) ! q2(i,j,k) = q2(i,j,k) * vsum1(i)/vsum2(i) enddo enddo return !EOC end subroutine map1_cubic_te !----------------------------------------------------------------------- !----------------------------------------------------------------------- !BOP ! !ROUTINE: map1_ppm --- Piecewise parabolic mapping, variant 1 ! ! !INTERFACE: subroutine map1_ppm( km, pe1, q1, kn, pe2, q2, & 7,2 ng_s, ng_n, itot, i1, i2, & j, jfirst, jlast, iv, kord) implicit none ! !INPUT PARAMETERS: integer, intent(in) :: i1 ! Starting longitude integer, intent(in) :: i2 ! Finishing longitude integer, intent(in) :: itot ! Total latitudes integer, intent(in) :: iv ! Mode: 0 == constituents 1 == ??? integer, intent(in) :: kord ! Method order integer, intent(in) :: j ! Current latitude integer, intent(in) :: jfirst ! Starting latitude integer, intent(in) :: jlast ! Finishing latitude integer, intent(in) :: ng_s ! Ghosted latitudes south integer, intent(in) :: ng_n ! Ghosted latitudes north integer, intent(in) :: km ! Original vertical dimension integer, intent(in) :: kn ! Target vertical dimension real(r8), intent(in) :: pe1(itot,km+1) ! pressure at layer edges ! (from model top to bottom surface) ! in the original vertical coordinate real(r8), intent(in) :: pe2(itot,kn+1) ! pressure at layer edges ! (from model top to bottom surface) ! in the new vertical coordinate real(r8), intent(in) :: q1(itot,jfirst-ng_s:jlast+ng_n,km) ! Field input ! !INPUT/OUTPUT PARAMETERS: real(r8), intent(inout):: q2(itot,jfirst-ng_s:jlast+ng_n,kn) ! Field output ! !DESCRIPTION: ! ! Perform piecewise parabolic method on a given latitude ! IV = 0: constituents ! pe1: pressure at layer edges (from model top to bottom surface) ! in the original vertical coordinate ! pe2: pressure at layer edges (from model top to bottom surface) ! in the new vertical coordinate ! ! !REVISION HISTORY: ! 00.04.24 Lin Last modification ! 01.03.26 Sawyer Added ProTeX documentation ! 02.04.04 Sawyer incorporated latest FVGCM version ! 02.06.20 Sawyer made Q2 inout since the args for Q1/Q2 same ! 03.07.22 Parks Cleaned main loop, removed gotos ! 05.05.25 Sawyer Merged CAM and GEOS5 versions ! !EOP !----------------------------------------------------------------------- !BOC ! ! !LOCAL VARIABLES: real(r8) r3, r23 parameter (r3 = D1_0/D3_0, r23 = D2_0/D3_0) real(r8) dp1(i1:i2,km) real(r8) q4(4,i1:i2,km) integer i, k, kk, kl, k0(i1:i2,0:kn+1), k0found real(r8) pl, pr, qsum, qsumk(i1:i2,kn), delp, esl do k=1,km do i=i1,i2 dp1(i,k) = pe1(i,k+1) - pe1(i,k) q4(1,i,k) = q1(i,j,k) enddo enddo ! Mapping ! Compute vertical subgrid distribution call ppm2m( q4, dp1, km, i1, i2, iv, kord ) ! For each pe2(i,k), determine lowest pe1 interval = smallest k0 (= k0(i,k)) ! such that pe1(i,k0) <= pe2(i,k) <= pe1(i,k0+1) ! Note that pe2(i,1)==pe1(i,1) and pe2(i,kn+1)==pe1(i,kn+1) ! Note also that pe1, pe2 are assumed to be monotonically increasing #if defined( UNICOSMP ) || defined ( NEC_SX ) do kk = km, 1, -1 do k = 1, kn+1 !dir$ prefervector do i = i1, i2 if (pe2(i,k) <= pe1(i,kk+1)) then k0(i,k) = kk endif enddo enddo enddo #else do i = i1, i2 k0(i,0) = 1 do k = 1, kn+1 k0found = -1 do kk = k0(i,k-1), km if (pe2(i,k) <= pe1(i,kk+1)) then k0(i,k) = kk k0found = kk exit endif enddo if (k0found .lt. 0) then write(iulog,*) 'mapz error - k0found i j k (kk,pe1,pe2) = ', & k0found, i, j, k, (kk,pe1(i,kk),pe2(i,kk),kk=1,km+1) call endrun('MAPZ_MODULE') return endif enddo enddo #endif ! Interpolate do k = 1, kn ! Prepare contribution between