! ! Common block and statement functions for saturation vapor pressure ! look-up procedure, J. J. Hack, February 1990 ! ! $Id$ ! module wv_saturation 19,3 use shr_kind_mod, only: r8 => shr_kind_r8 use abortutils, only: endrun use cam_logfile, only: iulog implicit none private save ! ! Public interfaces ! public gestbl ! Initialization subroutine public estblf ! saturation pressure table lookup public aqsat ! Returns saturation vapor pressure public aqsatd ! Same as aqsat, but also returns a temperature derivitive public vqsatd ! Vector version of aqsatd public fqsatd ! Function version of vqsatd public qsat_water ! saturation mixing ration with respect to liquid water public vqsat_water ! vector version of qsat_water public qsat_ice ! saturation mixing ration with respect to ice public vqsat_ice ! vector version of qsat_ice public vqsatd_water public aqsat_water public vqsatd2_water ! Variant of vqsatd_water to print out dqsdT public vqsatd2_water_single ! Single value version of vqsatd2_water public vqsatd2 public vqsatd2_single public polysvp ! ! Data used by cldwat ! public hlatv, tmin, hlatf, rgasv, pcf, cp, epsqs, ttrice ! ! Data ! integer plenest ! length of saturation vapor pressure table parameter (plenest=250) ! ! Table of saturation vapor pressure values es from tmin degrees ! to tmax+1 degrees k in one degree increments. ttrice defines the ! transition region where es is a combination of ice & water values ! real(r8) estbl(plenest) ! table values of saturation vapor pressure real(r8) tmin ! min temperature (K) for table real(r8) tmax ! max temperature (K) for table real(r8) ttrice ! transition range from es over H2O to es over ice real(r8) pcf(6) ! polynomial coeffs -> es transition water to ice real(r8) epsqs ! Ratio of h2o to dry air molecular weights real(r8) rgasv ! Gas constant for water vapor real(r8) hlatf ! Latent heat of vaporization real(r8) hlatv ! Latent heat of fusion real(r8) cp ! specific heat of dry air real(r8) tmelt ! Melting point of water (K) logical icephs ! false => saturation vapor press over water only contains real(r8) function estblf( td ) 21 ! ! Saturation vapor pressure table lookup ! real(r8), intent(in) :: td ! Temperature for saturation lookup ! real(r8) :: e ! intermediate variable for es look-up real(r8) :: ai integer :: i ! e = max(min(td,tmax),tmin) ! partial pressure i = int(e-tmin)+1 ai = aint(e-tmin) estblf = (tmin+ai-e+1._r8)* & estbl(i)-(tmin+ai-e)* & estbl(i+1) end function estblf subroutine gestbl(tmn ,tmx ,trice ,ip ,epsil , & 1,3 latvap ,latice ,rh2o ,cpair ,tmeltx ) !----------------------------------------------------------------------- ! ! Purpose: ! Builds saturation vapor pressure table for later lookup procedure. ! ! Method: ! Uses Goff & Gratch (1946) relationships to generate the table ! according to a set of free parameters defined below. Auxiliary ! routines are also included for making rapid estimates (well with 1%) ! of both es and d(es)/dt for the particular table configuration. ! ! Author: J. Hack ! !----------------------------------------------------------------------- use spmd_utils, only: masterproc !------------------------------Arguments-------------------------------- ! ! Input arguments ! real(r8), intent(in) :: tmn ! Minimum temperature entry in es lookup table real(r8), intent(in) :: tmx ! Maximum temperature entry in es lookup table real(r8), intent(in) :: epsil ! Ratio of h2o to dry air molecular weights real(r8), intent(in) :: trice ! Transition range from es over range to es over ice real(r8), intent(in) :: latvap ! Latent heat of vaporization real(r8), intent(in) :: latice ! Latent heat of fusion real(r8), intent(in) :: rh2o ! Gas constant for water vapor real(r8), intent(in) :: cpair ! Specific heat of dry air real(r8), intent(in) :: tmeltx ! Melting point of water (K) ! !---------------------------Local variables----------------------------- ! real(r8) t ! Temperature integer n ! Increment counter integer lentbl ! Calculated length of lookup table integer itype ! Ice phase: 0 -> no ice phase ! 1 -> ice phase, no transition ! -x -> ice phase, x degree transition logical ip ! Ice phase logical flag ! !