!======================================================================= !BOP ! ! !MODULE: ice_transport_remap - horizontal transport via incremental remapping ! ! !DESCRIPTION: ! ! Transports quantities using the second-order conservative remapping ! scheme developed by John Dukowicz and John Baumgardner (DB) and modified ! for sea ice by William Lipscomb and Elizabeth Hunke. ! ! References: ! ! Dukowicz, J. K., and J. R. Baumgardner, 2000: Incremental ! remapping as a transport/advection algorithm, J. Comput. Phys., ! 160, 318-335. ! ! Lipscomb, W. H., and E. C. Hunke, 2004: Modeling sea ice ! transport using incremental remapping, Mon. Wea. Rev., 132, ! 1341-1354. ! ! !REVISION HISTORY: ! SVN:$Id: ice_transport_remap.F 33 2006-11-13 19:51:14Z eclare $ ! ! authors William H. Lipscomb, LANL ! John Baumgardner, LANL ! ! 2003: Vectorized by Clifford Chen (Fujitsu) and William Lipscomb ! 2004-05: Block structure added (WHL) ! 2006: Moved remap driver to ice_transport_driver ! Geometry changes: ! (1) Reconstruct fields in stretched logically rectangular coordinates ! (2) Modify geometry so that the area flux across each edge ! can be specified (following an idea of Mats Bentsen) ! ! !INTERFACE: ! module ice_transport_remap 5,5 ! ! !USES: ! use ice_kinds_mod use ice_communicate, only: my_task, master_task, MPI_COMM_ICE use ice_domain_size use ice_constants use ice_fileunits, only: nu_diag use perf_mod, only: t_startf, t_stopf, t_barrierf ! !EOP ! implicit none save private public :: init_remap, horizontal_remap, make_masks integer (kind=int_kind), parameter :: & max_ntrace = 2+max_ntrcr+nilyr+nslyr ! hice,hsno,qice,qsno,trcr integer (kind=int_kind), parameter :: & ngroups = 6 ,&! number of groups of triangles that ! contribute transports across each edge nvert = 3 ! number of vertices in a triangle ! for triangle integral formulas real (kind=dbl_kind), parameter :: & p5625m = -9._dbl_kind/16._dbl_kind ,& p52083 = 25._dbl_kind/48._dbl_kind logical (kind=log_kind), parameter :: bugcheck = .false. !======================================================================= ! Here is some information about how the incremental remapping scheme ! works in CICE and how it can be adapted for use in other models. ! ! The remapping routine is designed to transport a generic mass-like ! field (in CICE, the ice fractional area) along with an arbitrary number ! of tracers in two dimensions. The velocity components are assumed ! to lie at grid cell corners and the transported scalars at cell centers. ! Incremental remapping has the following desirable properties: ! ! (1) Tracer monotonicity is preserved. That is, no new local ! extrema are produced in fields like ice thickness or internal ! energy. ! (2) The reconstucted mass and tracer fields vary linearly in x and y. ! This means that remapping is 2nd-order accurate in space, ! except where horizontal gradients are limited to preserve ! monotonicity. ! (3) There are economies of scale. Transporting a single field ! is rather expensive, but additional fields have a relatively ! low marginal cost. ! ! The following generic conservation equations may be solved: ! ! dm/dt = del*(u*m) (0) ! d(m*T1)/dt = del*(u*m*T1) (1) ! d(m*T1*T2)/dt = del*(u*m*T1*T2) (2) ! d(m*T1*T2*T3)/dt = del*(u*m*T1*T2*T3) (3) ! ! where d is a partial derivative, del is the 2D divergence operator, ! u is the horizontal velocity, m is the mass density field, and ! T1, T2, and T3 are tracers. ! ! In CICE, these equations have the form ! ! da/dt = del*(u*a) (4) ! dv/dt = d(a*h)/dt = del*(u*a*h) (5) ! de/dt = d(a*h*q)/dt = del*(u*a*h*q) (6) ! d(aT)/dt = del*(u*a*t) (7) ! ! where a = fractional ice area, v = ice/snow volume, h = v/a = thickness, ! e = ice/snow internal energy (J/m^2), q = e/v = internal energy per ! unit volume (J/m^3), and T is a tracer. These equations express ! conservation of ice area, volume, internal energy, and area-weighted ! tracer, respectively. ! ! (Note: In CICE, a, v and e are prognostic quantities from which ! h and q are diagnosed. The remapping routine works with tracers, ! which means that h and q must be derived from a, v, and e before ! calling the remapping routine.) ! ! Earlier versions of CICE assumed fixed ice and snow density. ! Beginning with CICE 4.0, the ice and snow density can be variable. ! In this case, equations (5) and (6) are replaced by ! ! dv/dt = d(a*h)/dt = del*(u*a*h) (8) ! dm/dt = d(a*h*rho)/dt = del*(u*a*h*rho) (9) ! de/dt = d(a*h*rho*qm)/dt = del*(u*a*h*rho*qm) (10) ! ! where rho = density and qm = internal energy per unit mass (J/kg). ! Eq. (9) expresses mass conservation, which in the variable-density ! case is no longer equivalent to volume conservation (8). ! ! Tracers satisfying equations of the form (1) are called "type 1." ! In CICE the paradigmatic type 1 tracers are hi and hs. ! ! Tracers satisfying equations of the form (2) are called "type 2". ! The paradigmatic type 2 tracers are qi and qs (or rhoi and rhos ! in the variable-density case). ! ! Tracers satisfying equations of the form (3) are called "type 3." ! The paradigmatic type 3 tracers are qmi and qms in the variable-density ! case. There are no such tracers in the constant-density case. ! ! The fields a, T1, and T2 are reconstructed in each grid cell with ! 2nd-order accuracy. T3 is reconstructed with 1st-order accuracy ! (i.e., it is transported in upwind fashion) in order to avoid ! additional mathematical complexity. ! ! The mass-like field lives in the array "mm" (shorthand for mean ! mass) and the tracers fields in the array "tm" (mean tracers). ! In order to transport tracers correctly, the remapping routine ! needs to know the tracers types and relationships. This is done ! as follows: ! ! Each field in the "tm" array is assigned an index, 1:max_ntrace. ! (Note: max_ntrace is not the same as max_ntrcr, the number of tracers ! in the trcrn state variable array. For remapping purposes we ! have additional tracers hi, hs, qi and qs.) ! For standard CICE with ntrcr = 1, nilyr = 4, and nslyr = 1, the ! indexing is as follows: ! 1 = hi ! 2 = hs ! 3 = Ts ! 4-7 = qi ! 8 = qs ! ! The tracer types (1,2,3) are contained in the "tracer_type" array. ! For standard CICE: ! ! tracer_type = (1 1 1 2 2 2 2 2) ! ! Type 2 and type 3 tracers are said to depend on type 1 tracers. ! For instance, qi depends on hi, which is to say that ! there is a conservation equation of the form (2) or (6). ! Thus we define a "depend" array. For standard CICE: ! ! depend = (0 0 0 1 1 1 1 2) ! ! which implies that elements 1-3 (hi, hs, Ts) are type 1, ! elements 4-7 (qi) depend on element 1 (hi), and element 8 (qs) ! depends on element 2 (hs). ! ! We also define a logical array "has_dependents". In standard CICE: ! ! has_dependents = (T T F F F F F F), ! ! which means that only elements 1 and 2 (hi and hs) have dependent ! tracers. ! ! For the variable-density case, things are a bit more complicated. ! Suppose we have 4 variable-density ice layers and one variable- ! density snow layer. Then the indexing is as follows: ! 1 = hi ! 2 = hs ! 3 = Ts ! 4-7 = rhoi ! 8 = rhos ! 9-12 = qmi ! 13 = qms ! ! The key arrays are: ! ! tracer_type = (1 1 1 2 2 2 2 2 3 3 3 3 3) ! ! depend = (0 0 0 1 1 1 1 2 4 5 6 7 8) ! ! has_dependents = (T T F T T T T T F F F F F) ! ! which imply that hi and hs are type 1 with dependents rhoi and rhos, ! while rhoi and rhos are type 2 with dependents qmi and qms. ! ! Tracers added to the ntrcr array are handled automatically ! by the remapping with little extra coding. It is necessary ! only to provide the correct type and dependency information. ! ! When using this routine in other models, most of the tracer dependency ! apparatus may be irrelevant. In a layered ocean model, for example, ! the transported fields are the layer thickness h (the mass density ! field) and two or more tracers (T, S, and various trace species). ! Suppose there are just two tracers, T and S. Then the tracer arrays ! have the values: ! ! tracer_type = (1 1) ! depend = (0 0) ! has_dependents = (F F) ! ! which is to say that all tracer transport equations are of the form (1). ! ! The tracer dependency arrays are optional input arguments for the ! main remapping subroutine. If these arrays are not passed in, they ! take on the default values tracer_type(:) = 1, depend(:) = 0, and ! has_dependents(:) = F, which are appropriate for most purposes. ! ! Another optional argument is integral_order. If integral_order = 1, ! then the triangle integrals are exact for linear functions of x and y. ! If integral_order = 2, these integrals are exact for both linear and ! quadratic functions. If integral_order = 3, integrals are exact for ! cubic functions as well. If all tracers are of type 1, then the ! integrals of mass*tracer are quadratic, and integral_order = 2 is ! sufficient. In CICE, where there are type 2 tracers, we integrate ! functions of the form mass*tracer1*tracer2. Thus integral_order = 3 ! is required for exactness, though integral_order = 2 may be good enough ! in practice. ! ! Finally, a few words about the edgearea fields: ! ! In earlier versions of this scheme, the divergence of the velocity ! field implied by the remapping was, in general, different from the ! value of del*u computed in the dynamics. For energetic consistency ! (in CICE as well as in layered ocean models such as HYPOP), ! these two values should agree. This can be ensured by setting ! l_fixed_area = T and specifying the area transported across each grid ! cell edge in the arrays edgearea_e and edgearea_n. The departure ! regions are then tweaked, following an idea by Mats Bentsen, such ! that they have the desired area. If l_fixed_area = F, these regions ! are not tweaked, and the edgearea arrays are output variables. ! !======================================================================= contains !======================================================================= ! !BOP ! ! !IROUTINE: init_remap - initialize grid quantities used for remapping ! ! !INTERFACE: ! subroutine init_remap 1,5 ! ! !DESCRIPTION: ! ! Grid quantities used by the remapping transport scheme ! ! !REVISION HISTORY: ! ! author William H. Lipscomb, LANL ! ! !USES: ! use ice_boundary use ice_domain use ice_blocks use ice_grid, only: dxt, dyt, & xav, yav, xxav, xyav, yyav, & xxxav, xxyav, xyyav, yyyav use ice_exit ! ! !INPUT/OUTPUT PARAMETERS: ! !EOP ! integer (kind=int_kind) :: & i, j, iblk ! standard indices ! Compute grid cell average geometric quantities on the scaled ! rectangular grid with dx = 1, dy = 1. ! ! Note: On a rectangular grid, the integral of any odd function ! of x or y = 0. !