pe1(i,ko(i,k)+1) and pe1(i,k0(i,k+1)) qsumk(:,k) = D0_0 do i = i1, i2 do kl = k0(i,k)+1, k0(i,k+1)-1 qsumk(i,k) = qsumk(i,k) + dp1(i,kl)*q4(1,i,kl) enddo enddo do i = i1, i2 kk = k0(i,k) ! Consider contribution between pe1(i,kk) and pe2(i,k) pl = (pe2(i,k)-pe1(i,kk)) / dp1(i,kk) ! Check to see if pe2(i,k+1) and pe2(i,k) are in same pe1 interval if (k0(i,k+1) == k0(i,k)) then pr = (pe2(i,k+1)-pe1(i,kk)) / dp1(i,kk) q2(i,j,k) = q4(2,i,kk) + D0_5*(q4(4,i,kk)+q4(3,i,kk)-q4(2,i,kk)) & *(pr+pl) - q4(4,i,kk)*r3*(pr*(pr+pl)+pl**2) else ! Consider contribution between pe2(i,k) and pe1(i,kk+1) qsum = (pe1(i,kk+1)-pe2(i,k))*(q4(2,i,kk)+D0_5*(q4(4,i,kk)+ & q4(3,i,kk)-q4(2,i,kk))*(D1_0+pl)-q4(4,i,kk)* & (r3*(D1_0+pl*(D1_0+pl)))) ! Next consider contribution between pe1(i,kk+1) and pe1(i,k0(i,k+1)) qsum = qsum + qsumk(i,k) ! Now consider contribution between pe1(i,k0(i,k+1)) and pe2(i,k+1) kl = k0(i,k+1) delp = pe2(i,k+1)-pe1(i,kl) esl = delp / dp1(i,kl) qsum = qsum + delp*(q4(2,i,kl)+D0_5*esl* & (q4(3,i,kl)-q4(2,i,kl)+q4(4,i,kl)*(D1_0-r23*esl))) q2(i,j,k) = qsum / ( pe2(i,k+1) - pe2(i,k) ) endif enddo enddo return !EOC end subroutine map1_ppm !----------------------------------------------------------------------- !----------------------------------------------------------------------- !BOP ! !ROUTINE: mapn_ppm --- Piecewise parabolic mapping, variant 1 ! ! !INTERFACE: subroutine mapn_ppm(km, pe1, q1, nq, &,1 kn, pe2, q2, ng_s, ng_n, & itot, i1, i2, j, & jfirst, jlast, iv, kord) ! !USES: implicit none ! !INPUT PARAMETERS: integer, intent(in) :: i1 ! Starting longitude integer, intent(in) :: i2 ! Finishing longitude integer, intent(in) :: itot ! Total latitudes integer, intent(in) :: iv ! Mode: 0 == constituents 1 == ??? integer, intent(in) :: kord ! Method order integer, intent(in) :: j ! Current latitude integer, intent(in) :: jfirst ! Starting latitude integer, intent(in) :: jlast ! Finishing latitude integer, intent(in) :: ng_s ! Ghosted latitudes south integer, intent(in) :: ng_n ! Ghosted latitudes north integer, intent(in) :: km ! Original vertical dimension integer, intent(in) :: kn ! Target vertical dimension integer, intent(in) :: nq ! Number of tracers real(r8), intent(in) :: pe1(itot,km+1) ! pressure at layer edges ! (from model top to bottom surface) ! in the original vertical coordinate real(r8), intent(in) :: pe2(itot,kn+1) ! pressure at layer edges ! (from model top to bottom surface) ! in the new vertical coordinate real(r8), intent(in) :: q1(itot,jfirst-ng_s:jlast+ng_n,km,nq) ! Field input ! !INPUT/OUTPUT PARAMETERS: real(r8), intent(inout):: q2(itot,jfirst-ng_s:jlast+ng_n,kn,nq) ! Field output ! !DESCRIPTION: ! ! Perform piecewise parabolic method on a given latitude ! IV = 0: constituents ! pe1: pressure at layer edges (from model top to bottom surface) ! in the original vertical coordinate ! pe2: pressure at layer edges (from model top to bottom surface) ! in the new vertical coordinate ! ! !REVISION HISTORY: ! 02.04.04 Sawyer incorporated latest FVGCM version, ProTeX ! 02.06.20 Sawyer made Q2 inout since the args for Q1/Q2 same ! 03.07.22 Parks Cleaned main loop, removed gotos ! !EOP !