----------------------------------------------------------------------- ! ! Set es table parameters ! tmin = tmn ! Minimum temperature entry in table tmax = tmx ! Maximum temperature entry in table ttrice = trice ! Trans. range from es over h2o to es over ice icephs = ip ! Ice phase (true or false) ! ! Set physical constants required for es calculation ! epsqs = epsil hlatv = latvap hlatf = latice rgasv = rh2o cp = cpair tmelt = tmeltx ! lentbl = INT(tmax-tmin+2.000001_r8) if (lentbl .gt. plenest) then write(iulog,9000) tmax, tmin, plenest call endrun ('GESTBL') ! Abnormal termination end if ! ! Begin building es table. ! Check whether ice phase requested. ! If so, set appropriate transition range for temperature ! if (icephs) then if (ttrice /= 0.0_r8) then itype = -ttrice else itype = 1 end if else itype = 0 end if ! t = tmin - 1.0_r8 do n=1,lentbl t = t + 1.0_r8 call gffgch(t,estbl(n),itype) end do ! do n=lentbl+1,plenest estbl(n) = -99999.0_r8 end do ! ! Table complete -- Set coefficients for polynomial approximation of ! difference between saturation vapor press over water and saturation ! pressure over ice for -ttrice < t < 0 (degrees C). NOTE: polynomial ! is valid in the range -40 < t < 0 (degrees C). ! ! --- Degree 5 approximation --- ! pcf(1) = 5.04469588506e-01_r8 pcf(2) = -5.47288442819e+00_r8 pcf(3) = -3.67471858735e-01_r8 pcf(4) = -8.95963532403e-03_r8 pcf(5) = -7.78053686625e-05_r8 ! ! --- Degree 6 approximation --- ! !-----pcf(1) = 7.63285250063e-02 !-----pcf(2) = -5.86048427932e+00 !-----pcf(3) = -4.38660831780e-01 !-----pcf(4) = -1.37898276415e-02 !-----pcf(5) = -2.14444472424e-04 !-----pcf(6) = -1.36639103771e-06 ! if (masterproc) then write(iulog,*)' *** SATURATION VAPOR PRESSURE TABLE COMPLETED ***' end if return ! 9000 format('GESTBL: FATAL ERROR *********************************',/, & ' TMAX AND TMIN REQUIRE A LARGER DIMENSION ON THE LENGTH', & ' OF THE SATURATION VAPOR PRESSURE TABLE ESTBL(PLENEST)',/, & ' TMAX, TMIN, AND PLENEST => ', 2f7.2, i3) ! end subroutine gestbl subroutine aqsat(t ,p ,es ,qs ,ii , & 13,1 ilen ,kk ,kstart ,kend ) !----------------------------------------------------------------------- ! ! Purpose: ! Utility procedure to look up and return saturation vapor pressure from ! precomputed table, calculate and return saturation specific humidity ! (g/g),for input arrays of temperature and pressure (dimensioned ii,kk) ! This routine is useful for evaluating only a selected region in the ! vertical. ! ! Method: ! <Describe the algorithm(s) used in the routine.> ! <Also include any applicable external references.> ! ! Author: J. Hack ! !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: ii ! I dimension of arrays t, p, es, qs integer, intent(in) :: kk ! K dimension of arrays t, p, es, qs integer, intent(in) :: ilen ! Length of vectors in I direction which integer, intent(in) :: kstart ! Starting location in K direction integer, intent(in) :: kend ! Ending location in K direction real(r8), intent(in) :: t(ii,kk) ! Temperature real(r8), intent(in) :: p(ii,kk) ! Pressure ! ! Output arguments ! real(r8), intent(out) :: es(ii,kk) ! Saturation vapor pressure real(r8), intent(out) :: qs(ii,kk) ! Saturation specific humidity ! !---------------------------Local workspace----------------------------- ! real(r8) omeps ! 1 - 0.622 integer i, k ! Indices ! !----------------------------------------------------------------------- ! omeps = 1.0_r8 - epsqs do k=kstart,kend do i=1,ilen es(i,k) = estblf(t(i,k)) ! ! Saturation specific humidity ! qs(i,k) = epsqs*es(i,k)/(p(i,k) - omeps*es(i,k)) ! ! The following check is to avoid the generation of negative values ! that can occur in the upper stratosphere and mesosphere ! qs(i,k) = min(1.0_r8,qs(i,k)) ! if (qs(i,k) < 0.0_r8) then qs(i,k) = 1.0_r8 es(i,k) = p(i,k) end if end do end do ! return end subroutine aqsat !++xl subroutine aqsat_water(t ,p ,es ,qs ,ii , & 2,1 ilen ,kk ,kstart ,kend ) !----------------------------------------------------------------------- ! ! Purpose: ! Utility procedure to look up and return saturation vapor pressure from ! precomputed table, calculate and return saturation specific humidity ! (g/g),for input arrays of temperature and pressure (dimensioned ii,kk) ! This routine is useful for evaluating only a selected region in the ! vertical. ! ! Method: ! <Describe the algorithm(s) used in the routine.> ! <Also include any applicable external references.> ! ! Author: J. Hack ! !