$OMP PARALLEL DO PRIVATE(iblk,i,j) do iblk = 1, nblocks do j = 1, ny_block do i = 1, nx_block xav(i,j,iblk) = c0 yav(i,j,iblk) = c0 !!! These formulas would be used on a rectangular grid !!! with dimensions (dxt, dyt): !!! xxav(i,j,iblk) = dxt(i,j,iblk)**2 / c12 !!! yyav(i,j,iblk) = dyt(i,j,iblk)**2 / c12 xxav(i,j,iblk) = c1/c12 yyav(i,j,iblk) = c1/c12 xyav(i,j,iblk) = c0 xxxav(i,j,iblk) = c0 xxyav(i,j,iblk) = c0 xyyav(i,j,iblk) = c0 yyyav(i,j,iblk) = c0 enddo enddo enddo !$OMP END PARALLEL DO end subroutine init_remap !======================================================================= !BOP ! ! !IROUTINE: horizontal_remap - incremental remapping transport scheme ! ! !INTERFACE: ! subroutine horizontal_remap (dt, ntrace, & 1,38 uvel, vvel, & mm, tm, & l_fixed_area, & edgearea_e, edgearea_n, & tracer_type_in, depend_in, & has_dependents_in, & integral_order_in, & l_dp_midpt_in) ! ! !DESCRIPTION: ! Solve the transport equations for one timestep using the incremental ! remapping scheme developed by John Dukowicz and John Baumgardner (DB) ! and modified for sea ice by William Lipscomb and Elizabeth Hunke. ! ! This scheme preserves monotonicity of ice area and tracers. That is, ! it does not produce new extrema. It is second-order accurate in space, ! except where gradients are limited to preserve monotonicity. ! ! This version of the remapping allows the user to specify the areal ! flux across each edge, based on an idea developed by Mats Bentsen. ! ! !REVISION HISTORY: ! ! author William H. Lipscomb, LANL ! 2006: Moved driver (subroutine transport_remap) into separate module. ! Geometry changes (logically rectangular coordinates, fixed ! area fluxes) ! ! !USES: ! use ice_boundary use ice_global_reductions use ice_domain use ice_blocks use ice_grid, only: HTE, HTN, dxt, dyt, dxu, dyu, & tarea, tarear, hm, & xav, yav, xxav, xyav, yyav, & xxxav, xxyav, xyyav, yyyav use ice_exit use ice_calendar, only: istep1 use ice_timers ! ! !INPUT/OUTPUT PARAMETERS: ! real (kind=dbl_kind), intent(in) :: & dt ! time step integer (kind=int_kind), intent(in) :: & ntrace ! number of tracers in use real (kind=dbl_kind), intent(in), & dimension(nx_block,ny_block,max_blocks) :: & uvel ,&! x-component of velocity (m/s) vvel ! y-component of velocity (m/s) real (kind=dbl_kind), intent(inout), & dimension (nx_block,ny_block,0:ncat,max_blocks) :: & mm ! mean mass values in each grid cell real (kind=dbl_kind), intent(inout), & dimension (nx_block,ny_block,max_ntrace,ncat,max_blocks) :: & tm ! mean tracer values in each grid cell !------------------------------------------------------------------- ! If l_fixed_area is true, the area of each departure region is ! computed in advance (e.g., by taking the divergence of the ! velocity field and passed to locate_triangles. The departure ! regions are adjusted to obtain the desired area. ! If false, edgearea is computed in locate_triangles and passed out. !------------------------------------------------------------------- logical, intent(in) :: & l_fixed_area ! if true, edgearea_e and edgearea_n are prescribed ! if false, edgearea is computed here and passed out real (kind=dbl_kind), dimension(nx_block,ny_block,max_blocks), & intent(inout) :: & edgearea_e ,&! area of departure regions for east edges edgearea_n ! area of departure regions for north edges integer (kind=int_kind), dimension (ntrace), intent(in), & optional :: & tracer_type_in ,&! = 1, 2, or 3 (see comments above) depend_in ! tracer dependencies (see above) logical (kind=log_kind), dimension (ntrace), intent(in), & optional :: & has_dependents_in ! true if a tracer has dependent tracers integer (kind=int_kind), intent(in), optional :: & integral_order_in ! polynomial order for triangle integrals logical (kind=log_kind), intent(in), optional :: & l_dp_midpt_in ! if true, find departure points using ! corrected midpoint velocity ! !EOP ! ! local variables integer (kind=int_kind), dimension (ntrace) :: & tracer_type ,&! = 1, 2, or 3 (see comments above) depend ! tracer dependencies (see above) logical (kind=log_kind), dimension (ntrace) :: & has_dependents ! true if a tracer has dependent tracers integer (kind=int_kind) :: & integral_order ! polynomial order for triangle integrals logical (kind=log_kind) :: & l_dp_midpt ! if true, find departure points using ! corrected midpoint velocity integer (kind=int_kind) :: & i, j ,&! horizontal indices iblk ,&! block indices ilo,ihi,jlo,jhi,&! beginning and end of physical domain n ! ice category index integer (kind=int_kind), dimension(0:ncat,max_blocks) :: & icellsnc ! number of cells with ice integer (kind=int_kind), & dimension(nx_block*ny_block,0:ncat,max_blocks) :: & indxinc, indxjnc ! compressed i/j indices type (block) :: & this_block ! block information for current block real (kind=dbl_kind), dimension (nx_block,ny_block,max_blocks) :: & dpx ,&! x coordinates of departure points at cell corners dpy ! y coordinates of departure points at cell corners real (kind=dbl_kind), dimension(nx_block,ny_block,0:ncat,max_blocks) :: & mc ,&! mass at geometric center of cell mx, my ,&! limited derivative of mass wrt x and y mmask ! = 1. if mass is present, = 0. otherwise real (kind=dbl_kind), & dimension (nx_block,ny_block,max_ntrace,ncat,max_blocks) :: & tc ,&! tracer values at geometric center of cell tx, ty ,&! limited derivative of tracer wrt x and y tmask ! = 1. if tracer is present, = 0. otherwise real (kind=dbl_kind), dimension (nx_block,ny_block,0:ncat,max_blocks) :: & mflxe, mflxn ! mass transports across E and N cell edges real (kind=dbl_kind), dimension (nx_block,ny_block,max_ntrace,ncat,max_blocks) :: & mtflxe, mtflxn ! mass*tracer transports across E and N cell edges real (kind=dbl_kind), dimension (nx_block,ny_block,ngroups,max_blocks) :: & triarea ! area of east-edge departure triangle real (kind=dbl_kind), dimension (nx_block,ny_block,0:nvert,ngroups,max_blocks) :: & xp, yp ! x and y coordinates of special triangle points ! (need 4 points for triangle integrals) integer (kind=int_kind), & dimension (nx_block,ny_block,ngroups,max_blocks) :: & iflux ,&! i index of cell contributing transport jflux ! j index of cell contributing transport integer (kind=int_kind), dimension(ngroups,max_blocks) :: & icellsng ! number of cells with ice integer (kind=int_kind), & dimension(nx_block*ny_block,ngroups,max_blocks) :: & indxing, indxjng ! compressed i/j indices logical (kind=log_kind), dimension(max_blocks) :: & l_stop ! if true, abort the model integer (kind=int_kind), dimension(max_blocks) :: & istop, jstop ! indices of grid cell where model aborts character (len=char_len), dimension(max_blocks) :: & edge ! 'north' or 'east' real (kind=dbl_kind), dimension (nx_block,ny_block) :: & worka, & workb, & workc, & workd real (kind=dbl_kind), dimension (nx_block,ny_block,2,max_blocks) :: & dpwork real (kind=dbl_kind), dimension(nx_block,ny_block,2,0:ncat,max_blocks) :: & mwork ! call t_barrierf ('cice_dyn_remap1_BARRIER',MPI_COMM_ICE) ! call t_startf ('cice_dyn_remap1') l_stop = .false. istop = 0 jstop = 0 !------------------------------------------------------------------- ! Initialize various remapping arrays and options ! These are either passed in as optional arguments or set to the ! default values. !------------------------------------------------------------------- if (present(tracer_type_in)) then tracer_type(:) = tracer_type_in(:) else tracer_type(:) = 1 endif if (present(depend_in)) then depend(:) = depend_in(:) else depend(:) = 0 endif if (present(has_dependents_in)) then has_dependents(:) = has_dependents_in(:) else has_dependents(:) = .false. endif if (present(integral_order_in)) then integral_order = integral_order_in else integral_order = 2 ! quadratic integrals endif if (present(l_dp_midpt_in)) then l_dp_midpt = l_dp_midpt_in else l_dp_midpt = .false. endif worka(:,:) = c1 workb(:,:) = c1 workc(:,:) = c1 workd(:,:) = c1 !---!------------------------------------------------------------------- !---! Remap the ice area and associated tracers. !---! Remap the open water area (without tracers). !---!------------------------------------------------------------------- !$OMP PARALLEL DO PRIVATE(iblk,this_block,ilo,ihi,jlo,jhi,n) do iblk = 1, nblocks this_block = get_block(blocks_ice(iblk),iblk) ilo = this_block%ilo ihi = this_block%ihi jlo = this_block%jlo jhi = this_block%jhi !------------------------------------------------------------------- ! Compute masks and count ice cells. ! Masks are used to prevent tracer values in cells without ice from ! being used to compute tracer gradients. !------------------------------------------------------------------- call make_masks (nx_block, ny_block, & ilo, ihi, jlo, jhi, & nghost, ntrace, & has_dependents, icellsnc (:,iblk), & indxinc(:,:,iblk), indxjnc (:,:,iblk), & mm (:,:,:,iblk), mmask (:,:,:,iblk), & tm (:,:,:,:,iblk), tmask(:,:,:,:,iblk)) !------------------------------------------------------------------- ! Construct linear fields, limiting gradients to preserve monotonicity. ! Note: Pass in unit arrays instead of true distances HTE, HTN, etc. ! The resulting gradients are in scaled coordinates. !------------------------------------------------------------------- ! open water call construct_fields(nx_block, ny_block, & ilo, ihi, jlo, jhi, & nghost, ntrace, & tracer_type, depend, & has_dependents, icellsnc (0,iblk), & indxinc(:,0,iblk), indxjnc(:,0,iblk), & ! HTN (:,:,iblk), HTE (:,:,iblk), & worka (:,:), workb (:,:), & hm (:,:,iblk), xav (:,:,iblk), & yav (:,:,iblk), xxav (:,:,iblk), & xyav (:,:,iblk), yyav (:,:,iblk), & xxxav (:,:,iblk), xxyav (:,:,iblk), & xyyav (:,:,iblk), yyyav (:,:,iblk), & ! dxt (:,:,iblk), dyt (:,:,iblk), & workc (:,:), workd (:,:), & mm (:,:,0,iblk), mc (:,:,0,iblk), & mx (:,:,0,iblk), my (:,:,0,iblk), & mmask(:,:,0,iblk) ) ! ice categories do n = 1, ncat call construct_fields(nx_block, ny_block, & ilo, ihi, jlo, jhi, & nghost, ntrace, & tracer_type, depend, & has_dependents, icellsnc (n,iblk), & indxinc (:,n,iblk), indxjnc(:,n,iblk), & ! HTN (:,:,iblk), HTE (:,:,iblk), & worka (:,:), workb (:,:), & hm (:,:,iblk), xav (:,:,iblk), & yav (:,:,iblk), xxav (:,:,iblk), & xyav (:,:,iblk), yyav (:,:,iblk), & xxxav (:,:,iblk), xxyav (:,:,iblk), & xyyav (:,:,iblk), yyyav (:,:,iblk), & ! dxt (:,:,iblk), dyt (:,:,iblk), & workc (:,:), workd (:,:), & mm (:,:,n,iblk), mc (:,:,n,iblk), & mx (:,:,n,iblk), my (:,:,n,iblk), & mmask (:,:,n,iblk), & tm (:,:,:,n,iblk), tc (:,:,:,n,iblk), & tx (:,:,:,n,iblk), ty (:,:,:,n,iblk), & tmask(:,:,:,n,iblk) ) enddo ! n !------------------------------------------------------------------- ! Given velocity field at cell corners, compute departure points ! of trajectories. !