----------------------------------------------------------------------- !BOC ! ! !LOCAL VARIABLES: real(r8) r3, r23 parameter (r3 = D1_0/D3_0, r23 = D2_0/D3_0) real(r8) dp1(i1:i2,km) real(r8) q4(4,i1:i2,km) integer i, k, kk, kl, k0(i1:i2,0:kn+1), iq real(r8) pl, pr, qsum, qsumk(i1:i2,kn), delp, esl do k=1,km do i=i1,i2 dp1(i,k) = pe1(i,k+1) - pe1(i,k) enddo enddo ! Mapping ! For each pe2(i,k), determine lowest pe1 interval = smallest k0 (= k0(i,k)) ! such that pe1(i,k0) <= pe2(i,k) <= pe1(i,k0+1) ! Note that pe2(i,1)==pe1(i,1) and pe2(i,kn+1)==pe1(i,kn+1) ! Note also that pe1, pe2 are assumed to be monotonically increasing #if defined( UNICOSMP ) || defined ( NEC_SX ) do kk = km, 1, -1 do k = 1, kn+1 !dir$ prefervector do i = i1, i2 if (pe2(i,k) <= pe1(i,kk+1)) then k0(i,k) = kk endif enddo enddo enddo #else do i = i1, i2 k0(i,0) = 1 do k = 1, kn+1 do kk = k0(i,k-1), km if (pe2(i,k) <= pe1(i,kk+1)) then k0(i,k) = kk exit endif enddo enddo enddo #endif do iq=1,nq do k=1,km do i=i1,i2 q4(1,i,k) = q1(i,j,k,iq) enddo enddo ! Compute vertical subgrid distribution call ppm2m( q4, dp1, km, i1, i2, iv, kord ) ! Interpolate do k = 1, kn ! Prepare contribution between pe1(i,ko(i,k)+1) and pe1(i,k0(i,k+1)) qsumk(:,k) = D0_0 do i = i1, i2 do kl = k0(i,k)+1, k0(i,k+1)-1 qsumk(i,k) = qsumk(i,k) + dp1(i,kl)*q4(1,i,kl) enddo enddo do i = i1, i2 kk = k0(i,k) ! Consider contribution between pe1(i,kk) and pe2(i,k) pl = (pe2(i,k)-pe1(i,kk)) / dp1(i,kk) ! Check to see if pe2(i,k+1) and pe2(i,k) are in same pe1 interval if (k0(i,k+1) == k0(i,k)) then pr = (pe2(i,k+1)-pe1(i,kk)) / dp1(i,kk) q2(i,j,k,iq) = q4(2,i,kk) + D0_5*(q4(4,i,kk)+q4(3,i,kk)-q4(2,i,kk)) & *(pr+pl) - q4(4,i,kk)*r3*(pr*(pr+pl)+pl**2) else ! Consider contribution between pe2(i,k) and pe1(i,kk+1) qsum = (pe1(i,kk+1)-pe2(i,k))*(q4(2,i,kk)+D0_5*(q4(4,i,kk)+ & q4(3,i,kk)-q4(2,i,kk))*(D1_0+pl)-q4(4,i,kk)* & (r3*(D1_0+pl*(D1_0+pl)))) ! Next consider contribution between pe1(i,kk+1) and pe1(i,k0(i,k+1)) qsum = qsum + qsumk(i,k) ! Now consider contribution between pe1(i,k0(i,k+1)) and pe2(i,k+1) kl = k0(i,k+1) delp = pe2(i,k+1)-pe1(i,kl) esl = delp / dp1(i,kl) qsum = qsum + delp*(q4(2,i,kl)+D0_5*esl* & (q4(3,i,kl)-q4(2,i,kl)+q4(4,i,kl)*(D1_0-r23*esl))) q2(i,j,k,iq) = qsum / ( pe2(i,k+1) - pe2(i,k) ) endif enddo enddo enddo return !EOC end subroutine mapn_ppm !----------------------------------------------------------------------- !----------------------------------------------------------------------- !BOP ! !ROUTINE: mapn_ppm_tracer --- Piecewise parabolic mapping, multiple tracers ! ! !INTERFACE: subroutine mapn_ppm_tracer(km, pe1, tracer, nq, & 1,1 kn, pe2, i1, i2, j, & ifirst, ilast, jfirst, jlast, iv, kord) ! !USES: implicit none ! !INPUT PARAMETERS: integer, intent(in) :: i1 ! Starting longitude integer, intent(in) :: i2 ! Finishing longitude integer, intent(in) :: iv ! Mode: 0 == constituents 1 == ??? integer, intent(in) :: kord ! Method order integer, intent(in) :: j ! Current latitude integer, intent(in) :: ifirst ! Starting segment integer, intent(in) :: ilast ! Finishing segment integer, intent(in) :: jfirst ! Starting latitude integer, intent(in) :: jlast ! Finishing latitude integer, intent(in) :: km ! Original vertical dimension integer, intent(in) :: kn ! Target vertical dimension integer, intent(in) :: nq ! Number of tracers real(r8), intent(in) :: pe1(ifirst:ilast,km+1) ! pressure at layer edges ! (from model top to bottom surface) ! in the original vertical coordinate real(r8), intent(in) :: pe2(ifirst:ilast,kn+1) ! pressure at layer edges ! (from model top to bottom surface) ! in the new vertical coordinate ! !INPUT/OUTPUT PARAMETERS: real (r8), intent(inout):: tracer(ifirst:ilast,jfirst:jlast,km,nq) ! Field output ! !DESCRIPTION: ! ! Perform piecewise parabolic method on a given latitude ! IV = 0: constituents ! pe1: pressure at layer edges (from model top to bottom surface) ! in the original vertical coordinate ! pe2: pressure at layer edges (from model top to bottom surface) ! in the new vertical coordinate ! ! !REVISION HISTORY: ! 