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: ii ! I dimension of arrays t, p, es, qs integer, intent(in) :: kk ! K dimension of arrays t, p, es, qs integer, intent(in) :: ilen ! Length of vectors in I direction which integer, intent(in) :: kstart ! Starting location in K direction integer, intent(in) :: kend ! Ending location in K direction real(r8), intent(in) :: t(ii,kk) ! Temperature real(r8), intent(in) :: p(ii,kk) ! Pressure ! ! Output arguments ! real(r8), intent(out) :: es(ii,kk) ! Saturation vapor pressure real(r8), intent(out) :: qs(ii,kk) ! Saturation specific humidity ! !---------------------------Local workspace----------------------------- ! real(r8) omeps ! 1 - 0.622 integer i, k ! Indices ! !----------------------------------------------------------------------- ! omeps = 1.0_r8 - epsqs do k=kstart,kend do i=1,ilen ! es(i,k) = estblf(t(i,k)) es(i,k) = polysvp(t(i,k),0) ! ! Saturation specific humidity ! qs(i,k) = epsqs*es(i,k)/(p(i,k) - omeps*es(i,k)) ! ! The following check is to avoid the generation of negative values ! that can occur in the upper stratosphere and mesosphere ! qs(i,k) = min(1.0_r8,qs(i,k)) ! if (qs(i,k) < 0.0_r8) then qs(i,k) = 1.0_r8 es(i,k) = p(i,k) end if end do end do ! return end subroutine aqsat_water !--xl subroutine aqsatd(t ,p ,es ,qs ,gam , & 1,1 ii ,ilen ,kk ,kstart ,kend ) !----------------------------------------------------------------------- ! ! Purpose: ! Utility procedure to look up and return saturation vapor pressure from ! precomputed table, calculate and return saturation specific humidity ! (g/g). ! ! Method: ! Differs from aqsat by also calculating and returning ! gamma (l/cp)*(d(qsat)/dT) ! Input arrays temperature and pressure (dimensioned ii,kk). ! ! Author: J. Hack ! !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: ii ! I dimension of arrays t, p, es, qs integer, intent(in) :: ilen ! Vector length in I direction integer, intent(in) :: kk ! K dimension of arrays t, p, es, qs integer, intent(in) :: kstart ! Starting location in K direction integer, intent(in) :: kend ! Ending location in K direction real(r8), intent(in) :: t(ii,kk) ! Temperature real(r8), intent(in) :: p(ii,kk) ! Pressure ! ! Output arguments ! real(r8), intent(out) :: es(ii,kk) ! Saturation vapor pressure real(r8), intent(out) :: qs(ii,kk) ! Saturation specific humidity real(r8), intent(out) :: gam(ii,kk) ! (l/cp)*(d(qs)/dt) ! !---------------------------Local workspace----------------------------- ! logical lflg ! True if in temperature transition region integer i ! i index for vector calculations integer k ! k index real(r8) omeps ! 1. - 0.622 real(r8) trinv ! Reciprocal of ttrice (transition range) real(r8) tc ! Temperature (in degrees C) real(r8) weight ! Weight for es transition from water to ice real(r8) hltalt ! Appropriately modified hlat for T derivatives real(r8) hlatsb ! hlat weighted in transition region real(r8) hlatvp ! hlat modified for t changes above freezing real(r8) tterm ! Account for d(es)/dT in transition region real(r8) desdt ! d(es)/dT ! !----------------------------------------------------------------------- ! omeps = 1.0_r8 - epsqs do k=kstart,kend do i=1,ilen es(i,k) = estblf(t(i,k)) ! ! Saturation specific humidity ! qs(i,k) = epsqs*es(i,k)/(p(i,k) - omeps*es(i,k)) ! ! The following check is to avoid the generation of negative qs ! values which can occur in the upper stratosphere and mesosphere ! qs(i,k) = min(1.0_r8,qs(i,k)) ! if (qs(i,k) < 0.0_r8) then qs(i,k) = 1.0_r8 es(i,k) = p(i,k) end if end do end do ! ! "generalized" analytic expression for t derivative of es ! accurate to within 1 percent for 173.16 < t < 373.16 ! trinv = 0.0_r8 if ((.not. icephs) .or. (ttrice.eq.0.0_r8)) go to 10 trinv = 1.0_r8/ttrice ! do k=kstart,kend do i=1,ilen ! ! Weighting of hlat accounts for transition from water to ice ! polynomial expression approximates difference between es over ! water and es over ice from 0 to -ttrice (C) (min of ttrice is ! -40): required for accurate estimate of es derivative in transition ! range from ice to water also accounting for change of hlatv with t ! above freezing where constant slope is given by -2369 j/(kg c) =cpv - cw ! tc = t(i,k) - tmelt lflg = (tc >= -ttrice .and. tc < 0.0_r8) weight = min(-tc*trinv,1.0_r8) hlatsb = hlatv + weight*hlatf hlatvp = hlatv - 2369.0_r8*tc if (t(i,k) < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if if (lflg) then tterm = pcf(1) + tc*(pcf(2) + tc*(pcf(3) + tc*(pcf(4) + tc*pcf(5)))) else tterm = 0.0_r8 end if desdt = hltalt*es(i,k)/(rgasv*t(i,k)*t(i,k)) + tterm*trinv gam(i,k) = hltalt*qs(i,k)*p(i,k)*desdt/(cp*es(i,k)*(p(i,k) - omeps*es(i,k))) if (qs(i,k) == 1.0_r8) gam(i,k) = 0.0_r8 end do end do ! go to 20 ! ! No icephs or water to ice transition ! 