------------------------------------------------------------------- call departure_points(nx_block, ny_block, & ilo, ihi, jlo, jhi, & nghost, dt, & uvel(:,:,iblk), vvel(:,:,iblk), & dxu (:,:,iblk), dyu (:,:,iblk), & HTN (:,:,iblk), HTE (:,:,iblk), & dpx (:,:,iblk), dpy (:,:,iblk), & l_dp_midpt, l_stop (iblk), & istop (iblk), jstop (iblk)) if (l_stop(iblk)) then this_block = get_block(blocks_ice(iblk),iblk) write(nu_diag,*) 'istep1, my_task, iblk =', & istep1, my_task, iblk write (nu_diag,*) 'Global block:', this_block%block_id if (istop(iblk) > 0 .and. jstop(iblk) > 0) & write(nu_diag,*) 'Global i and j:', & this_block%i_glob(istop(iblk)), & this_block%j_glob(jstop(iblk)) call abort_ice('remap transport: bad departure points') endif enddo ! iblk !$OMP END PARALLEL DO ! call t_stopf ('cice_dyn_remap1') !------------------------------------------------------------------- ! Ghost cell updates ! If nghost >= 2, these calls are not needed !------------------------------------------------------------------- if (nghost==1) then ! call t_barrierf ('cice_dyn_remap_update1_BARRIER',MPI_COMM_ICE) ! call t_startf ('cice_dyn_remap_update1') call ice_timer_start(timer_bound) ! departure points ! load em up !$OMP PARALLEL DO PRIVATE(iblk,i,j) do iblk = 1, nblocks do j = 1, ny_block do i = 1, nx_block dpwork(i,j,1, iblk) = dpx(i,j,iblk) dpwork(i,j,2, iblk) = dpy(i,j,iblk) mwork (i,j,1,:,iblk) = mx (i,j,:,iblk) mwork (i,j,2,:,iblk) = my (i,j,:,iblk) enddo enddo enddo !$OMP END PARALLEL DO !jw call ice_HaloUpdate (dpx, halo_info, & !jw field_loc_NEcorner, field_type_vector) !jw call ice_HaloUpdate (dpy, halo_info, & !jw field_loc_NEcorner, field_type_vector) call ice_HaloUpdate (dpwork, halo_info, & field_loc_NEcorner, field_type_vector) ! mass field call ice_HaloUpdate (mc, halo_info, & field_loc_center, field_type_scalar) !jw call ice_HaloUpdate (mx, halo_info, & !jw field_loc_center, field_type_vector) !jw call ice_HaloUpdate (my, halo_info, & !jw field_loc_center, field_type_vector) call ice_HaloUpdate (mwork, halo_info, & field_loc_center, field_type_vector) !$OMP PARALLEL DO PRIVATE(iblk,i,j) do iblk = 1, nblocks do j = 1, ny_block do i = 1, nx_block dpx(i,j, iblk) = dpwork(i,j,1, iblk) dpy(i,j, iblk) = dpwork(i,j,2, iblk) mx (i,j,:,iblk) = mwork (i,j,1,:,iblk) my (i,j,:,iblk) = mwork (i,j,2,:,iblk) enddo enddo enddo !$OMP END PARALLEL DO ! call t_stopf ('cice_dyn_remap_update1') ! call t_barrierf ('cice_dyn_remap_update2_BARRIER',MPI_COMM_ICE) ! call t_startf ('cice_dyn_remap_update2') ! tracer fields call ice_HaloUpdate (tc(:,:,1:ntrace,:,:), halo_info, & field_loc_center, field_type_scalar) call ice_HaloUpdate (tx(:,:,1:ntrace,:,:), halo_info, & field_loc_center, field_type_vector) call ice_HaloUpdate (ty(:,:,1:ntrace,:,:), halo_info, & field_loc_center, field_type_vector) call ice_timer_stop(timer_bound) ! call t_stopf ('cice_dyn_remap_update2') endif ! nghost ! call t_barrierf ('cice_dyn_remap2_BARRIER',MPI_COMM_ICE) ! call t_startf ('cice_dyn_remap2') !$OMP PARALLEL DO PRIVATE(iblk,this_block,ilo,ihi,jlo,jhi,n) do iblk = 1, nblocks this_block = get_block(blocks_ice(iblk),iblk) ilo = this_block%ilo ihi = this_block%ihi jlo = this_block%jlo jhi = this_block%jhi !------------------------------------------------------------------- ! Transports for east cell edges. !------------------------------------------------------------------- !------------------------------------------------------------------- ! Compute areas and vertices of departure triangles. !------------------------------------------------------------------- edge(iblk) = 'east' call locate_triangles(nx_block, ny_block, & ilo, ihi, jlo, jhi, & nghost, edge(iblk), & icellsng (:,iblk), & indxing (:,:,iblk), indxjng(:,:,iblk), & dpx (:,:,iblk), dpy (:,:,iblk), & dxu (:,:,iblk), dyu (:,:,iblk), & xp (:,:,:,:,iblk), yp (:,:,:,:,iblk), & iflux (:,:,:,iblk), jflux(:,:,:,iblk), & triarea (:,:,:,iblk), l_fixed_area, & edgearea_e(:,:,iblk)) !------------------------------------------------------------------- ! Given triangle vertices, compute coordinates of triangle points ! needed for transport integrals. !------------------------------------------------------------------- call triangle_coordinates (nx_block, ny_block, & integral_order, icellsng (:,iblk), & indxing(:,:,iblk), indxjng(:,:,iblk), & xp (:,:,:,:,iblk), yp (:,:,:,:,iblk)) ! Compute the transport across east cell edges by summing contributions ! from each triangle. !------------------------------------------------------------------- ! open water call transport_integrals(nx_block, ny_block, & ntrace, icellsng (:,iblk), & indxing(:,:,iblk), indxjng (:,:,iblk), & tracer_type, depend, & integral_order, triarea(:,:,:,iblk), & iflux(:,:,:,iblk), jflux (:,:,:,iblk), & xp (:,:,:,:,iblk), yp (:,:,:,:,iblk), & mc (:,:,0,iblk), mx (:,:,0,iblk), & my (:,:,0,iblk), mflxe (:,:,0,iblk)) ! ice categories do n = 1, ncat call transport_integrals & (nx_block, ny_block, & ntrace, icellsng (:,iblk), & indxing(:,:,iblk), indxjng (:,:,iblk), & tracer_type, depend, & integral_order, triarea (:,:,:,iblk), & iflux(:,:,:,iblk), jflux (:,:,:,iblk), & xp (:,:,:,:,iblk), yp (:,:,:,:,iblk), & mc (:,:,n,iblk), mx (:,:,n,iblk), & my (:,:,n,iblk), mflxe (:,:,n,iblk), & tc (:,:,:,n,iblk), tx (:,:,:,n,iblk), & ty (:,:,:,n,iblk), mtflxe(:,:,:,n,iblk)) enddo !------------------------------------------------------------------- ! Repeat for north edges !------------------------------------------------------------------- edge(iblk) = 'north' call locate_triangles(nx_block, ny_block, & ilo, ihi, jlo, jhi, & nghost, edge(iblk), & icellsng (:,iblk), & indxing (:,:,iblk), indxjng(:,:,iblk), & dpx (:,:,iblk), dpy (:,:,iblk), & dxu (:,:,iblk), dyu (:,:,iblk), & xp (:,:,:,:,iblk), yp (:,:,:,:,iblk), & iflux (:,:,:,iblk), jflux(:,:,:,iblk), & triarea (:,:,:,iblk), l_fixed_area, & edgearea_n(:,:,iblk)) call triangle_coordinates (nx_block, ny_block, & integral_order, icellsng (:,iblk), & indxing(:,:,iblk), indxjng(:,:,iblk), & xp (:,:,:,:,iblk), yp (:,:,:,:,iblk)) ! open water call transport_integrals(nx_block, ny_block, & ntrace, icellsng (:,iblk), & indxing(:,:,iblk), indxjng(:,:,iblk), & tracer_type, depend, & integral_order, triarea(:,:,:,iblk), & iflux(:,:,:,iblk), jflux (:,:,:,iblk), & xp (:,:,:,:,iblk), yp (:,:,:,:,iblk), & mc (:,:,0,iblk), mx (:,:,0,iblk), & my (:,:,0,iblk), mflxn (:,:,0,iblk)) ! ice categories do n = 1, ncat call transport_integrals & (nx_block, ny_block, & ntrace, icellsng (:,iblk), & indxing(:,:,iblk), indxjng (:,:,iblk), & tracer_type, depend, & integral_order, triarea (:,:,:,iblk), & iflux(:,:,:,iblk), jflux (:,:,:,iblk), & xp (:,:,:,:,iblk), yp (:,:,:,:,iblk), & mc (:,:,n,iblk), mx (:,:,n,iblk), & my (:,:,n,iblk), mflxn (:,:,n,iblk), & tc (:,:,:,n,iblk), tx (:,:,:,n,iblk), & ty (:,:,:,n,iblk), mtflxn(:,:,:,n,iblk)) enddo ! n !------------------------------------------------------------------- ! Update the ice area and tracers. !------------------------------------------------------------------- ! open water call update_fields (nx_block, ny_block, & ilo, ihi, jlo, jhi, & ntrace, & tracer_type, depend, & tarear(:,:,iblk), l_stop(iblk), & istop(iblk), jstop (iblk), & mflxe(:,:,0,iblk), mflxn(:,:,0,iblk), & mm (:,:,0,iblk)) if (l_stop(iblk)) then this_block = get_block(blocks_ice(iblk),iblk) write (nu_diag,*) 'istep1, my_task, iblk, cat =', & istep1, my_task, iblk, '0' write (nu_diag,*) 'Global block:', this_block%block_id if (istop(iblk) > 0 .and. jstop(iblk) > 0) & write(nu_diag,*) 'Global i and j:', & this_block%i_glob(istop(iblk)), & this_block%j_glob(jstop(iblk)) call abort_ice ('ice remap_transport: negative area (open water)') endif ! ice categories do n = 1, ncat call update_fields(nx_block, ny_block, & ilo, ihi, jlo, jhi, & ntrace, & tracer_type, depend, & tarear(:,:,iblk), l_stop(iblk), & istop(iblk), jstop(iblk), & mflxe (:,:, n,iblk), mflxn (:,:, n,iblk), & mm (:,:, n,iblk), & mtflxe(:,:,:,n,iblk), mtflxn(:,:,:,n,iblk), & tm (:,:,:,n,iblk)) if (l_stop(iblk)) then this_block = get_block(blocks_ice(iblk),iblk) write (nu_diag,*) 'istep1, my_task, iblk, cat =', & istep1, my_task, iblk, n write (nu_diag,*) 'Global block:', this_block%block_id if (istop(iblk) > 0 .and. jstop(iblk) > 0) & write(nu_diag,*) 'Global i and j:', & this_block%i_glob(istop(iblk)), & this_block%j_glob(jstop(iblk)) call abort_ice ('ice remap_transport: negative area (ice)') endif enddo ! n enddo ! iblk !$OMP END PARALLEL DO ! call t_stopf ('cice_dyn_remap2') end subroutine horizontal_remap !======================================================================= ! !BOP ! ! !IROUTINE: make_masks - make area and tracer masks ! ! !INTERFACE: ! subroutine make_masks (nx_block, ny_block, & 2 ilo, ihi, jlo, jhi, & nghost, ntrace, & has_dependents, & icells, & indxi, indxj, & mm, mmask, & tm, tmask) ! ! !DESCRIPTION: ! ! Make area and tracer masks. ! ! If an area is masked out (mm < puny), then the values of tracers ! in that grid cell are assumed to have no physical meaning. ! ! Similarly, if a tracer with dependents is masked out ! (abs(tm) < puny), then the values of its dependent tracers in that ! grid cell are assumed to have no physical meaning. ! For example, the enthalpy value has no meaning if the thickness ! is zero. ! ! !REVISION HISTORY: ! ! author William H. Lipscomb, LANL ! ! !USES: ! ! !INPUT/OUTPUT PARAMETERS: ! integer (kind=int_kind), intent(in) :: & nx_block, ny_block ,&! block dimensions ilo,ihi,jlo,jhi ,&! beginning and end of physical domain nghost ,&! number of ghost cells ntrace ! number of tracers in use logical (kind=log_kind), dimension (ntrace), intent(in) :: & has_dependents ! true if a tracer has dependent tracers integer (kind=int_kind), dimension(0:ncat), intent(out) :: & icells ! number of cells with ice integer (kind=int_kind), dimension(nx_block*ny_block,0:ncat), & intent(out) :: & indxi ,&! compressed i/j indices indxj real (kind=dbl_kind), dimension (nx_block,ny_block,0:ncat), & intent(in) :: & mm ! mean ice area in each grid cell real (kind=dbl_kind), dimension (nx_block,ny_block,0:ncat), & intent(out) :: & mmask ! = 1. if ice is present, else = 0. real (kind=dbl_kind), dimension (nx_block, ny_block, max_ntrace, ncat), & intent(in), optional :: & tm ! mean tracer values in each grid cell real (kind=dbl_kind), dimension (nx_block, ny_block, max_ntrace, ncat), & intent(out), optional :: & tmask ! = 1. if tracer is present, else = 0. ! !EOP ! integer (kind=int_kind) :: & i, j, ij ,&! horizontal indices n ,&! ice category index nt ! tracer index do n = 0, ncat do ij = 1, nx_block*ny_block indxi(ij,n) = 0 indxj(ij,n) = 0 enddo enddo !------------------------------------------------------------------- ! open water mask !------------------------------------------------------------------- icells(0) = 0 do j = 1, ny_block do i = 1, nx_block if (mm(i,j,0) > puny) then mmask(i,j,0) = c1 icells(0) = icells(0) + 1 ij = icells(0) indxi(ij,0) = i indxj(ij,0) = j else mmask(i,j,0) = c0 endif enddo enddo do n = 1, ncat !------------------------------------------------------------------- ! Find grid cells where ice is present. !