05.03.20 Sawyer Created from mapn_ppm ! 05.04.04 Sawyer Simplified indexing, removed ifirst ! 05.04.12 Sawyer Added r4/r8 distinction ! 05.10.12 Worley Made mapn_ppm_tracer vector-friendly ! !EOP !----------------------------------------------------------------------- !BOC ! ! !LOCAL VARIABLES: real(r8) r3, r23 parameter (r3 = D1_0/D3_0, r23 = D2_0/D3_0) real(r8) dp1(i1:i2,km) real(r8) q4(4,i1:i2,km) integer i, k, kk, kl, k0(i1:i2,0:kn+1), iq real(r8) pl, pr, qsum, qsumk(i1:i2,kn), delp, esl do k=1,km do i=i1,i2 dp1(i,k) = pe1(i,k+1) - pe1(i,k) enddo enddo ! Mapping ! For each pe2(i,k), determine lowest pe1 interval = smallest k0 (= k0(i,k)) ! such that pe1(i,k0) <= pe2(i,k) <= pe1(i,k0+1) ! Note that pe2(i,1)==pe1(i,1) and pe2(i,kn+1)==pe1(i,kn+1) ! Note also that pe1, pe2 are assumed to be monotonically increasing #if defined( UNICOSMP ) || defined ( NEC_SX ) do kk = km, 1, -1 do k = 1, kn+1 !dir$ prefervector do i = i1, i2 if (pe2(i,k) <= pe1(i,kk+1)) then k0(i,k) = kk endif enddo enddo enddo #else do i = i1, i2 k0(i,0) = 1 do k = 1, kn+1 do kk = k0(i,k-1), km if (pe2(i,k) <= pe1(i,kk+1)) then k0(i,k) = kk exit endif enddo enddo enddo #endif do iq=1,nq do k=1,km do i=i1,i2 q4(1,i,k) = tracer(i,j,k,iq) enddo enddo ! Compute vertical subgrid distribution call ppm2m( q4, dp1, km, i1, i2, iv, kord ) ! Interpolate do k = 1, kn ! Prepare contribution between pe1(i,ko(i,k)+1) and pe1(i,k0(i,k+1)) qsumk(:,k) = D0_0 do i = i1, i2 do kl = k0(i,k)+1, k0(i,k+1)-1 qsumk(i,k) = qsumk(i,k) + dp1(i,kl)*q4(1,i,kl) enddo enddo do i = i1, i2 kk = k0(i,k) ! Consider contribution between pe1(i,kk) and pe2(i,k) pl = (pe2(i,k)-pe1(i,kk)) / dp1(i,kk) ! Check to see if pe2(i,k+1) and pe2(i,k) are in same pe1 interval if (k0(i,k+1) == k0(i,k)) then pr = (pe2(i,k+1)-pe1(i,kk)) / dp1(i,kk) tracer(i,j,k,iq) = q4(2,i,kk) & + D0_5*(q4(4,i,kk)+q4(3,i,kk)-q4(2,i,kk)) & *(pr+pl)-q4(4,i,kk)*r3*(pr*(pr+pl)+pl**2) else ! Consider contribution between pe2(i,k) and pe1(i,kk+1) qsum = (pe1(i,kk+1)-pe2(i,k))*(q4(2,i,kk)+D0_5*(q4(4,i,kk)+ & q4(3,i,kk)-q4(2,i,kk))*(D1_0+pl)-q4(4,i,kk)* & (r3*(D1_0+pl*(D1_0+pl)))) ! Next consider contribution between pe1(i,kk+1) and pe1(i,k0(i,k+1)) qsum = qsum + qsumk(i,k) ! Now consider contribution between pe1(i,k0(i,k+1)) and pe2(i,k+1) kl = k0(i,k+1) delp = pe2(i,k+1)-pe1(i,kl) esl = delp / dp1(i,kl) qsum = qsum + delp*(q4(2,i,kl)+D0_5*esl* & (q4(3,i,kl)-q4(2,i,kl)+q4(4,i,kl)*(D1_0-r23*esl))) tracer(i,j,k,iq) = qsum / ( pe2(i,k+1) - pe2(i,k) ) endif enddo enddo enddo ! do iq=1,nq return !EOC end subroutine mapn_ppm_tracer !----------------------------------------------------------------------- !----------------------------------------------------------------------- !BOP ! !ROUTINE: ppm2m --- Piecewise parabolic method for fields ! ! !INTERFACE: subroutine ppm2m(a4, delp, km, i1, i2, iv, kord) 3,5 ! !USES: implicit none ! !INPUT PARAMETERS: integer, intent(in):: iv ! iv =-1: winds ! iv = 0: positive definite scalars ! iv = 1: others integer, intent(in):: i1 ! Starting longitude integer, intent(in):: i2 ! Finishing longitude integer, intent(in):: km ! vertical dimension integer, intent(in):: kord ! Order (or more accurately method no.): ! real (r8), intent(in):: delp(i1:i2,km) ! layer pressure thickness ! !INPUT/OUTPUT PARAMETERS: real (r8), intent(inout):: a4(4,i1:i2,km) ! Interpolated values ! !DESCRIPTION: ! ! Perform the piecewise parabolic method ! ! !REVISION HISTORY: ! ??.??.?? Lin Creation ! 