10 do k=kstart,kend do i=1,ilen ! ! Account for change of hlatv with t above freezing where ! constant slope is given by -2369 j/(kg c) = cpv - cw ! hlatvp = hlatv - 2369.0_r8*(t(i,k)-tmelt) if (icephs) then hlatsb = hlatv + hlatf else hlatsb = hlatv end if if (t(i,k) < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if desdt = hltalt*es(i,k)/(rgasv*t(i,k)*t(i,k)) gam(i,k) = hltalt*qs(i,k)*p(i,k)*desdt/(cp*es(i,k)*(p(i,k) - omeps*es(i,k))) if (qs(i,k) == 1.0_r8) gam(i,k) = 0.0_r8 end do end do ! 20 return end subroutine aqsatd subroutine vqsatd(t ,p ,es ,qs ,gam , & 4,1 len ) !----------------------------------------------------------------------- ! ! Purpose: ! Utility procedure to look up and return saturation vapor pressure from ! precomputed table, calculate and return saturation specific humidity ! (g/g), and calculate and return gamma (l/cp)*(d(qsat)/dT). The same ! function as qsatd, but operates on vectors of temperature and pressure ! ! Method: ! ! Author: J. Hack ! !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: len ! vector length real(r8), intent(in) :: t(len) ! temperature real(r8), intent(in) :: p(len) ! pressure ! ! Output arguments ! real(r8), intent(out) :: es(len) ! saturation vapor pressure real(r8), intent(out) :: qs(len) ! saturation specific humidity real(r8), intent(out) :: gam(len) ! (l/cp)*(d(qs)/dt) ! !--------------------------Local Variables------------------------------ ! logical lflg ! true if in temperature transition region ! integer i ! index for vector calculations ! real(r8) omeps ! 1. - 0.622 real(r8) trinv ! reciprocal of ttrice (transition range) real(r8) tc ! temperature (in degrees C) real(r8) weight ! weight for es transition from water to ice real(r8) hltalt ! appropriately modified hlat for T derivatives ! real(r8) hlatsb ! hlat weighted in transition region real(r8) hlatvp ! hlat modified for t changes above freezing real(r8) tterm ! account for d(es)/dT in transition region real(r8) desdt ! d(es)/dT ! !----------------------------------------------------------------------- ! omeps = 1.0_r8 - epsqs do i=1,len es(i) = estblf(t(i)) ! ! Saturation specific humidity ! qs(i) = epsqs*es(i)/(p(i) - omeps*es(i)) ! ! The following check is to avoid the generation of negative ! values that can occur in the upper stratosphere and mesosphere ! qs(i) = min(1.0_r8,qs(i)) ! if (qs(i) < 0.0_r8) then qs(i) = 1.0_r8 es(i) = p(i) end if end do ! ! "generalized" analytic expression for t derivative of es ! accurate to within 1 percent for 173.16 < t < 373.16 ! trinv = 0.0_r8 if ((.not. icephs) .or. (ttrice.eq.0.0_r8)) go to 10 trinv = 1.0_r8/ttrice do i=1,len ! ! Weighting of hlat accounts for transition from water to ice ! polynomial expression approximates difference between es over ! water and es over ice from 0 to -ttrice (C) (min of ttrice is ! -40): required for accurate estimate of es derivative in transition ! range from ice to water also accounting for change of hlatv with t ! above freezing where const slope is given by -2369 j/(kg c) = cpv - cw ! tc = t(i) - tmelt lflg = (tc >= -ttrice .and. tc < 0.0_r8) weight = min(-tc*trinv,1.0_r8) hlatsb = hlatv + weight*hlatf hlatvp = hlatv - 2369.0_r8*tc if (t(i) < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if if (lflg) then tterm = pcf(1) + tc*(pcf(2) + tc*(pcf(3) + tc*(pcf(4) + tc*pcf(5)))) else tterm = 0.0_r8 end if desdt = hltalt*es(i)/(rgasv*t(i)*t(i)) + tterm*trinv gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i))) if (qs(i) == 1.0_r8) gam(i) = 0.0_r8 end do return ! ! No icephs or water to ice transition ! 10 do i=1,len ! ! Account for change of hlatv with t above freezing where ! constant slope is given by -2369 j/(kg c) = cpv - cw ! hlatvp = hlatv - 2369.0_r8*(t(i)-tmelt) if (icephs) then hlatsb = hlatv + hlatf else hlatsb = hlatv end if if (t(i) < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if desdt = hltalt*es(i)/(rgasv*t(i)*t(i)) gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i))) if (qs(i) == 1.0_r8) gam(i) = 0.0_r8 end do ! return ! end subroutine vqsatd !