------------------------------------------------------------------- icells(n) = 0 do j = 1, ny_block do i = 1, nx_block if (mm(i,j,n) > puny) then icells(n) = icells(n) + 1 ij = icells(n) indxi(ij,n) = i indxj(ij,n) = j endif ! mm > puny enddo enddo !------------------------------------------------------------------- ! ice area mask !------------------------------------------------------------------- mmask(:,:,n) = c0 do ij = 1, icells(n) i = indxi(ij,n) j = indxj(ij,n) mmask(i,j,n) = c1 enddo !------------------------------------------------------------------- ! tracer masks !------------------------------------------------------------------- if (present(tm)) then tmask(:,:,:,n) = c0 do nt = 1, ntrace if (has_dependents(nt)) then do ij = 1, icells(n) i = indxi(ij,n) j = indxj(ij,n) if (abs(tm(i,j,nt,n)) > puny) then tmask(i,j,nt,n) = c1 endif enddo endif enddo endif ! present(tm) !------------------------------------------------------------------- ! Redefine icells ! For nghost = 1, exclude ghost cells ! For nghost = 2, include one layer of ghost cells !------------------------------------------------------------------- icells(n) = 0 do j = jlo-nghost+1, jhi+nghost-1 do i = ilo-nghost+1, ihi+nghost-1 if (mm(i,j,n) > puny) then icells(n) = icells(n) + 1 ij = icells(n) indxi(ij,n) = i indxj(ij,n) = j endif ! mm > puny enddo enddo enddo ! n end subroutine make_masks !======================================================================= ! !BOP ! ! !IROUTINE: construct_fields - construct fields of ice area and tracers ! ! !INTERFACE: ! subroutine construct_fields (nx_block, ny_block, & 2,3 ilo, ihi, jlo, jhi, & nghost, ntrace, & tracer_type, depend, & has_dependents, icells, & indxi, indxj, & HTN, HTE, & hm, xav, & yav, xxav, & xyav, yyav, & xxxav, xxyav, & xyyav, yyyav, & dxt, dyt, & mm, mc, & mx, my, & mmask, & tm, tc, & tx, ty, & tmask) ! ! !DESCRIPTION: ! ! Construct fields of ice area and tracers. ! ! !REVISION HISTORY: ! ! authors William H. Lipscomb, LANL ! John R. Baumgardner, LANL ! ! !USES: ! ! !INPUT/OUTPUT PARAMETERS: ! integer (kind=int_kind), intent(in) :: & nx_block, ny_block ,&! block dimensions ilo,ihi,jlo,jhi ,&! beginning and end of physical domain nghost ,&! number of ghost cells ntrace ,&! number of tracers in use icells ! number of cells with mass integer (kind=int_kind), dimension (ntrace), intent(in) :: & tracer_type ,&! = 1, 2, or 3 (see comments above) depend ! tracer dependencies (see above) logical (kind=log_kind), dimension (ntrace), intent(in) :: & has_dependents ! true if a tracer has dependent tracers integer (kind=int_kind), dimension(nx_block*ny_block), intent(in) :: & indxi ,&! compressed i/j indices indxj real (kind=dbl_kind), dimension (nx_block,ny_block), & intent(in) :: & hm ,&! land/boundary mask, thickness (T-cell) HTN ,&! length of northern edge of T-cell (m) HTE ,&! length of eastern edge of T-cell (m) xav, yav ,&! mean T-cell values of x, y xxav, xyav, yyav ,&! mean T-cell values of xx, xy, yy xxxav,xxyav,xyyav,yyyav,&! mean T-cell values of , xxy, xyy, yyy dxt ,&! grid cell width (m) dyt ! grid cell height (m) real (kind=dbl_kind), dimension (nx_block,ny_block), & intent(in) :: & mm ,&! mean value of mass field mmask ! = 1. if ice is present, = 0. otherwise real (kind=dbl_kind), dimension (nx_block,ny_block,max_ntrace), & intent(in), optional :: & tm ,&! mean tracer tmask ! = 1. if tracer is present, = 0. otherwise real (kind=dbl_kind), dimension (nx_block,ny_block), & intent(out) :: & mc ,&! mass value at geometric center of cell mx, my ! limited derivative of mass wrt x and y real (kind=dbl_kind), dimension (nx_block,ny_block,max_ntrace), & intent(out), optional :: & tc ,&! tracer at geometric center of cell tx, ty ! limited derivative of tracer wrt x and y ! !EOP ! integer (kind=int_kind) :: & i, j ,&! horizontal indices nt, nt1 ,&! tracer indices ij ! combined i/j horizontal index real (kind=dbl_kind), dimension (nx_block,ny_block) :: & mxav ,&! x coordinate of center of mass myav ! y coordinate of center of mass real (kind=dbl_kind), dimension (nx_block,ny_block,max_ntrace) :: & mtxav ,&! x coordinate of center of mass*tracer mtyav ! y coordinate of center of mass*tracer real (kind=dbl_kind) :: & w1, w2, w3, w4, w5, w6, w7 ! work variables !------------------------------------------------------------------- ! Compute field values at the geometric center of each grid cell, ! and compute limited gradients in the x and y directions. ! ! For second order accuracy, each state variable is approximated as ! a field varying linearly over x and y within each cell. For each ! category, the integrated value of m(x,y) over the cell must ! equal mm(i,j,n)*tarea(i,j), where tarea(i,j) is the cell area. ! Similarly, the integrated value of m(x,y)*t(x,y) must equal ! the total mass*tracer, mm(i,j,n)*tm(i,j,n)*tarea(i,j). ! ! These integral conditions are satisfied for linear fields if we ! stipulate the following: ! (1) The mean mass, mm, is equal to the mass at the cell centroid. ! (2) The mean value tm1 of type 1 tracers is equal to the value ! at the center of mass. ! (3) The mean value tm2 of type 2 tracers is equal to the value ! at the center of mass*tm1, where tm2 depends on tm1. ! (See comments at the top of the module.) ! ! We want to find the value of each state variable at a standard ! reference point, which we choose to be the geometric center of ! the cell. The geometric center is located at the intersection ! of the line joining the midpoints of the north and south edges ! with the line joining the midpoints of the east and west edges. ! To find the value at the geometric center, we must know the ! location of the cell centroid/center of mass, along with the ! mean value and the gradients with respect to x and y. ! ! The cell gradients are first computed from the difference between ! values in the neighboring cells, then limited by requiring that ! no new extrema are created within the cell. ! ! For rectangular coordinates the centroid and the geometric ! center coincide, which means that some of the equations in this ! subroutine could be simplified. However, the full equations ! are retained for generality. !------------------------------------------------------------------- !------------------------------------------------------------------- ! Initialize !------------------------------------------------------------------- do j = 1, ny_block do i = 1, nx_block mc(i,j) = c0 mx(i,j) = c0 my(i,j) = c0 mxav(i,j) = c0 myav(i,j) = c0 enddo enddo if (present(tm)) then do nt = 1, ntrace do j = 1, ny_block do i = 1, nx_block tc(i,j,nt) = c0 tx(i,j,nt) = c0 ty(i,j,nt) = c0 enddo enddo enddo endif ! limited gradient of mass field in each cell (except masked cells) ! Note: The gradient is computed in scaled coordinates with ! dxt = dyt = hte = htn = 1. call limited_gradient (nx_block, ny_block, & ilo, ihi, jlo, jhi, & nghost, & mm, hm, & xav, yav, & HTN, HTE, & dxt, dyt, & mx, my) do ij = 1,icells ! ice is present i = indxi(ij) j = indxj(ij) ! mass field at geometric center mc(i,j) = mm(i,j) - xav(i,j)*mx(i,j) & - yav(i,j)*my(i,j) enddo ! ij ! tracers if (present(tm)) then do ij = 1,icells ! cells with mass i = indxi(ij) j = indxj(ij) ! center of mass (mxav,myav) for each cell mxav(i,j) = (mx(i,j)*xxav(i,j) & + my(i,j)*xyav(i,j) & + mc(i,j)*xav (i,j)) / mm(i,j) myav(i,j) = (mx(i,j)*xyav(i,j) & + my(i,j)*yyav(i,j) & + mc(i,j)*yav(i,j)) / mm(i,j) enddo do nt = 1, ntrace if (tracer_type(nt)==1) then ! independent of other tracers call limited_gradient(nx_block, ny_block, & ilo, ihi, jlo, jhi, & nghost, & tm(:,:,nt), mmask, & mxav, myav, & HTN, HTE, & dxt, dyt, & tx(:,:,nt), ty(:,:,nt)) if (has_dependents(nt)) then ! need center of area*tracer do j = 1, ny_block do i = 1, nx_block mtxav(i,j,nt) = c0 mtyav(i,j,nt) = c0 enddo enddo !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ij = 1, icells ! Note: no tx or ty in ghost cells ! (bound calls are later) i = indxi(ij) j = indxj(ij) ! tracer value at geometric center tc(i,j,nt) = tm(i,j,nt) - tx(i,j,nt)*mxav(i,j) & - ty(i,j,nt)*myav(i,j) if (tmask(i,j,nt) > puny) then ! center of area*tracer w1 = mc(i,j)*tc(i,j,nt) w2 = mc(i,j)*tx(i,j,nt) & + mx(i,j)*tc(i,j,nt) w3 = mc(i,j)*ty(i,j,nt) & + my(i,j)*tc(i,j,nt) w4 = mx(i,j)*tx(i,j,nt) w5 = mx(i,j)*ty(i,j,nt) & + my(i,j)*tx(i,j,nt) w6 = my(i,j)*ty(i,j,nt) w7 = c1 / (mm(i,j)*tm(i,j,nt)) mtxav(i,j,nt) = (w1*xav (i,j) + w2*xxav (i,j) & + w3*xyav (i,j) + w4*xxxav(i,j) & + w5*xxyav(i,j) + w6*xyyav(i,j)) & * w7 mtyav(i,j,nt) = (w1*yav(i,j) + w2*xyav (i,j) & + w3*yyav(i,j) + w4*xxyav(i,j) & + w5*xyyav(i,j) + w6*yyyav(i,j)) & * w7 endif ! tmask enddo ! ij else ! no dependents do ij = 1, icells ! mass is present i = indxi(ij) j = indxj(ij) ! tracer value at geometric center tc(i,j,nt) = tm(i,j,nt) - tx(i,j,nt)*mxav(i,j) & - ty(i,j,nt)*myav(i,j) enddo ! ij endif ! has_dependents elseif (tracer_type(nt)==2) then ! tracer nt depends on nt1 nt1 = depend(nt) call limited_gradient(nx_block, ny_block, & ilo, ihi, jlo, jhi, & nghost, & tm(:,:,nt), tmask(:,:,nt1), & mtxav(:,:,nt1), mtyav(:,:,nt1), & HTN, HTE, & dxt, dyt, & tx(:,:,nt), ty(:,:,nt)) do ij = 1, icells ! ice is present i = indxi(ij) j = indxj(ij) tc(i,j,nt) = tm(i,j,nt) & - tx(i,j,nt) * mtxav(i,j,nt1) & - ty(i,j,nt) * mtyav(i,j,nt1) enddo ! ij elseif (tracer_type(nt)==3) then ! upwind approx; gradient = 0 do ij = 1, icells i = indxi(ij) j = indxj(ij) tc(i,j,nt) = tm(i,j,nt) ! tx(i,j,nt) = c0 ! already initialized to 0. ! ty(i,j,nt) = c0 enddo ! ij endif ! tracer_type enddo ! ntrace endif ! present (tm) end subroutine construct_fields !