02.04.04 Sawyer Newest release from FVGCM ! 02.04.23 Sawyer Incorporated minor algorithmic change to ! maintain CAM zero diffs (see comments inline) ! !EOP !----------------------------------------------------------------------- !BOC ! ! !LOCAL VARIABLES: ! local arrays: real(r8) dc(i1:i2,km) real(r8) h2(i1:i2,km) real(r8) delq(i1:i2,km) real(r8) df2(i1:i2,km) real(r8) d4(i1:i2,km) ! local scalars: real(r8) fac real(r8) a1, a2, c1, c2, c3, d1, d2 real(r8) qmax, qmin, cmax, cmin real(r8) qm, dq, tmp integer i, k, km1, lmt real(r8) qmp, pmp real(r8) lac integer it km1 = km - 1 it = i2 - i1 + 1 do k=2,km do i=i1,i2 delq(i,k-1) = a4(1,i,k) - a4(1,i,k-1) d4(i,k ) = delp(i,k-1) + delp(i,k) enddo enddo do k=2,km1 do i=i1,i2 c1 = (delp(i,k-1)+D0_5*delp(i,k))/d4(i,k+1) c2 = (delp(i,k+1)+D0_5*delp(i,k))/d4(i,k) tmp = delp(i,k)*(c1*delq(i,k) + c2*delq(i,k-1)) / & (d4(i,k)+delp(i,k+1)) qmax = max(a4(1,i,k-1),a4(1,i,k),a4(1,i,k+1)) - a4(1,i,k) qmin = a4(1,i,k) - min(a4(1,i,k-1),a4(1,i,k),a4(1,i,k+1)) dc(i,k) = sign(min(abs(tmp),qmax,qmin), tmp) df2(i,k) = tmp enddo enddo !****6***0*********0*********0*********0*********0*********0**********72 ! 4th order interpolation of the provisional cell edge value !****6***0*********0*********0*********0*********0*********0**********72 do k=3,km1 do i=i1,i2 c1 = delq(i,k-1)*delp(i,k-1) / d4(i,k) a1 = d4(i,k-1) / (d4(i,k) + delp(i,k-1)) a2 = d4(i,k+1) / (d4(i,k) + delp(i,k)) a4(2,i,k) = a4(1,i,k-1) + c1 + D2_0/(d4(i,k-1)+d4(i,k+1)) * & ( delp(i,k)*(c1*(a1 - a2)+a2*dc(i,k-1)) - & delp(i,k-1)*a1*dc(i,k ) ) enddo enddo call steepz(i1, i2, km, a4, df2, dc, delq, delp, d4) ! Area preserving cubic with 2nd deriv. = 0 at the boundaries ! Top do i=i1,i2 d1 = delp(i,1) d2 = delp(i,2) qm = (d2*a4(1,i,1)+d1*a4(1,i,2)) / (d1+d2) dq = D2_0*(a4(1,i,2)-a4(1,i,1)) / (d1+d2) c1 = D4_0*(a4(2,i,3)-qm-d2*dq) / ( d2*(D2_0*d2*d2+d1*(d2+D3_0*d1)) ) c3 = dq - D0_5*c1*(d2*(D5_0*d1+d2)-D3_0*d1**2) a4(2,i,2) = qm - D0_25*c1*d1*d2*(d2+D3_0*d1) a4(2,i,1) = d1*(D2_0*c1*d1**2-c3) + a4(2,i,2) dc(i,1) = a4(1,i,1) - a4(2,i,1) ! No over- and undershoot condition cmax = max(a4(1,i,1), a4(1,i,2)) cmin = min(a4(1,i,1), a4(1,i,2)) a4(2,i,2) = max(cmin,a4(2,i,2)) a4(2,i,2) = min(cmax,a4(2,i,2)) enddo if( iv == 0 ) then do i=i1,i2 ! ! WS: 02.04.23 Algorithmic difference with FVGCM. FVGCM does this: ! !!! a4(2,i,1) = a4(1,i,1) !!! a4(3,i,1) = a4(1,i,1) ! ! CAM does this: ! a4(2,i,1) = max(D0_0,a4(2,i,1)) a4(2,i,2) = max(D0_0,a4(2,i,2)) enddo elseif ( iv == -1 ) then ! Winds: if( km > 32 ) then do i=i1,i2 ! More dampping: top layer as the sponge a4(2,i,1) = a4(1,i,1) a4(3,i,1) = a4(1,i,1) enddo else do i=i1,i2 if( a4(1,i,1)*a4(2,i,1) <= D0_0 ) then a4(2,i,1) = D0_0 else a4(2,i,1) = sign(min(abs(a4(1,i,1)), & abs(a4(2,i,1))), & a4(1,i,1) ) endif enddo endif endif ! Bottom ! Area preserving cubic with 2nd deriv. = 0 at the surface do i=i1,i2 d1 = delp(i,km) d2 = delp(i,km1) qm = (d2*a4(1,i,km)+d1*a4(1,i,km1)) / (d1+d2) dq = D2_0*(a4(1,i,km1)-a4(1,i,km)) / (d1+d2) c1 = (a4(2,i,km1)-qm-d2*dq) / (d2*(D2_0*d2*d2+d1*(d2+D3_0*d1))) c3 = dq - D2_0*c1*(d2*(D5_0*d1+d2)-D3_0*d1**2) a4(2,i,km) = qm - c1*d1*d2*(d2+D3_0*d1) a4(3,i,km) = d1*(D8_0*c1*d1**2-c3) + a4(2,i,km) dc(i,km) = a4(3,i,km) - a4(1,i,km) ! No over- and under-shoot condition cmax = max(a4(1,i,km), a4(1,i,km1)) cmin = min(a4(1,i,km), a4(1,i,km1)) a4(2,i,km) = max(cmin,a4(2,i,km)) a4(2,i,km) = min(cmax,a4(2,i,km)) enddo ! Enforce constraint at the surface if ( iv == 0 ) then ! Positive definite scalars: do i=i1,i2 a4(3,i,km) = max(D0_0, a4(3,i,km)) enddo elseif ( iv == -1 ) then ! Winds: do i=i1,i2 if( a4(1,i,km)*a4(3,i,km) <= D0_0 ) then a4(3,i,km) = D0_0 else a4(3,i,km) = sign( min(abs(a4(1,i,km)), & abs(a4(3,i,km))), & a4(1,i,km) ) endif enddo endif do k=1,km1 do i=i1,i2 a4(3,i,k) = a4(2,i,k+1) enddo enddo ! f(s) = AL + s*[(AR-AL) + A6*(1-s)] ( 0 <= s <= 1 ) ! Top 2 and bottom 2 layers always use monotonic mapping do k=1,2 do i=i1,i2 a4(4,i,k) = D3_0*(D2_0*a4(1,i,k) - (a4(2,i,k)+a4(3,i,k))) enddo call kmppm(dc(i1,k), a4(1,i1,k), it, 0) enddo if(kord >= 7) then !****6***0*********0*********0*********0*********0*********0**********72 ! Huynh's 2nd constraint !****6***0*********0*********0*********0*********0*********0**********72 do k=2, km1 do i=i1,i2 ! Method#1 ! h2(i,k) = delq(i,k) - delq(i,k-1) ! Method#2 ! h2(i,k) = D2_0*(dc(i,k+1)/delp(i,k+1) - dc(i,k-1)/delp(i,k-1)) ! & / ( delp(i,k)+D0_5*(delp(i,k-1)+delp(i,k+1)) ) ! & * delp(i,k)**2 ! Method#3 h2(i,k) = dc(i,k+1) - dc(i,k-1) enddo enddo if( kord == 7 ) then fac = D1_5 ! original quasi-monotone else fac = D0_125 ! full monotone endif do k=3, km-2 do i=i1,i2 ! Right edges ! qmp = a4(1,i,k) + D2_0*delq(i,k-1) ! lac = a4(1,i,k) + fac*h2(i,k-1) + D0_5*delq(i,k-1) ! pmp = D2_0*dc(i,k) qmp = a4(1,i,k) + pmp lac = a4(1,i,k) + fac*h2(i,k-1) + dc(i,k) qmin = min(a4(1,i,k), qmp, lac) qmax = max(a4(1,i,k), qmp, lac) a4(3,i,k) = min(max(a4(3,i,k), qmin), qmax) ! Left edges ! qmp = a4(1,i,k) - D2_0*delq(i,k) ! lac = a4(1,i,k) + fac*h2(i,k+1) - D0_5*delq(i,k) ! qmp = a4(1,i,k) - pmp lac = a4(1,i,k) + fac*h2(i,k+1) - dc(i,k) qmin = min(a4(1,i,k), qmp, lac) qmax = max(a4(1,i,k), qmp, lac) a4(2,i,k) = min(max(a4(2,i,k), qmin), qmax) ! Recompute A6 a4(4,i,k) = D3_0*(D2_0*a4(1,i,k) - (a4(2,i,k)+a4(3,i,k))) enddo ! Additional constraint to prevent negatives when kord=7 if (iv == 0 .and. kord == 7) then call kmppm(dc(i1,k), a4(1,i1,k), it, 2) endif enddo else lmt = kord - 3 lmt = max(0, lmt) if (iv == 0) lmt = min(2, lmt) do k=3, km-2 if( kord /= 4) then do i=i1,i2 a4(4,i,k) = D3_0*(D2_0*a4(1,i,k) - (a4(2,i,k)+a4(3,i,k))) enddo endif call kmppm(dc(i1,k), a4(1,i1,k), it, lmt) enddo endif do k=km1,km do i=i1,i2 a4(4,i,k) = D3_0*(D2_0*a4(1,i,k) - (a4(2,i,k)+a4(3,i,k))) enddo call kmppm(dc(i1,k), a4(1,i1,k), it, 0) enddo return !EOC end subroutine ppm2m !----------------------------------------------------------------------- !----------------------------------------------------------------------- !BOP ! !ROUTINE: ppme --- PPM scheme at vertical edges ! ! !INTERFACE: subroutine ppme(p,qe,delp,im,km) 1,1 ! !USES: use shr_kind_mod, only : r8 => shr_kind_r8, i4 => shr_kind_i4 implicit none ! !INPUT PARAMETERS: integer, intent(in) :: im, km real(r8), intent(in) :: p(im,km), delp(im,km) ! !INPUT/OUTPUT PARAMETERS: real(r8), intent(out) :: qe(im,km+1) ! !DESCRIPTION: ! ! ! !REVISION HISTORY: ! 05.06.13 Sawyer Inserted file ppme.F90 here, added ProTeX ! !EOP !----------------------------------------------------------------------- !BOC integer(i4) km1 integer(i4) i, k ! local arrays. real(r8) dc(im,km),delq(im,km), a6(im,km) real(r8) c1, c2, c3, tmp, qmax, qmin real(r8) a1, a2, s1, s2, s3, s4, ss3, s32, s34, s42 real(r8) a3, b2, sc, dm, d1, d2, f1, f2, f3, f4 real(r8) qm, dq km1 = km - 1 do 500 k=2,km do 500 i=1,im 500 a6(i,k) = delp(i,k-1) + delp(i,k) do 1000 k=1,km1 do 1000 i=1,im delq(i,k) = p(i,k+1) - p(i,k) 1000 continue do 1220 k=2,km1 do 1220 i=1,im c1 = (delp(i,k-1)+D0_5*delp(i,k))/a6(i,k+1) c2 = (delp(i,k+1)+D0_5*delp(i,k))/a6(i,k) tmp = delp(i,k)*(c1*delq(i,k) + c2*delq(i,k-1)) / & (a6(i,k)+delp(i,k+1)) qmax = max(p(i,k-1),p(i,k),p(i,k+1)) - p(i,k) qmin = p(i,k) - min(p(i,k-1),p(i,k),p(i,k+1)) dc(i,k) = sign(min(abs(tmp),qmax,qmin), tmp) 1220 continue !