++xl subroutine vqsatd_water(t ,p ,es ,qs ,gam , & 1,1 len ) !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: len ! vector length real(r8), intent(in) :: t(len) ! temperature real(r8), intent(in) :: p(len) ! pressure ! ! Output arguments ! real(r8), intent(out) :: es(len) ! saturation vapor pressure real(r8), intent(out) :: qs(len) ! saturation specific humidity real(r8), intent(out) :: gam(len) ! (l/cp)*(d(qs)/dt) ! !--------------------------Local Variables------------------------------ ! ! integer i ! index for vector calculations ! real(r8) omeps ! 1. - 0.622 real(r8) hltalt ! appropriately modified hlat for T derivatives ! real(r8) hlatsb ! hlat weighted in transition region real(r8) hlatvp ! hlat modified for t changes above freezing real(r8) desdt ! d(es)/dT ! !----------------------------------------------------------------------- ! omeps = 1.0_r8 - epsqs do i=1,len es(i) = polysvp(t(i),0) ! ! Saturation specific humidity ! qs(i) = epsqs*es(i)/(p(i) - omeps*es(i)) ! ! The following check is to avoid the generation of negative ! values that can occur in the upper stratosphere and mesosphere ! qs(i) = min(1.0_r8,qs(i)) ! if (qs(i) < 0.0_r8) then qs(i) = 1.0_r8 es(i) = p(i) end if end do ! ! No icephs or water to ice transition ! do i=1,len ! ! Account for change of hlatv with t above freezing where ! constant slope is given by -2369 j/(kg c) = cpv - cw ! hlatvp = hlatv - 2369.0_r8*(t(i)-tmelt) hlatsb = hlatv if (t(i) < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if desdt = hltalt*es(i)/(rgasv*t(i)*t(i)) gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i))) if (qs(i) == 1.0_r8) gam(i) = 0.0_r8 end do ! return ! end subroutine vqsatd_water function polysvp (T,type) 36 ! Compute saturation vapor pressure by using ! function from Goff and Gatch (1946) ! Polysvp returned in units of pa. ! T is input in units of K. ! type refers to saturation with respect to liquid (0) or ice (1) real(r8) dum real(r8) T,polysvp integer type ! ice if (type.eq.1) then ! Goff Gatch equation (good down to -100 C) polysvp = 10._r8**(-9.09718_r8*(273.16_r8/t-1._r8)-3.56654_r8* & log10(273.16_r8/t)+0.876793_r8*(1._r8-t/273.16_r8)+ & log10(6.1071_r8))*100._r8 end if ! Goff Gatch equation, uncertain below -70 C if (type.eq.0) then polysvp = 10._r8**(-7.90298_r8*(373.16_r8/t-1._r8)+ & 5.02808_r8*log10(373.16_r8/t)- & 1.3816e-7_r8*(10._r8**(11.344_r8*(1._r8-t/373.16_r8))-1._r8)+ & 8.1328e-3_r8*(10._r8**(-3.49149_r8*(373.16_r8/t-1._r8))-1._r8)+ & log10(1013.246_r8))*100._r8 end if end function polysvp !--xl integer function fqsatd(t ,p ,es ,qs ,gam , len ),1 !----------------------------------------------------------------------- ! Purpose: ! This is merely a function interface vqsatd. !------------------------------Arguments-------------------------------- ! Input arguments integer, intent(in) :: len ! vector length real(r8), intent(in) :: t(len) ! temperature real(r8), intent(in) :: p(len) ! pressure ! Output arguments real(r8), intent(out) :: es(len) ! saturation vapor pressure real(r8), intent(out) :: qs(len) ! saturation specific humidity real(r8), intent(out) :: gam(len) ! (l/cp)*(d(qs)/dt) ! Call vqsatd call vqsatd(t ,p ,es ,qs ,gam , len ) fqsatd = 1 return end function fqsatd real(r8) function qsat_water(t,p) 4 ! saturation mixing ratio w/respect to liquid water real(r8) t ! temperature real(r8) p ! pressure (Pa) real(r8) es ! saturation vapor pressure (Pa) real(r8) ps, ts, e1, e2, f1, f2, f3, f4, f5, f ! real(r8) t0inv ! 1/273. ! data t0inv/0.003663/ ! save t0inv ! es = 611.*exp(hlatv/rgasv*(t0inv-1./t)) ps = 1013.246_r8 ts = 373.16_r8 e1 = 11.344_r8*(1.0_r8 - t/ts) e2 = -3.49149_r8*(ts/t - 1.0_r8) f1 = -7.90298_r8*(ts/t - 1.0_r8) f2 = 5.02808_r8*log10(ts/t) f3 = -1.3816_r8*(10.0_r8**e1 - 1.0_r8)/10000000.0_r8 f4 = 8.1328_r8*(10.0_r8**e2 - 1.0_r8)/1000.0_r8 f5 = log10(ps) f = f1 + f2 + f3 + f4 + f5 es = (10.0_r8**f)*100.0_r8 qsat_water = epsqs*es/(p-(1.