======================================================================= ! !BOP ! ! !IROUTINE: limited_gradient - limited gradient of a scalar field ! ! !INTERFACE: ! subroutine limited_gradient (nx_block, ny_block, & 3,25 ilo, ihi, jlo, jhi, & nghost, & phi, phimask, & cnx, cny, & HTN, HTE, & dxt, dyt, & gx, gy) ! ! !DESCRIPTION: ! ! Compute a limited gradient of the scalar field phi in scaled coordinates. ! "Limited" means that we do not create new extrema in phi. For ! instance, field values at the cell corners can neither exceed the ! maximum of phi(i,j) in the cell and its eight neighbors, nor fall ! below the minimum. ! ! !REVISION HISTORY: ! ! authors William H. Lipscomb, LANL ! John R. Baumgardner, LANL ! ! !USES: ! ! !INPUT/OUTPUT PARAMETERS: ! integer (kind=int_kind), intent(in) :: & nx_block, ny_block,&! block dimensions ilo,ihi,jlo,jhi ,&! beginning and end of physical domain nghost ! number of ghost cells real (kind=dbl_kind), dimension (nx_block,ny_block), & intent (in) :: & phi ,&! input tracer field (mean values in each grid cell) cnx ,&! x-coordinate of phi relative to geometric center of cell cny ,&! y-coordinate of phi relative to geometric center of cell dxt ,&! grid cell width (m) dyt ,&! grid cell height (m) phimask ,& ! phimask(i,j) = 1 if phi(i,j) has physical meaning, = 0 otherwise. ! For instance, aice has no physical meaning in land cells, ! and hice no physical meaning where aice = 0. HTN ,&! length of northern edge of T-cell (m) HTE ! length of eastern edge of T-cell (m) real (kind=dbl_kind), dimension (nx_block,ny_block), & intent(out) :: & gx ,&! limited x-direction gradient gy ! limited y-direction gradient ! !EOP ! integer (kind=int_kind) :: & i, j, ij ,&! standard indices icells ! number of cells to limit integer (kind=int_kind), dimension(nx_block*ny_block) :: & indxi, indxj ! combined i/j horizontal indices real (kind=dbl_kind) :: & phi_nw, phi_n, phi_ne ,&! values of phi in 8 neighbor cells phi_w, phi_e ,& phi_sw, phi_s, phi_se ,& qmn, qmx ,&! min and max value of phi within grid cell pmn, pmx ,&! min and max value of phi among neighbor cells w1, w2, w3, w4 ! work variables real (kind=dbl_kind) :: & gxtmp, gytmp ! temporary term for x- and y- limited gradient gx(:,:) = c0 gy(:,:) = c0 ! For nghost = 1, loop over physical cells and update ghost cells later ! For nghost = 2, loop over a layer of ghost cells and skip the update icells = 0 do j = jlo-nghost+1, jhi+nghost-1 do i = ilo-nghost+1, ihi+nghost-1 if (phimask(i,j) > puny) then !jw icells = icells + 1 !jw indxi(icells) = i !jw indxj(icells) = j !jw endif ! phimask > puny !jw enddo !jw enddo !jw do ij = 1, icells !jw i = indxi(ij) !jw j = indxj(ij) ! Store values of phi in the 8 neighbor cells. ! Note: phimask = 1. or 0. If phimask = 1., use the true value; ! if phimask = 0., use the home cell value so that non-physical ! values of phi do not contribute to the gradient. phi_nw = phimask(i-1,j+1) * phi(i-1,j+1) & + (c1-phimask(i-1,j+1))* phi(i,j) phi_n = phimask(i,j+1) * phi(i,j+1) & + (c1-phimask(i,j+1)) * phi(i,j) phi_ne = phimask(i+1,j+1) * phi(i+1,j+1) & + (c1-phimask(i+1,j+1))* phi(i,j) phi_w = phimask(i-1,j) * phi(i-1,j) & + (c1-phimask(i-1,j)) * phi(i,j) phi_e = phimask(i+1,j) * phi(i+1,j) & + (c1-phimask(i+1,j)) * phi(i,j) phi_sw = phimask(i-1,j-1) * phi(i-1,j-1) & + (c1-phimask(i-1,j-1))* phi(i,j) phi_s = phimask(i,j-1) * phi(i,j-1) & + (c1-phimask(i,j-1)) * phi(i,j) phi_se = phimask(i+1,j-1) * phi(i+1,j-1) & + (c1-phimask(i+1,j-1))* phi(i,j) ! unlimited gradient components ! (factors of two cancel out) gxtmp = (phi_e - phi(i,j)) / (dxt(i,j) + dxt(i+1,j)) & + (phi(i,j) - phi_w) / (dxt(i-1,j) + dxt(i,j) ) gytmp = (phi_n - phi(i,j)) / (dyt(i,j) + dyt(i,j+1)) & + (phi(i,j) - phi_s) / (dyt(i,j-1) + dyt(i,j) ) ! minimum and maximum among the nine local cells pmn = min (phi_nw, phi_n, phi_ne, phi_w, phi(i,j), & phi_e, phi_sw, phi_s, phi_se) pmx = max (phi_nw, phi_n, phi_ne, phi_w, phi(i,j), & phi_e, phi_sw, phi_s, phi_se) pmn = pmn - phi(i,j) pmx = pmx - phi(i,j) ! minimum and maximum deviation of phi within the cell w1 = (p5*HTN(i,j) - cnx(i,j)) * gxtmp & + (p5*HTE(i,j) - cny(i,j)) * gytmp w2 = (p5*HTN(i,j-1) - cnx(i,j)) * gxtmp & - (p5*HTE(i,j) + cny(i,j)) * gytmp w3 = -(p5*HTN(i,j-1) + cnx(i,j)) * gxtmp & - (p5*HTE(i-1,j) + cny(i,j)) * gytmp w4 = (p5*HTE(i-1,j) - cny(i,j)) * gytmp & - (p5*HTN(i,j) + cnx(i,j)) * gxtmp qmn = min (w1, w2, w3, w4) qmx = max (w1, w2, w3, w4) ! Watch for underflows here ! the limiting coefficient if (abs(qmn) > 1.0e-300_dbl_kind) then ! 'abs(qmn) > puny' not sufficient w1 = max(c0, pmn/qmn) else w1 = c1 endif if (abs(qmx) > 1.0e-300_dbl_kind) then w2 = max(c0, pmx/qmx) else w2 = c1 endif w1 = min(c1, w1, w2) ! Limit the gradient components gx(i,j) = w1 * gxtmp gy(i,j) = w1 * gytmp !jw enddo ! ij endif enddo enddo end subroutine limited_gradient !======================================================================= !BOP ! ! !IROUTINE: departure_points - compute departure points of trajectories ! ! !INTERFACE: ! subroutine departure_points (nx_block, ny_block, & 1 ilo, ihi, jlo, jhi, & nghost, dt, & uvel, vvel, & dxu, dyu, & HTN, HTE, & dpx, dpy, & l_dp_midpt, l_stop, & istop, jstop) ! ! !DESCRIPTION: ! ! Given velocity fields on cell corners, compute departure points ! of back trajectories in nondimensional coordinates. ! ! !REVISION HISTORY: ! ! author William H. Lipscomb, LANL ! ! !USES: ! ! !INPUT/OUTPUT PARAMETERS: ! integer (kind=int_kind), intent(in) :: & nx_block, ny_block,&! block dimensions ilo,ihi,jlo,jhi, &! beginning and end of physical domain nghost ! number of ghost cells real (kind=dbl_kind), intent(in) :: & dt ! time step (s) real (kind=dbl_kind), dimension (nx_block,ny_block), intent(in) :: & uvel ,&! x-component of velocity (m/s) vvel ,&! y-component of velocity (m/s) dxu ,&! E-W dimensions of U-cell (m) dyu ,&! N-S dimensions of U-cell (m) HTN ,&! length of north face of T-cell (m) HTE ! length of east face of T-cell (m) real (kind=dbl_kind), dimension (nx_block,ny_block), intent(out) :: & dpx ,&! coordinates of departure points (m) dpy ! coordinates of departure points (m) logical (kind=log_kind), intent(in) :: & l_dp_midpt ! if true, find departure points using ! corrected midpoint velocity logical (kind=log_kind), intent(inout) :: & l_stop ! if true, abort on return integer (kind=int_kind), intent(inout) :: & istop, jstop ! indices of grid cell where model aborts ! !EOP ! integer (kind=int_kind) :: & i, j, i2, j2 ! horizontal indices real (kind=dbl_kind) :: & mpx, mpy ,&! coordinates of midpoint of back trajectory, ! relative to cell corner mpxt, mpyt ,&! midpoint coordinates relative to cell center ump, vmp ! corrected velocity at midpoint !------------------------------------------------------------------- ! Estimate departure points. ! This estimate is 1st-order accurate in time; improve accuracy by ! using midpoint approximation (to add later). ! For nghost = 1, loop over physical cells and update ghost cells later. ! For nghost = 2, loop over a layer of ghost cells and skip update. !------------------------------------------------------------------- dpx(:,:) = c0 dpy(:,:) = c0 do j = jlo-nghost+1, jhi+nghost-1 do i = ilo-nghost+1, ihi+nghost-1 dpx(i,j) = -dt*uvel(i,j) dpy(i,j) = -dt*vvel(i,j) ! Check for values out of bounds (more than one grid cell away) if (dpx(i,j) < -HTN(i,j) .or. dpx(i,j) > HTN(i+1,j) .or. & dpy(i,j) < -HTE(i,j) .or. dpy(i,j) > HTE(i,j+1)) then l_stop = .true. istop = i jstop = j endif enddo enddo if (l_stop) then i = istop j = jstop write (nu_diag,*) ' ' write (nu_diag,*) & 'Warning: Departure points out of bounds in remap' write (nu_diag,*) 'my_task, i, j =', my_task, i, j write (nu_diag,*) 'dpx, dpy =', dpx(i,j), dpy(i,j) write (nu_diag,*) 'HTN(i,j), HTN(i+1,j) =', HTN(i,j), HTN(i+1,j) write (nu_diag,*) 'HTE(i,j), HTE(i,j+1) =', HTE(i,j), HTE(i,j+1) return endif if (l_dp_midpt) then ! find dep pts using corrected midpt velocity do j = jlo-nghost+1, jhi+nghost-1 do i = ilo-nghost+1, ihi+nghost-1 if (uvel(i,j)/=c0 .or. vvel(i,j)/=c0) then !------------------------------------------------------------------- ! Scale departure points to coordinate system in which grid cells ! have sides of unit length. !------------------------------------------------------------------- dpx(i,j) = dpx(i,j) / dxu(i,j) dpy(i,j) = dpy(i,j) / dyu(i,j) !------------------------------------------------------------------- ! Estimate midpoint of backward trajectory relative to corner (i,j). !------------------------------------------------------------------- mpx = p5 * dpx(i,j) mpy = p5 * dpy(i,j) !------------------------------------------------------------------- ! Determine the indices (i2,j2) of the cell where the trajectory lies. ! Compute the coordinates of the midpoint of the backward trajectory ! relative to the cell center in a stretch coordinate system ! with vertices at (1/2, 1/2), (1/2, -1/2), etc. !------------------------------------------------------------------- if (mpx >= c0 .and. mpy >= c0) then ! cell (i+1,j+1) i2 = i+1 j2 = j+1 mpxt = mpx - p5 mpyt = mpy - p5 elseif (mpx < c0 .and. mpy < c0) then ! cell (i,j) i2 = i j2 = j mpxt = mpx + p5 mpyt = mpy + p5 elseif (mpx >= c0 .and. mpy < c0) then ! cell (i+1,j) i2 = i+1 j2 = j mpxt = mpx - p5 mpyt = mpy + p5 elseif (mpx < c0 .and. mpy >= c0) then ! cell (i,j+1) i2 = i j2 = j+1 mpxt = mpx + p5 mpyt = mpy - p5 endif !------------------------------------------------------------------- ! Using a bilinear approximation, estimate the velocity at the ! trajectory midpoint in the (i2,j2) reference frame. !------------------------------------------------------------------- ump = uvel(i2-1,j2-1)*(mpxt-p5)*(mpyt-p5) & - uvel(i2, j2-1)*(mpxt+p5)*(mpyt-p5) & + uvel(i2, j2 )*(mpxt+p5)*(mpyt+p5) & - uvel(i2-1,j2 )*(mpxt-p5)*(mpyt+p5) vmp = vvel(i2-1,j2-1)*(mpxt-p5)*(mpyt-p5) & - vvel(i2, j2-1)*(mpxt+p5)*(mpyt-p5) & + vvel(i2, j2 )*(mpxt+p5)*(mpyt+p5) & - vvel(i2-1,j2 )*(mpxt-p5)*(mpyt+p5) !------------------------------------------------------------------- ! Use the midpoint velocity to estimate the coordinates of the ! departure point relative to corner (i,j). !------------------------------------------------------------------- dpx(i,j) = -dt * ump dpy(i,j) = -dt * vmp endif ! nonzero velocity enddo ! i enddo ! j endif ! l_dp_midpt end subroutine departure_points !======================================================================= ! !BOP ! ! !IROUTINE: locate_triangles - triangle info for cell edges ! ! !INTERFACE: ! subroutine locate_triangles (nx_block, ny_block, & 2 ilo, ihi, jlo, jhi, & nghost, edge, & icells, & indxi, indxj, & dpx, dpy, & dxu, dyu, & xp, yp, & iflux, jflux, & triarea, & l_fixed_area, edgearea) ! ! !DESCRIPTION: ! ! Compute areas and vertices of transport triangles for north or ! east cell edges. ! ! !REVISION HISTORY: ! ! authors William H. Lipscomb, LANL ! John R. Baumgardner, LANL ! ! !USES: ! ! ! !INPUT/OUTPUT PARAMETERS: ! integer (kind=int_kind), intent(in) :: & nx_block, ny_block,&! block dimensions ilo,ihi,jlo,jhi ,&! beginning and end of physical domain nghost ! number of ghost cells character (len=char_len), intent(in) :: & edge ! 