****6***0*********0*********0*********0*********0*********0**********72 ! 4th order interpolation of the provisional cell edge value !****6***0*********0*********0*********0*********0*********0**********72 do 12 k=3,km1 do 12 i=1,im c1 = delq(i,k-1)*delp(i,k-1) / a6(i,k) a1 = a6(i,k-1) / (a6(i,k) + delp(i,k-1)) a2 = a6(i,k+1) / (a6(i,k) + delp(i,k)) qe(i,k) = p(i,k-1) + c1 + D2_0/(a6(i,k-1)+a6(i,k+1)) * & ( delp(i,k)*(c1*(a1 - a2)+a2*dc(i,k-1)) - & delp(i,k-1)*a1*dc(i,k ) ) 12 continue ! three-cell parabolic subgrid distribution at model top do 10 i=1,im ! three-cell PP-distribution ! Compute a,b, and c of q = aP**2 + bP + c using cell averages and delp ! a3 = a / 3 ! b2 = b / 2 s1 = delp(i,1) s2 = delp(i,2) + s1 ! s3 = delp(i,2) + delp(i,3) s4 = s3 + delp(i,4) ss3 = s3 + s1 s32 = s3*s3 s42 = s4*s4 s34 = s3*s4 ! model top a3 = (delq(i,2) - delq(i,1)*s3/s2) / (s3*ss3) ! if(abs(a3) .gt. D1EM14) then b2 = delq(i,1)/s2 - a3*(s1+s2) sc = -b2/(D3_0*a3) if(sc .lt. D0_0 .or. sc .gt. s1) then qe(i,1) = p(i,1) - s1*(a3*s1 + b2) else qe(i,1) = p(i,1) - delq(i,1)*s1/s2 endif else ! Linear qe(i,1) = p(i,1) - delq(i,1)*s1/s2 endif dc(i,1) = p(i,1) - qe(i,1) ! compute coef. for the off-centered area preserving cubic poly. dm = delp(i,1) / (s34*ss3*(delp(i,2)+s3)*(s4+delp(i,1))) f1 = delp(i,2)*s34 / ( s2*ss3*(s4+delp(i,1)) ) f2 = (delp(i,2)+s3) * (ss3*(delp(i,2)*s3+s34+delp(i,2)*s4) & + s42*(delp(i,2)+s3+s32/s2)) f3 = -delp(i,2)*( ss3*(s32*(s3+s4)/(s4-delp(i,2)) & + (delp(i,2)*s3+s34+delp(i,2)*s4)) & + s42*(delp(i,2)+s3) ) f4 = ss3*delp(i,2)*s32*(delp(i,2)+s3) / (s4-delp(i,2)) qe(i,2) = f1*p(i,1)+(f2*p(i,2)+f3*p(i,3)+f4*p(i,4))*dm 10 continue ! Bottom ! Area preserving cubic with 2nd deriv. = 0 at the surface do 15 i=1,im d1 = delp(i,km) d2 = delp(i,km1) qm = (d2*p(i,km)+d1*p(i,km1)) / (d1+d2) dq = D2_0*(p(i,km1)-p(i,km)) / (d1+d2) c1 = (qe(i,km1)-qm-d2*dq) / (d2*(D2_0*d2*d2+d1*(d2+D3_0*d1))) c3 = dq - D2_0*c1*(d2*(D5_0*d1+d2)-D3_0*d1**2) qe(i,km ) = qm - c1*d1*d2*(d2+D3_0*d1) qe(i,km+1) = d1*(D8_0*c1*d1**2-c3) + qe(i,km) 15 continue return !EOC end subroutine ppme !----------------------------------------------------------------------- !----------------------------------------------------------------------- !BOP ! !ROUTINE: kmppm --- Perform piecewise parabolic method in vertical ! ! !INTERFACE: subroutine kmppm(dm, a4, itot, lmt) 4 ! !USES: implicit none ! !INPUT PARAMETERS: real(r8), intent(in):: dm(*) ! ?????? integer, intent(in) :: itot ! Total Longitudes integer, intent(in) :: lmt ! 0: Standard PPM constraint ! 1: Improved full monotonicity constraint (Lin) ! 2: Positive definite constraint ! 3: do nothing (return immediately) ! !INPUT/OUTPUT PARAMETERS: real(r8), intent(inout) :: a4(4,*) ! ??????? ! AA <-- a4(1,i) ! AL <-- a4(2,i) ! AR <-- a4(3,i) ! A6 <-- a4(4,i) ! !DESCRIPTION: ! ! Writes a standard set of data to the history buffer. ! ! !REVISION HISTORY: ! 00.04.24 Lin Last modification ! 01.03.26 Sawyer Added ProTeX documentation ! 02.04.04 Sawyer Incorporated newest FVGCM version ! !EOP !