-epsqs)*es) ! saturation w/respect to liquid only if(qsat_water < 0.) qsat_water = 1. end function qsat_water subroutine vqsat_water(t,p,qsat_water,len),4 ! saturation mixing ratio w/respect to liquid water integer, intent(in) :: len real(r8) t(len) ! temperature real(r8) p(len) ! pressure (Pa) real(r8) qsat_water(len) real(r8) es ! saturation vapor pressure (Pa) real(r8), parameter :: t0inv = 1._r8/273._r8 real(r8) coef integer :: i coef = hlatv/rgasv do i=1,len es = 611._r8*exp(coef*(t0inv-1./t(i))) qsat_water(i) = epsqs*es/(p(i)-(1.-epsqs)*es) ! saturation w/respect to liquid only if(qsat_water(i) < 0.) qsat_water(i) = 1. enddo return end subroutine vqsat_water real(r8) function qsat_ice(t,p) 4 ! saturation mixing ratio w/respect to ice real(r8) t ! temperature real(r8) p ! pressure (Pa) real(r8) es ! saturation vapor pressure (Pa) real(r8), parameter :: t0inv = 1._r8/273._r8 es = 611.*exp((hlatv+hlatf)/rgasv*(t0inv-1./t)) qsat_ice = epsqs*es/(p-(1.-epsqs)*es) ! saturation w/respect to liquid only if(qsat_ice < 0.) qsat_ice = 1. end function qsat_ice subroutine vqsat_ice(t,p,qsat_ice,len),4 ! saturation mixing ratio w/respect to liquid water integer,intent(in) :: len real(r8) t(len) ! temperature real(r8) p(len) ! pressure (Pa) real(r8) qsat_ice(len) real(r8) es ! saturation vapor pressure (Pa) real(r8), parameter :: t0inv = 1._r8/273._r8 real(r8) coef integer :: i coef = (hlatv+hlatf)/rgasv do i=1,len es = 611.*exp(coef*(t0inv-1./t(i))) qsat_ice(i) = epsqs*es/(p(i)-(1.-epsqs)*es) ! saturation w/respect to liquid only if(qsat_ice(i) < 0.) qsat_ice(i) = 1. enddo return end subroutine vqsat_ice ! Sungsu ! Below two subroutines (vqsatd2_water,vqsatd2_water_single) are by Sungsu ! Replace 'gam -> dqsdt' ! Sungsu subroutine vqsatd2_water(t ,p ,es ,qs ,dqsdt , & 4,1 len ) !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: len ! vector length real(r8), intent(in) :: t(len) ! temperature real(r8), intent(in) :: p(len) ! pressure ! ! Output arguments ! real(r8), intent(out) :: es(len) ! saturation vapor pressure real(r8), intent(out) :: qs(len) ! saturation specific humidity ! real(r8), intent(out) :: gam(len) ! (l/cp)*(d(qs)/dt) ! Sungsu real(r8), intent(out) :: dqsdt(len) ! (d(qs)/dt) ! End by Sungsu ! !--------------------------Local Variables------------------------------ ! ! integer i ! index for vector calculations ! real(r8) omeps ! 1. - 0.622 real(r8) hltalt ! appropriately modified hlat for T derivatives ! real(r8) hlatsb ! hlat weighted in transition region real(r8) hlatvp ! hlat modified for t changes above freezing real(r8) desdt ! d(es)/dT ! Sungsu real(r8) gam(len) ! (l/cp)*(d(qs)/dt) ! End by Sungsu ! !----------------------------------------------------------------------- ! omeps = 1.0_r8 - epsqs do i=1,len es(i) = polysvp(t(i),0) ! ! Saturation specific humidity ! qs(i) = epsqs*es(i)/(p(i) - omeps*es(i)) ! ! The following check is to avoid the generation of negative ! values that can occur in the upper stratosphere and mesosphere ! qs(i) = min(1.0_r8,qs(i)) ! if (qs(i) < 0.0_r8) then qs(i) = 1.0_r8 es(i) = p(i) end if end do ! ! No icephs or water to ice transition ! do i=1,len ! ! Account for change of hlatv with t above freezing where ! constant slope is given by -2369 j/(kg c) = cpv - cw ! hlatvp = hlatv - 2369.0_r8*(t(i)-tmelt) hlatsb = hlatv if (t(i) < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if desdt = hltalt*es(i)/(rgasv*t(i)*t(i)) gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i))) if (qs(i) == 1.0_r8) gam(i) = 0.0_r8 ! Sungsu dqsdt(i) = (cp/hltalt)*gam(i) ! End by Sungsu end do ! return ! end subroutine vqsatd2_water subroutine vqsatd2_water_single(t ,p ,es ,qs ,dqsdt) 7,1 !------------------------------Arguments-------------------------------- ! ! Input arguments ! real(r8), intent(in) :: t ! temperature real(r8), intent(in) :: p ! pressure ! ! Output arguments ! real(r8), intent(out) :: es ! saturation vapor pressure real(r8), intent(out) :: qs ! saturation specific humidity ! real(r8), intent(out) :: gam ! (l/cp)*(d(qs)/dt) ! Sungsu real(r8), intent(out) :: dqsdt ! (d(qs)/dt) ! End by Sungsu ! !--------------------------Local Variables------------------------------ ! ! integer i ! index for vector calculations ! real(r8) omeps ! 1. - 0.622 real(r8) hltalt ! appropriately modified hlat for T derivatives ! real(r8) hlatsb ! hlat weighted in transition region real(r8) hlatvp ! hlat modified for t changes above freezing real(r8) desdt ! d(es)/dT ! Sungsu real(r8) gam ! (l/cp)*(d(qs)/dt) ! End by Sungsu ! !