'north' or 'east' real (kind=dbl_kind), dimension(nx_block,ny_block), intent(in) :: & dpx ,&! x coordinates of departure points at cell corners dpy ,&! y coordinates of departure points at cell corners dxu ,&! E-W dimension of U-cell (m) dyu ! N-S dimension of U-cell (m) real (kind=dbl_kind), dimension (nx_block,ny_block,0:nvert,ngroups), & intent(out) :: & xp, yp ! coordinates of triangle vertices real (kind=dbl_kind), dimension (nx_block,ny_block,ngroups), & intent(out) :: & triarea ! area of departure triangle integer (kind=int_kind), dimension (nx_block,ny_block,ngroups), & intent(out) :: & iflux ,&! i index of cell contributing transport jflux ! j index of cell contributing transport integer (kind=int_kind), dimension (ngroups), intent(out) :: & icells ! number of cells where triarea > puny integer (kind=int_kind), dimension (nx_block*ny_block,ngroups), & intent(out) :: & indxi ,&! compressed index in i-direction indxj ! compressed index in j-direction logical, intent(in) :: & l_fixed_area ! if true, the area of each departure region is ! passed in as edgearea ! if false, edgearea if determined internally ! and is passed out real (kind=dbl_kind), dimension(nx_block,ny_block), intent(inout) :: & edgearea ! area of departure region for each edge ! edgearea > 0 for eastward/northward flow ! !EOP ! integer (kind=int_kind) :: & i, j, ij, ic ,&! horizontal indices ib, ie, jb, je ,&! limits for loops over edges ng, nv ,&! triangle indices ishift, jshift ! differences between neighbor cells integer (kind=int_kind) :: & icellsd ! number of cells where departure area > 0. integer (kind=int_kind), dimension (nx_block*ny_block) :: & indxid ,&! compressed index in i-direction indxjd ! compressed index in j-direction real (kind=dbl_kind), dimension(nx_block,ny_block) :: & dx, dy ,&! scaled departure points areafac_c ,&! area scale factor at center of edge areafac_l ,&! area scale factor at left corner areafac_r ! area scale factor at right corner real (kind=dbl_kind) :: & xcl, ycl ,&! coordinates of left corner point ! (relative to midpoint of edge) xdl, ydl ,&! left departure point xil, yil ,&! left intersection point xcr, ycr ,&! right corner point xdr, ydr ,&! right departure point xir, yir ,&! right intersection point xic, yic ,&! x-axis intersection point xicl, yicl ,&! left-hand x-axis intersection point xicr, yicr ,&! right-hand x-axis intersection point xdm, ydm ,&! midpoint of segment connecting DL and DR; ! shifted if l_fixed_area = T dxc ,&! xcr - xcl dxd ,&! xdr - xdl md ,&! slope of line connecting DL and DR mdl ,&! slope of line connecting DL and DM mdr ,&! slope of line connecting DR and DM ishift_tl, jshift_tl ,&! i,j indices of TL cell relative to edge ishift_bl, jshift_bl ,&! i,j indices of BL cell relative to edge ishift_tr, jshift_tr ,&! i,j indices of TR cell relative to edge ishift_br, jshift_br ,&! i,j indices of BR cell relative to edge ishift_tc, jshift_tc ,&! i,j indices of TC cell relative to edge ishift_bc, jshift_bc ,&! i,j indices of BC cell relative to edge area1, area2 ,&! temporary triangle areas area3, area4 ,&! area_c ,&! center polygon area w1, w2 ! work variables real (kind=dbl_kind), dimension (nx_block,ny_block,ngroups) :: & areafact ! = 1 for positive flux, -1 for negative real (kind=dbl_kind), dimension(nx_block,ny_block) :: & areasum ! sum of triangle areas for a given edge !------------------------------------------------------------------- ! Triangle notation: ! For each edge, there are 20 triangles that can contribute, ! but many of these are mutually exclusive. It turns out that ! at most 5 triangles can contribute to transport integrals at once. ! ! See Figure 3 in DB for pictures of these triangles. ! See Table 1 in DB for logical conditions. ! ! For the north edge, DB refer to these triangles as: ! (1) NW, NW1, W, W2 ! (2) NE, NE1, E, E2 ! (3) NW2, W1, NE2, E1 ! (4) H1a, H1b, N1a, N1b ! (5) H2a, H2b, N2a, N2b ! ! For the east edge, DB refer to these triangles as: ! (1) NE, NE1, N, N2 ! (2) SE, SE1, S, S2 ! (3) NE2, N1, SE2, S1 ! (4) H1a, H1b, E1a, E2b ! (5) H2a, H2b, E2a, E2b ! ! The code below works for either north or east edges. ! The respective triangle labels are: ! (1) TL, TL1, BL, BL2 ! (2) TR, TR1, BR, BR2 ! (3) TL2, BL1, TR2, BR1 ! (4) BC1a, BC1b, TC1a, TC2b ! (5) BC2a, BC2b, TC2a, TC2b ! ! where the cell labels are: ! ! | | ! TL | TC | TR (top left, center, right) ! | | ! ------------------------ ! | | ! BL | BC | BR (bottom left, center, right) ! | | ! ! and the transport is across the edge between cells TC and TB. ! ! Departure points are scaled to a local coordinate system ! whose origin is at the midpoint of the edge. ! In this coordinate system, the lefthand corner CL = (-0.5,0) ! and the righthand corner CR = (0.5, 0). !------------------------------------------------------------------- !------------------------------------------------------------------- ! Initialize !------------------------------------------------------------------- areafac_c(:,:) = c0 areafac_l(:,:) = c0 areafac_r(:,:) = c0 do ng = 1, ngroups do j = 1, ny_block do i = 1, nx_block triarea (i,j,ng) = c0 areafact(i,j,ng) = c0 iflux (i,j,ng) = i jflux (i,j,ng) = j enddo enddo do nv = 0, nvert do j = 1, ny_block do i = 1, nx_block xp(i,j,nv,ng) = c0 yp(i,j,nv,ng) = c0 enddo enddo enddo enddo if (trim(edge) == 'north') then ! loop size ib = ilo ie = ihi jb = jlo - nghost ! lowest j index is a ghost cell je = jhi ! index shifts for neighbor cells ishift_tl = -1 jshift_tl = 1 ishift_bl = -1 jshift_bl = 0 ishift_tr = 1 jshift_tr = 1 ishift_br = 1 jshift_br = 0 ishift_tc = 0 jshift_tc = 1 ishift_bc = 0 jshift_bc = 0 ! area scale factor do j = jb, je do i = ib, ie areafac_l(i,j) = dxu(i-1,j)*dyu(i-1,j) areafac_r(i,j) = dxu(i,j)*dyu(i,j) areafac_c(i,j) = p5*(areafac_l(i,j) + areafac_r(i,j)) enddo enddo else ! east edge ! loop size ib = ilo - nghost ! lowest i index is a ghost cell ie = ihi jb = jlo je = jhi ! index shifts for neighbor cells ishift_tl = 1 jshift_tl = 1 ishift_bl = 0 jshift_bl = 1 ishift_tr = 1 jshift_tr = -1 ishift_br = 0 jshift_br = -1 ishift_tc = 1 jshift_tc = 0 ishift_bc = 0 jshift_bc = 0 ! area scale factors do j = jb, je do i = ib, ie areafac_l(i,j) = dxu(i,j)*dyu(i,j) areafac_r(i,j) = dxu(i,j-1)*dyu(i,j-1) areafac_c(i,j) = p5 * (areafac_l(i,j) + areafac_r(i,j)) enddo enddo endif !------------------------------------------------------------------- ! Compute mask for edges with nonzero departure areas !------------------------------------------------------------------- if (l_fixed_area) then icellsd = 0 do j = jb, je do i = ib, ie if (edgearea(i,j) /= c0) then icellsd = icellsd + 1 indxid(icellsd) = i indxjd(icellsd) = j endif enddo enddo else icellsd = 0 if (trim(edge) == 'north') then do j = jb, je do i = ib, ie if (dpx(i-1,j)/=c0 .or. dpy(i-1,j)/=c0 & .or. & dpx(i,j)/=c0 .or. dpy(i,j)/=c0) then icellsd = icellsd + 1 indxid(icellsd) = i indxjd(icellsd) = j endif enddo enddo else ! east edge do j = jb, je do i = ib, ie if (dpx(i,j-1)/=c0 .or. dpy(i,j-1)/=c0 & .or. & dpx(i,j)/=c0 .or. dpy(i,j)/=c0) then icellsd = icellsd + 1 indxid(icellsd) = i indxjd(icellsd) = j endif enddo enddo endif ! edge = north/east endif ! l_fixed_area !------------------------------------------------------------------- ! Scale the departure points !------------------------------------------------------------------- do j = 1, je do i = 1, ie dx(i,j) = dpx(i,j) / dxu(i,j) dy(i,j) = dpy(i,j) / dyu(i,j) enddo enddo !------------------------------------------------------------------- ! Compute departure regions, divide into triangles, and locate ! vertices of each triangle. ! Work in a nondimensional coordinate system in which lengths are ! scaled by the local metric coefficients (dxu and dyu). ! Note: The do loop includes north faces of the j = 1 ghost cells ! when edge = 'north'. The loop includes east faces of i = 1 ! ghost cells when edge = 'east'. !------------------------------------------------------------------- do ij = 1, icellsd i = indxid(ij) j = indxjd(ij) xcl = -p5 ycl = c0 xcr = p5 ycr = c0 ! Departure points if (trim(edge) == 'north') then ! north edge xdl = xcl + dx(i-1,j) ydl = ycl + dy(i-1,j) xdr = xcr + dx(i,j) ydr = ycr + dy(i,j) else ! east edge; rotate trajectory by pi/2 xdl = xcl - dy(i,j) ydl = ycl + dx(i,j) xdr = xcr - dy(i,j-1) ydr = ycr + dx(i,j-1) endif xdm = p5 * (xdr + xdl) ydm = p5 * (ydr + ydl) ! Intersection points xil = xcl yil = (xcl*(ydm-ydl) + xdm*ydl - xdl*ydm) / (xdm - xdl) xir = xcr yir = (xcr*(ydr-ydm) - xdm*ydr + xdr*ydm) / (xdr - xdm) md = (ydr - ydl) / (xdr - xdl) if (abs(md) > puny) then xic = xdl - ydl/md else xic = c0 endif yic = c0 xicl = xic yicl = yic xicr = xic yicr = yic !------------------------------------------------------------------- ! Locate triangles in TL cell (NW for north edge, NE for east edge) ! and BL cell (W for north edge, N for east edge). !------------------------------------------------------------------- if (yil > c0 .and. xdl < xcl .and. ydl >= c0) then ! TL (group 1) ng = 1 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xil yp (i,j,2,ng) = yil xp (i,j,3,ng) = xdl yp (i,j,3,ng) = ydl iflux (i,j,ng) = i + ishift_tl jflux (i,j,ng) = j + jshift_tl areafact(i,j,ng) = -areafac_l(i,j) elseif (yil < c0 .and. xdl < xcl .and. ydl < c0) then ! BL (group 1) ng = 1 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xil yp (i,j,3,ng) = yil iflux (i,j,ng) = i + ishift_bl jflux (i,j,ng) = j + jshift_bl areafact(i,j,ng) = areafac_l(i,j) elseif (yil < c0 .and. xdl < xcl .and. ydl >= c0) then ! TL1 (group 1) ng = 1 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xic yp (i,j,3,ng) = yic iflux (i,j,ng) = i + ishift_tl jflux (i,j,ng) = j + jshift_tl areafact(i,j,ng) = areafac_l(i,j) ! BL1 (group 3) ng = 3 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xic yp (i,j,2,ng) = yic xp (i,j,3,ng) = xil yp (i,j,3,ng) = yil iflux (i,j,ng) = i + ishift_bl jflux (i,j,ng) = j + jshift_bl areafact(i,j,ng) = areafac_l(i,j) elseif (yil > c0 .and. xdl < xcl .and. ydl < c0) then ! TL2 (group 3) ng = 3 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xil yp (i,j,2,ng) = yil xp (i,j,3,ng) = xic yp (i,j,3,ng) = yic iflux (i,j,ng) = i + ishift_tl jflux (i,j,ng) = j + jshift_tl areafact(i,j,ng) = -areafac_l(i,j) ! BL2 (group 1) ng = 1 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xic yp (i,j,2,ng) = yic xp (i,j,3,ng) = xdl yp (i,j,3,ng) = ydl iflux (i,j,ng) = i + ishift_bl jflux (i,j,ng) = j + jshift_bl areafact(i,j,ng) = -areafac_l(i,j) endif ! TL and BL triangles !------------------------------------------------------------------- ! Locate triangles in TR cell (NE for north edge, SE for east edge) ! and in BR cell (E for north edge, S for east edge). !------------------------------------------------------------------- if (yir > c0 .and. xdr >= xcr .and. ydr >= c0) then ! TR (group 2) ng = 2 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xir yp (i,j,3,ng) = yir iflux (i,j,ng) = i + ishift_tr jflux (i,j,ng) = j + jshift_tr areafact(i,j,ng) = -areafac_r(i,j) elseif (yir < c0 .and. xdr >= xcr .and. ydr < c0) then ! BR (group 2) ng = 2 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xir yp (i,j,2,ng) = yir xp (i,j,3,ng) = xdr yp (i,j,3,ng) = ydr iflux (i,j,ng) = i + ishift_br jflux (i,j,ng) = j + jshift_br areafact(i,j,ng) = areafac_r(i,j) elseif (yir < c0 .and. xdr >= xcr .and. ydr >= c0) then ! TR1 (group 2) ng = 2 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xic yp (i,j,2,ng) = yic xp (i,j,3,ng) = xdr yp (i,j,3,ng) = ydr iflux (i,j,ng) = i + ishift_tr jflux (i,j,ng) = j + jshift_tr areafact(i,j,ng) = areafac_r(i,j) ! BR1 (group 3) ng = 3 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xir yp (i,j,2,ng) = yir xp (i,j,3,ng) = xic yp (i,j,3,ng) = yic iflux (i,j,ng) = i + ishift_br jflux (i,j,ng) = j + jshift_br areafact(i,j,ng) = areafac_r(i,j) elseif (yir > c0 .and. xdr >= xcr .and. ydr < c0) then ! TR2 (group 3) ng = 3 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xic yp (i,j,2,ng) = yic xp (i,j,3,ng) = xir yp (i,j,3,ng) = yir iflux (i,j,ng) = i + ishift_tr jflux (i,j,ng) = j + jshift_tr areafact(i,j,ng) = -areafac_r(i,j) ! BR2 (group 2) ng = 2 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xic yp (i,j,3,ng) = yic iflux (i,j,ng) = i + ishift_br jflux (i,j,ng) = j + jshift_br areafact(i,j,ng) = -areafac_r(i,j) endif ! TR and BR triangles !