----------------------------------------------------------------------- !BOC ! ! !LOCAL VARIABLES: real(r8) r12 parameter (r12 = D1_0/D12_0) real(r8) qmp integer i real(r8) da1, da2, a6da real(r8) fmin ! Developer: S.-J. Lin, NASA-GSFC ! Last modified: Apr 24, 2000 if ( lmt == 3 ) return if(lmt == 0) then ! Standard PPM constraint do i=1,itot if(dm(i) == D0_0) then a4(2,i) = a4(1,i) a4(3,i) = a4(1,i) a4(4,i) = D0_0 else da1 = a4(3,i) - a4(2,i) da2 = da1**2 a6da = a4(4,i)*da1 if(a6da < -da2) then a4(4,i) = D3_0*(a4(2,i)-a4(1,i)) a4(3,i) = a4(2,i) - a4(4,i) elseif(a6da > da2) then a4(4,i) = D3_0*(a4(3,i)-a4(1,i)) a4(2,i) = a4(3,i) - a4(4,i) endif endif enddo elseif (lmt == 1) then ! Improved full monotonicity constraint (Lin) ! Note: no need to provide first guess of A6 <-- a4(4,i) do i=1, itot qmp = D2_0*dm(i) a4(2,i) = a4(1,i)-sign(min(abs(qmp),abs(a4(2,i)-a4(1,i))), qmp) a4(3,i) = a4(1,i)+sign(min(abs(qmp),abs(a4(3,i)-a4(1,i))), qmp) a4(4,i) = D3_0*( D2_0*a4(1,i) - (a4(2,i)+a4(3,i)) ) enddo elseif (lmt == 2) then ! Positive definite constraint do i=1,itot if( abs(a4(3,i)-a4(2,i)) < -a4(4,i) ) then fmin = a4(1,i)+D0_25*(a4(3,i)-a4(2,i))**2/a4(4,i)+a4(4,i)*r12 if( fmin < D0_0 ) then if(a4(1,i)<a4(3,i) .and. a4(1,i)<a4(2,i)) then a4(3,i) = a4(1,i) a4(2,i) = a4(1,i) a4(4,i) = D0_0 elseif(a4(3,i) > a4(2,i)) then a4(4,i) = D3_0*(a4(2,i)-a4(1,i)) a4(3,i) = a4(2,i) - a4(4,i) else a4(4,i) = D3_0*(a4(3,i)-a4(1,i)) a4(2,i) = a4(3,i) - a4(4,i) endif endif endif enddo endif return !EOC end subroutine kmppm !----------------------------------------------------------------------- !----------------------------------------------------------------------- !BOP ! !ROUTINE: steepz --- Calculate attributes for PPM ! ! !INTERFACE: subroutine steepz(i1, i2, km, a4, df2, dm, dq, dp, d4) 1 ! !USES: implicit none ! !INPUT PARAMETERS: integer, intent(in) :: km ! Total levels integer, intent(in) :: i1 ! Starting longitude integer, intent(in) :: i2 ! Finishing longitude real(r8), intent(in) :: dp(i1:i2,km) ! grid size real(r8), intent(in) :: dq(i1:i2,km) ! backward diff of q real(r8), intent(in) :: d4(i1:i2,km) ! backward sum: dp(k)+ dp(k-1) real(r8), intent(in) :: df2(i1:i2,km) ! first guess mismatch real(r8), intent(in) :: dm(i1:i2,km) ! monotonic mismatch ! !INPUT/OUTPUT PARAMETERS: real(r8), intent(inout) :: a4(4,i1:i2,km) ! first guess/steepened ! ! !DESCRIPTION: ! This is complicated stuff related to the Piecewise Parabolic Method ! and I need to read the Collela/Woodward paper before documenting ! thoroughly. ! ! !REVISION HISTORY: ! ??.??.?? Lin? Creation ! 01.03.26 Sawyer Added ProTeX documentation ! !EOP !----------------------------------------------------------------------- !BOC ! ! !LOCAL VARIABLES: integer i, k real(r8) alfa(i1:i2,km) real(r8) f(i1:i2,km) real(r8) rat(i1:i2,km) real(r8) dg2 ! Compute ratio of dq/dp do k=2,km do i=i1,i2 rat(i,k) = dq(i,k-1) / d4(i,k) enddo enddo ! Compute F do k=2,km-1 do i=i1,i2 f(i,k) = (rat(i,k+1) - rat(i,k)) & / ( dp(i,k-1)+dp(i,k)+dp(i,k+1) ) enddo enddo do k=3,km-2 do i=i1,i2 if(f(i,k+1)*f(i,k-1)<D0_0 .and. df2(i,k)/=D0_0) then dg2 = (f(i,k+1)-f(i,k-1))*((dp(i,k+1)-dp(i,k-1))**2 & + d4(i,k)*d4(i,k+1) ) alfa(i,k) = max(D0_0, min(D0_5, -D0_1875*dg2/df2(i,k))) else alfa(i,k) = D0_0 endif enddo enddo do k=4,km-2 do i=i1,i2 a4(2,i,k) = (D1_0-alfa(i,k-1)-alfa(i,k)) * a4(2,i,k) + & alfa(i,k-1)*(a4(1,i,k)-dm(i,k)) + & alfa(i,k)*(a4(1,i,k-1)+dm(i,k-1)) enddo enddo return !EOC end subroutine steepz !----------------------------------------------------------------------- end module mapz_module