----------------------------------------------------------------------- ! omeps = 1.0_r8 - epsqs ! do i=1,len es = polysvp(t,0) ! ! Saturation specific humidity ! qs = epsqs*es/(p - omeps*es) ! ! The following check is to avoid the generation of negative ! values that can occur in the upper stratosphere and mesosphere ! qs = min(1.0_r8,qs) ! if (qs < 0.0_r8) then qs = 1.0_r8 es = p end if ! end do ! ! No icephs or water to ice transition ! ! do i=1,len ! ! Account for change of hlatv with t above freezing where ! constant slope is given by -2369 j/(kg c) = cpv - cw ! hlatvp = hlatv - 2369.0_r8*(t-tmelt) hlatsb = hlatv if (t < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if desdt = hltalt*es/(rgasv*t*t) gam = hltalt*qs*p*desdt/(cp*es*(p - omeps*es)) if (qs == 1.0_r8) gam = 0.0_r8 ! Sungsu dqsdt = (cp/hltalt)*gam ! End by Sungsu ! end do ! return ! end subroutine vqsatd2_water_single subroutine vqsatd2(t ,p ,es ,qs ,dqsdt , &,1 len ) !----------------------------------------------------------------------- ! Sungsu : This is directly copied from 'vqsatd' but 'dqsdt' is output ! instead of gam for use in Sungsu's equilibrium stratiform ! macrophysics scheme. ! ! Purpose: ! Utility procedure to look up and return saturation vapor pressure from ! precomputed table, calculate and return saturation specific humidity ! (g/g), and calculate and return gamma (l/cp)*(d(qsat)/dT). The same ! function as qsatd, but operates on vectors of temperature and pressure ! ! Method: ! ! Author: J. Hack ! !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: len ! vector length real(r8), intent(in) :: t(len) ! temperature real(r8), intent(in) :: p(len) ! pressure ! ! Output arguments ! real(r8), intent(out) :: es(len) ! saturation vapor pressure real(r8), intent(out) :: qs(len) ! saturation specific humidity ! real(r8), intent(out) :: gam(len) ! (l/cp)*(d(qs)/dt) ! Sungsu real(r8), intent(out) :: dqsdt(len) ! (d(qs)/dt) ! End by Sungsu ! !--------------------------Local Variables------------------------------ ! logical lflg ! true if in temperature transition region ! integer i ! index for vector calculations ! real(r8) omeps ! 1. - 0.622 real(r8) trinv ! reciprocal of ttrice (transition range) real(r8) tc ! temperature (in degrees C) real(r8) weight ! weight for es transition from water to ice real(r8) hltalt ! appropriately modified hlat for T derivatives ! real(r8) hlatsb ! hlat weighted in transition region real(r8) hlatvp ! hlat modified for t changes above freezing real(r8) tterm ! account for d(es)/dT in transition region real(r8) desdt ! d(es)/dT ! Sungsu real(r8) gam(len) ! (l/cp)*(d(qs)/dt) ! End by Sungsu ! !----------------------------------------------------------------------- ! omeps = 1.0_r8 - epsqs do i=1,len es(i) = estblf(t(i)) ! ! Saturation specific humidity ! qs(i) = epsqs*es(i)/(p(i) - omeps*es(i)) ! ! The following check is to avoid the generation of negative ! values that can occur in the upper stratosphere and mesosphere ! qs(i) = min(1.0_r8,qs(i)) ! if (qs(i) < 0.0_r8) then qs(i) = 1.0_r8 es(i) = p(i) end if end do ! ! "generalized" analytic expression for t derivative of es ! accurate to within 1 percent for 173.16 < t < 373.16 ! trinv = 0.0_r8 if ((.not. icephs) .or. (ttrice.eq.0.0_r8)) go to 10 trinv = 1.0_r8/ttrice do i=1,len ! ! Weighting of hlat accounts for transition from water to ice ! polynomial expression approximates difference between es over ! water and es over ice from 0 to -ttrice (C) (min of ttrice is ! -40): required for accurate estimate of es derivative in transition ! range from ice to water also accounting for change of hlatv with t ! above freezing where const slope is given by -2369 j/(kg c) = cpv - cw ! tc = t(i) - tmelt lflg = (tc >= -ttrice .and. tc < 0.0_r8) weight = min(-tc*trinv,1.0_r8) hlatsb = hlatv + weight*hlatf hlatvp = hlatv - 2369.0_r8*tc if (t(i) < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if if (lflg) then tterm = pcf(1) + tc*(pcf(2) + tc*(pcf(3) + tc*(pcf(4) + tc*pcf(5)))) else tterm = 0.0_r8 end if desdt = hltalt*es(i)/(rgasv*t(i)*t(i)) + tterm*trinv gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i))) if (qs(i) == 1.0_r8) gam(i) = 0.0_r8 ! Sungsu dqsdt(i) = (cp/hltalt)*gam(i) ! End by Sungsu end do return ! ! No icephs or water to ice transition ! 