------------------------------------------------------------------- ! Redefine departure points if not located in central cells (TC or BC) !------------------------------------------------------------------- if (xdl < xcl) then xdl = xil ydl = yil endif if (xdr > xcr) then xdr = xir ydr = yir endif !------------------------------------------------------------------- ! For l_fixed_area = T, shift the midpoint so that the departure ! region has the prescribed area !------------------------------------------------------------------- if (l_fixed_area) then ! Sum the areas of the left and right triangles. ! Note that yp(i,j,1,ng) = 0 for all triangles, so we can ! drop those terms from the area formula. ng = 1 area1 = p5 * ( (xp(i,j,2,ng)-xp(i,j,1,ng)) * & yp(i,j,3,ng) & - yp(i,j,2,ng) * & (xp(i,j,3,ng)-xp(i,j,1,ng)) ) & * areafact(i,j,ng) ng = 2 area2 = p5 * ( (xp(i,j,2,ng)-xp(i,j,1,ng)) * & yp(i,j,3,ng) & - yp(i,j,2,ng) * & (xp(i,j,3,ng)-xp(i,j,1,ng)) ) & * areafact(i,j,ng) ng = 3 area3 = p5 * ( (xp(i,j,2,ng)-xp(i,j,1,ng)) * & yp(i,j,3,ng) & - yp(i,j,2,ng) * & (xp(i,j,3,ng)-xp(i,j,1,ng)) ) & * areafact(i,j,ng) !----------------------------------------------------------- ! Check whether the central triangles lie in one grid cell or two. ! If all are in one grid cell, then adjust the area of the central ! region so that the sum of all triangle areas is equal to the ! prescribed value. ! If two triangles are in one grid cell and one is in the other, ! then compute the area of the lone triangle using an area factor ! corresponding to the adjacent corner. This is necessary to prevent ! negative masses in some rare cases on curved grids. Then adjust ! the area of the remaining two-triangle region so that the sum of ! all triangle areas has the prescribed value. !----------------------------------------------------------- if (ydl*ydr >= c0) then ! Both DPs lie on same side of x-axis ! compute required area of central departure region area_c = edgearea(i,j) - area1 - area2 - area3 ! shift midpoint so that the area of remaining triangles = area_c w1 = c2*area_c/areafac_c(i,j) & + (xdr-xcl)*ydl + (xcr-xdl)*ydr w2 = (xdr-xdl)**2 + (ydr-ydl)**2 w1 = w1/w2 xdm = xdm + (ydr - ydl) * w1 ydm = ydm - (xdr - xdl) * w1 ! compute left and right intersection points mdl = (ydm - ydl) / (xdm - xdl) mdr = (ydr - ydm) / (xdr - xdm) if (abs(mdl) > puny) then xicl = xdl - ydl/mdl else xicl = c0 endif yicl = c0 if (abs(mdr) > puny) then xicr = xdr - ydr/mdr else xicr = c0 endif yicr = c0 elseif (xic < c0) then ! fix ICL = IC xicl = xic yicl = yic ! compute midpoint between ICL and DR xdm = p5 * (xdr + xicl) ydm = p5 * ydr ! compute area of triangle adjacent to left corner area4 = p5 * (xcl - xic) * ydl * areafac_l(i,j) area_c = edgearea(i,j) - area1 - area2 - area3 - area4 ! shift midpoint so that area of remaining triangles = area_c w1 = c2*area_c/areafac_c(i,j) + (xcr-xic)*ydr w2 = (xdr-xic)**2 + ydr**2 w1 = w1/w2 xdm = xdm + ydr*w1 ydm = ydm - (xdr - xic) * w1 ! compute ICR mdr = (ydr - ydm) / (xdr - xdm) if (abs(mdr) > puny) then xicr = xdr - ydr/mdr else xicr = c0 endif yicr = c0 elseif (xic >= c0) then ! fix ICR = IR xicr = xic yicr = yic ! compute midpoint between ICR and DL xdm = p5 * (xicr + xdl) ydm = p5 * ydl area4 = p5 * (xic - xcr) * ydr * areafac_r(i,j) area_c = edgearea(i,j) - area1 - area2 - area3 - area4 ! shift midpoint so that area of remaining triangles = area_c w1 = c2*area_c/areafac_c(i,j) + (xic-xcl)*ydl w2 = (xic-xdl)**2 + ydl**2 w1 = w1/w2 xdm = xdm - ydl*w1 ydm = ydm - (xic - xdl) * w1 ! compute ICL mdl = (ydm - ydl) / (xdm - xdl) if (abs(mdl) > puny) then xicl = xdl - ydl/mdl else xicl = c0 endif yicl = c0 endif ! ydl*ydr >= c0 endif ! l_fixed_area !------------------------------------------------------------------- ! Locate triangles in BC cell (H for both north and east edges) ! and TC cell (N for north edge and E for east edge). !------------------------------------------------------------------- ! Start with cases where both DPs lie in the same grid cell if (ydl >= c0 .and. ydr >= c0 .and. ydm >= c0) then ! TC1a (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xcr yp (i,j,2,ng) = ycr xp (i,j,3,ng) = xdl yp (i,j,3,ng) = ydl iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) ! TC2a (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xdl yp (i,j,3,ng) = ydl iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) ! TC3a (group 6) ng = 6 xp (i,j,1,ng) = xdl yp (i,j,1,ng) = ydl xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) elseif (ydl >= c0 .and. ydr >= c0 .and. ydm < c0) then ! rare ! TC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xicl yp (i,j,2,ng) = yicl xp (i,j,3,ng) = xdl yp (i,j,3,ng) = ydl iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) ! TC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xicr yp (i,j,3,ng) = yicr iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) ! BC3b (group 6) ng = 6 xp (i,j,1,ng) = xicr yp (i,j,1,ng) = yicr xp (i,j,2,ng) = xicl yp (i,j,2,ng) = yicl xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) elseif (ydl < c0 .and. ydr < c0 .and. ydm < c0) then ! BC1a (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xcr yp (i,j,3,ng) = ycr iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) ! BC2a (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xdr yp (i,j,3,ng) = ydr iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) ! BC3a (group 6) ng = 6 xp (i,j,1,ng) = xdl yp (i,j,1,ng) = ydl xp (i,j,2,ng) = xdm yp (i,j,2,ng) = ydm xp (i,j,3,ng) = xdr yp (i,j,3,ng) = ydr iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) elseif (ydl < c0 .and. ydr < c0 .and. ydm >= c0) then ! rare ! BC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xicl yp (i,j,3,ng) = yicl iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) ! BC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xicr yp (i,j,2,ng) = yicr xp (i,j,3,ng) = xdr yp (i,j,3,ng) = ydr iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) ! TC3b (group 6) ng = 6 xp (i,j,1,ng) = xicl yp (i,j,1,ng) = yicl xp (i,j,2,ng) = xicr yp (i,j,2,ng) = yicr xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) ! Now consider cases where the two DPs lie in different grid cells ! For these cases, one triangle is given the area factor associated ! with the adjacent corner, to avoid rare negative masses on curved grids. elseif (ydl >= c0 .and. ydr < c0 .and. xic >= c0 & .and. ydm >= c0) then ! TC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xicr yp (i,j,2,ng) = yicr xp (i,j,3,ng) = xdl yp (i,j,3,ng) = ydl iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) ! BC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xicr yp (i,j,2,ng) = yicr xp (i,j,3,ng) = xdr yp (i,j,3,ng) = ydr iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_r(i,j) ! TC3b (group 6) ng = 6 xp (i,j,1,ng) = xdl yp (i,j,1,ng) = ydl xp (i,j,2,ng) = xicr yp (i,j,2,ng) = yicr xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) elseif (ydl >= c0 .and. ydr < c0 .and. xic >= c0 & .and. ydm < c0 ) then ! less common ! TC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xicl yp (i,j,2,ng) = yicl xp (i,j,3,ng) = xdl yp (i,j,3,ng) = ydl iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) ! BC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xicr yp (i,j,2,ng) = yicr xp (i,j,3,ng) = xdr yp (i,j,3,ng) = ydr iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_r(i,j) ! BC3b (group 6) ng = 6 xp (i,j,1,ng) = xicr yp (i,j,1,ng) = yicr xp (i,j,2,ng) = xicl yp (i,j,2,ng) = yicl xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) elseif (ydl >= c0 .and. ydr < c0 .and. xic < c0 & .and. ydm < c0) then ! TC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xicl yp (i,j,2,ng) = yicl xp (i,j,3,ng) = xdl yp (i,j,3,ng) = ydl iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_l(i,j) ! BC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xicl yp (i,j,2,ng) = yicl xp (i,j,3,ng) = xdr yp (i,j,3,ng) = ydr iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) ! BC3b (group 6) ng = 6 xp (i,j,1,ng) = xdr yp (i,j,1,ng) = ydr xp (i,j,2,ng) = xicl yp (i,j,2,ng) = yicl xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) elseif (ydl >= c0 .and. ydr < c0 .and. xic < c0 & .and. ydm >= c0) then ! less common ! TC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xicl yp (i,j,2,ng) = yicl xp (i,j,3,ng) = xdl yp (i,j,3,ng) = ydl iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_l(i,j) ! BC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xicr yp (i,j,2,ng) = yicr xp (i,j,3,ng) = xdr yp (i,j,3,ng) = ydr iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) ! TC3b (group 6) ng = 6 xp (i,j,1,ng) = xicl yp (i,j,1,ng) = yicl xp (i,j,2,ng) = xicr yp (i,j,2,ng) = yicr xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) elseif (ydl < c0 .and. ydr >= c0 .and. xic < c0 & .and. ydm >= c0) then ! BC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xicl yp (i,j,3,ng) = yicl iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_l(i,j) ! TC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xicl yp (i,j,3,ng) = yicl iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) ! TC3b (group 6) ng = 6 xp (i,j,1,ng) = xicl yp (i,j,1,ng) = yicl xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) elseif (ydl < c0 .and. ydr >= c0 .and. xic < c0 & .and. ydm < c0) then ! less common ! BC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xicl yp (i,j,3,ng) = yicl iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_l(i,j) ! TC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xicr yp (i,j,3,ng) = yicr iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) ! BC3b (group 6) ng = 6 xp (i,j,1,ng) = xicr yp (i,j,1,ng) = yicr xp (i,j,2,ng) = xicl yp (i,j,2,ng) = yicl xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) elseif (ydl < c0 .and. ydr >= c0 .and. xic >= c0 & .and. ydm < c0) then ! BC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xicr yp (i,j,3,ng) = yicr iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) ! TC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xicr yp (i,j,3,ng) = yicr iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_r(i,j) ! BC3b (group 6) ng = 6 xp (i,j,1,ng) = xicr yp (i,j,1,ng) = yicr xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) elseif (ydl < c0 .and. ydr >= c0 .and. xic >= c0 & .and. ydm >= c0) then ! less common ! BC1b (group 4) ng = 4 xp (i,j,1,ng) = xcl yp (i,j,1,ng) = ycl xp (i,j,2,ng) = xdl yp (i,j,2,ng) = ydl xp (i,j,3,ng) = xicl yp (i,j,3,ng) = yicl iflux (i,j,ng) = i + ishift_bc jflux (i,j,ng) = j + jshift_bc areafact(i,j,ng) = areafac_c(i,j) ! TC2b (group 5) ng = 5 xp (i,j,1,ng) = xcr yp (i,j,1,ng) = ycr xp (i,j,2,ng) = xdr yp (i,j,2,ng) = ydr xp (i,j,3,ng) = xicr yp (i,j,3,ng) = yicr iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_r(i,j) ! TC3b (group 6) ng = 6 xp (i,j,1,ng) = xicl yp (i,j,1,ng) = yicl xp (i,j,2,ng) = xicr yp (i,j,2,ng) = yicr xp (i,j,3,ng) = xdm yp (i,j,3,ng) = ydm iflux (i,j,ng) = i + ishift_tc jflux (i,j,ng) = j + jshift_tc areafact(i,j,ng) = -areafac_c(i,j) endif ! TC and BC triangles enddo ! ij !