10 do i=1,len ! ! Account for change of hlatv with t above freezing where ! constant slope is given by -2369 j/(kg c) = cpv - cw ! hlatvp = hlatv - 2369.0_r8*(t(i)-tmelt) if (icephs) then hlatsb = hlatv + hlatf else hlatsb = hlatv end if if (t(i) < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if desdt = hltalt*es(i)/(rgasv*t(i)*t(i)) gam(i) = hltalt*qs(i)*p(i)*desdt/(cp*es(i)*(p(i) - omeps*es(i))) if (qs(i) == 1.0_r8) gam(i) = 0.0_r8 ! Sungsu dqsdt(i) = (cp/hltalt)*gam(i) ! End by Sungsu end do ! return ! end subroutine vqsatd2 ! Below routine is by Sungsu subroutine vqsatd2_single(t ,p ,es ,qs ,dqsdt),1 !----------------------------------------------------------------------- ! Sungsu : This is directly copied from 'vqsatd' but 'dqsdt' is output ! instead of gam for use in Sungsu's equilibrium stratiform ! macrophysics scheme. ! ! Purpose: ! Utility procedure to look up and return saturation vapor pressure from ! precomputed table, calculate and return saturation specific humidity ! (g/g), and calculate and return gamma (l/cp)*(d(qsat)/dT). The same ! function as qsatd, but operates on vectors of temperature and pressure ! ! Method: ! ! Author: J. Hack ! !------------------------------Arguments-------------------------------- ! ! Input arguments ! real(r8), intent(in) :: t ! temperature real(r8), intent(in) :: p ! pressure ! ! Output arguments ! real(r8), intent(out) :: es ! saturation vapor pressure real(r8), intent(out) :: qs ! saturation specific humidity ! real(r8), intent(out) :: gam ! (l/cp)*(d(qs)/dt) ! Sungsu real(r8), intent(out) :: dqsdt ! (d(qs)/dt) ! End by Sungsu ! !--------------------------Local Variables------------------------------ ! logical lflg ! true if in temperature transition region ! ! integer i ! index for vector calculations ! real(r8) omeps ! 1. - 0.622 real(r8) trinv ! reciprocal of ttrice (transition range) real(r8) tc ! temperature (in degrees C) real(r8) weight ! weight for es transition from water to ice real(r8) hltalt ! appropriately modified hlat for T derivatives ! real(r8) hlatsb ! hlat weighted in transition region real(r8) hlatvp ! hlat modified for t changes above freezing real(r8) tterm ! account for d(es)/dT in transition region real(r8) desdt ! d(es)/dT ! Sungsu real(r8) gam ! (l/cp)*(d(qs)/dt) ! End by Sungsu ! !----------------------------------------------------------------------- ! omeps = 1.0_r8 - epsqs ! do i=1,len es = estblf(t) ! ! Saturation specific humidity ! qs = epsqs*es/(p - omeps*es) ! ! The following check is to avoid the generation of negative ! values that can occur in the upper stratosphere and mesosphere ! qs = min(1.0_r8,qs) ! if (qs < 0.0_r8) then qs = 1.0_r8 es = p end if ! end do ! ! "generalized" analytic expression for t derivative of es ! accurate to within 1 percent for 173.16 < t < 373.16 ! trinv = 0.0_r8 if ((.not. icephs) .or. (ttrice.eq.0.0_r8)) go to 10 trinv = 1.0_r8/ttrice ! do i=1,len ! ! Weighting of hlat accounts for transition from water to ice ! polynomial expression approximates difference between es over ! water and es over ice from 0 to -ttrice (C) (min of ttrice is ! -40): required for accurate estimate of es derivative in transition ! range from ice to water also accounting for change of hlatv with t ! above freezing where const slope is given by -2369 j/(kg c) = cpv - cw ! tc = t - tmelt lflg = (tc >= -ttrice .and. tc < 0.0_r8) weight = min(-tc*trinv,1.0_r8) hlatsb = hlatv + weight*hlatf hlatvp = hlatv - 2369.0_r8*tc if (t < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if if (lflg) then tterm = pcf(1) + tc*(pcf(2) + tc*(pcf(3) + tc*(pcf(4) + tc*pcf(5)))) else tterm = 0.0_r8 end if desdt = hltalt*es/(rgasv*t*t) + tterm*trinv gam = hltalt*qs*p*desdt/(cp*es*(p - omeps*es)) if (qs == 1.0_r8) gam = 0.0_r8 ! Sungsu dqsdt = (cp/hltalt)*gam ! End by Sungsu ! end do return ! ! No icephs or water to ice transition ! 10 continue !10 do i=1,len ! ! Account for change of hlatv with t above freezing where ! constant slope is given by -2369 j/(kg c) = cpv - cw ! hlatvp = hlatv - 2369.0_r8*(t-tmelt) if (icephs) then hlatsb = hlatv + hlatf else hlatsb = hlatv end if if (t < tmelt) then hltalt = hlatsb else hltalt = hlatvp end if desdt = hltalt*es/(rgasv*t*t) gam = hltalt*qs*p*desdt/(cp*es*(p - omeps*es)) if (qs == 1.0_r8) gam = 0.0_r8 ! Sungsu dqsdt = (cp/hltalt)*gam ! End by Sungsu ! end do ! return ! end subroutine vqsatd2_single end module wv_saturation