------------------------------------------------------------------- ! Compute triangle areas with appropriate sign. ! These are found by computing the area in scaled coordinates and ! multiplying by a scale factor (areafact). ! Note that the scale factor is positive for fluxes out of the cell ! and negative for fluxes into the cell. ! ! Note: The triangle area formula below gives A >=0 iff the triangle ! points x1, x2, and x3 are taken in counterclockwise order. ! These points are defined above in such a way that the ! order is nearly always CCW. ! In rare cases, we may compute A < 0. In this case, ! the quadrilateral departure area is equal to the ! difference of two triangle areas instead of the sum. ! The fluxes work out correctly in the end. ! ! Also compute the cumulative area transported across each edge. ! If l_fixed_area = T, this area is compared to edgearea as a bug check. ! If l_fixed_area = F, this area is passed as an output array. !------------------------------------------------------------------- areasum(:,:) = c0 do ng = 1, ngroups icells(ng) = 0 do ij = 1, icellsd i = indxid(ij) j = indxjd(ij) triarea(i,j,ng) = p5 * ( (xp(i,j,2,ng)-xp(i,j,1,ng)) * & (yp(i,j,3,ng)-yp(i,j,1,ng)) & - (yp(i,j,2,ng)-yp(i,j,1,ng)) * & (xp(i,j,3,ng)-xp(i,j,1,ng)) ) & * areafact(i,j,ng) if (abs(triarea(i,j,ng)) < eps16*areafac_c(i,j)) then triarea(i,j,ng) = c0 else icells(ng) = icells(ng) + 1 ic = icells(ng) indxi(ic,ng) = i indxj(ic,ng) = j endif areasum(i,j) = areasum(i,j) + triarea(i,j,ng) enddo ! ij enddo ! ng if (l_fixed_area) then if (bugcheck) then ! set bugcheck = F to speed up code do ij = 1, icellsd i = indxid(ij) j = indxjd(ij) if (abs(areasum(i,j) - edgearea(i,j)) > eps13*areafac_c(i,j)) then print*, '' print*, 'Areas do not add up: m, i, j, edge =', & my_task, i, j, trim(edge) print*, 'edgearea =', edgearea(i,j) print*, 'areasum =', areasum(i,j) print*, 'areafac_c =', areafac_c(i,j) print*, '' print*, 'Triangle areas:' do ng = 1, ngroups ! not vector friendly if (abs(triarea(i,j,ng)) > eps16*abs(areafact(i,j,ng))) then print*, ng, triarea(i,j,ng) endif enddo endif enddo endif ! bugcheck else ! l_fixed_area = F do ij = 1, icellsd i = indxid(ij) j = indxjd(ij) edgearea(i,j) = areasum(i,j) enddo endif ! l_fixed_area !------------------------------------------------------------------- ! Transform triangle vertices to a scaled coordinate system centered ! in the cell containing the triangle. !------------------------------------------------------------------- if (trim(edge) == 'north') then do ng = 1, ngroups do nv = 1, nvert do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) ishift = iflux(i,j,ng) - i jshift = jflux(i,j,ng) - j xp(i,j,nv,ng) = xp(i,j,nv,ng) - c1*ishift yp(i,j,nv,ng) = yp(i,j,nv,ng) + p5 - c1*jshift enddo ! ij enddo ! nv enddo ! ng else ! east edge do ng = 1, ngroups do nv = 1, nvert do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) ishift = iflux(i,j,ng) - i jshift = jflux(i,j,ng) - j ! Note rotation of pi/2 here w1 = xp(i,j,nv,ng) xp(i,j,nv,ng) = yp(i,j,nv,ng) + p5 - c1*ishift yp(i,j,nv,ng) = -w1 - c1*jshift enddo ! ij enddo ! nv enddo ! ng endif if (bugcheck) then do ng = 1, ngroups do nv = 1, nvert do j = jb, je do i = ib, ie if (abs(triarea(i,j,ng)) > puny) then if (abs(xp(i,j,nv,ng)) > p5+puny) then print*, '' print*, 'WARNING: xp =', xp(i,j,nv,ng) print*, 'm, i, j, ng, nv =', my_task, i, j, ng, nv ! print*, 'yil,xdl,xcl,ydl=',yil,xdl,xcl,ydl ! print*, 'yir,xdr,xcr,ydr=',yir,xdr,xcr,ydr ! print*, 'ydm=',ydm ! stop endif if (abs(yp(i,j,nv,ng)) > p5+puny) then print*, '' print*, 'WARNING: yp =', yp(i,j,nv,ng) print*, 'm, i, j, ng, nv =', my_task, i, j, ng, nv endif endif ! triarea enddo enddo enddo enddo endif ! bugcheck end subroutine locate_triangles !======================================================================= ! !BOP ! !IROUTINE: triangle_coordinates - find coordinates of quadrature points ! ! !INTERFACE: ! subroutine triangle_coordinates (nx_block, ny_block, & 2 integral_order, icells, & indxi, indxj, & xp, yp) ! ! !DESCRIPTION: ! ! For each triangle, find the coordinates of the quadrature points needed ! to compute integrals of linear, quadratic, or cubic polynomials, ! using formulas from A.H. Stroud, Approximate Calculation of Multiple ! Integrals, Prentice-Hall, 1971. (Section 8.8, formula 3.1.) ! Linear functions can be integrated exactly by evaluating the function ! at just one point (the midpoint). Quadratic functions require ! 3 points, and cubics require 4 points. ! The default is cubic, but the code can be sped up slightly using ! linear or quadratic integrals, usually with little loss of accuracy. ! ! The formulas are as follows: ! ! I1 = integral of f(x,y)*dA ! = A * f(x0,y0) ! where A is the traingle area and (x0,y0) is the midpoint. ! ! I2 = A * (f(x1,y1) + f(x2,y2) + f(x3,y3)) ! where these three points are located halfway between the midpoint ! and the three vertics of the triangle. ! ! I3 = A * [ -9/16 * f(x0,y0) ! + 25/48 * (f(x1,y1) + f(x2,y2) + f(x3,y3))] ! where (x0,y0) is the midpoint, and the other three points are ! located 2/5 of the way from the midpoint to the three vertices. ! ! !REVISION HISTORY: ! ! author William H. Lipscomb, LANL ! ! !USES: ! ! !INPUT/OUTPUT PARAMETERS: ! integer (kind=int_kind), intent(in) :: & nx_block, ny_block,&! block dimensions integral_order ! polynomial order for quadrature integrals integer (kind=int_kind), dimension (ngroups), intent(in) :: & icells ! number of cells where triarea > puny integer (kind=int_kind), dimension (nx_block*ny_block,ngroups), & intent(in) :: & indxi ,&! compressed index in i-direction indxj ! compressed index in j-direction real (kind=dbl_kind), intent(inout), & dimension (nx_block, ny_block, 0:nvert, ngroups) :: & xp, yp ! coordinates of triangle points ! !EOP ! integer (kind=int_kind) :: & i, j, ij ,&! horizontal indices ng ! triangle index if (integral_order == 1) then ! linear (1-point formula) do ng = 1, ngroups do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) ! coordinates of midpoint xp(i,j,0,ng) = p333 & * (xp(i,j,1,ng) + xp(i,j,2,ng) + xp(i,j,3,ng)) yp(i,j,0,ng) = p333 & * (yp(i,j,1,ng) + yp(i,j,2,ng) + yp(i,j,3,ng)) enddo ! ij enddo ! ng elseif (integral_order == 2) then ! quadratic (3-point formula) !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ng = 1, ngroups do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) ! coordinates of midpoint xp(i,j,0,ng) = p333 & * (xp(i,j,1,ng) + xp(i,j,2,ng) + xp(i,j,3,ng)) yp(i,j,0,ng) = p333 & * (yp(i,j,1,ng) + yp(i,j,2,ng) + yp(i,j,3,ng)) ! coordinates of the 3 points needed for integrals xp(i,j,1,ng) = p5*xp(i,j,1,ng) + p5*xp(i,j,0,ng) yp(i,j,1,ng) = p5*yp(i,j,1,ng) + p5*yp(i,j,0,ng) xp(i,j,2,ng) = p5*xp(i,j,2,ng) + p5*xp(i,j,0,ng) yp(i,j,2,ng) = p5*yp(i,j,2,ng) + p5*yp(i,j,0,ng) xp(i,j,3,ng) = p5*xp(i,j,3,ng) + p5*xp(i,j,0,ng) yp(i,j,3,ng) = p5*yp(i,j,3,ng) + p5*yp(i,j,0,ng) enddo ! ij enddo ! ng else ! cubic (4-point formula) !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ng = 1, ngroups do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) ! coordinates of midpoint xp(i,j,0,ng) = p333 & * (xp(i,j,1,ng) + xp(i,j,2,ng) + xp(i,j,3,ng)) yp(i,j,0,ng) = p333 & * (yp(i,j,1,ng) + yp(i,j,2,ng) + yp(i,j,3,ng)) ! coordinates of the other 3 points needed for integrals xp(i,j,1,ng) = p4*xp(i,j,1,ng) + p6*xp(i,j,0,ng) yp(i,j,1,ng) = p4*yp(i,j,1,ng) + p6*yp(i,j,0,ng) xp(i,j,2,ng) = p4*xp(i,j,2,ng) + p6*xp(i,j,0,ng) yp(i,j,2,ng) = p4*yp(i,j,2,ng) + p6*yp(i,j,0,ng) xp(i,j,3,ng) = p4*xp(i,j,3,ng) + p6*xp(i,j,0,ng) yp(i,j,3,ng) = p4*yp(i,j,3,ng) + p6*yp(i,j,0,ng) enddo ! ij enddo ! ng endif end subroutine triangle_coordinates !======================================================================= ! !BOP ! ! !IROUTINE: transport_integrals - compute transports across each edge ! ! !INTERFACE: ! subroutine transport_integrals (nx_block, ny_block, & 4 ntrace, icells, & indxi, indxj, & tracer_type, depend, & integral_order, triarea, & iflux, jflux, & xp, yp, & mc, mx, & my, mflx, & tc, tx, & ty, mtflx) ! ! !DESCRIPTION: ! ! Compute the transports across each edge by integrating the mass ! and tracers over each departure triangle. ! Input variables have the same meanings as in the main subroutine. ! Repeated use of certain sums makes the calculation more efficient. ! Integral formulas are described in triangle_coordinates subroutine. ! ! !REVISION HISTORY: ! ! author William H. Lipscomb, LANL ! ! !USES: ! ! !INPUT/OUTPUT PARAMETERS: ! integer (kind=int_kind), intent(in) :: & nx_block, ny_block ,&! block dimensions ntrace ,&! number of tracers in use integral_order ! polynomial order for quadrature integrals integer (kind=int_kind), dimension (ntrace), intent(in) :: & tracer_type ,&! = 1, 2, or 3 (see comments above) depend ! tracer dependencies (see above) integer (kind=int_kind), dimension (ngroups), intent(in) :: & icells ! number of cells where triarea > puny integer (kind=int_kind), dimension (nx_block*ny_block,ngroups), & intent(in) :: & indxi ,&! compressed index in i-direction indxj ! compressed index in j-direction real (kind=dbl_kind), intent(in), & dimension (nx_block, ny_block, 0:nvert, ngroups) :: & xp, yp ! coordinates of triangle points real (kind=dbl_kind), intent(in), & dimension (nx_block, ny_block, ngroups) :: & triarea ! triangle area integer (kind=int_kind), intent(in), & dimension (nx_block, ny_block, ngroups) :: & iflux ,& jflux real (kind=dbl_kind), intent(in), & dimension (nx_block, ny_block) :: & mc, mx, my real (kind=dbl_kind), intent(out), & dimension (nx_block, ny_block) :: & mflx real (kind=dbl_kind), intent(in), & dimension (nx_block, ny_block, max_ntrace), optional :: & tc, tx, ty real (kind=dbl_kind), intent(out), & dimension (nx_block, ny_block, max_ntrace), optional :: & mtflx ! !EOP ! integer (kind=int_kind) :: & i, j, ij ,&! horizontal indices of edge i2, j2 ,&! horizontal indices of cell contributing transport ng ,&! triangle index nt, nt1 ,&! tracer indices ilo,ihi,jlo,jhi ! beginning and end of physical domain real (kind=dbl_kind) :: & m0, m1, m2, m3 ,&! mass field at internal points w0, w1, w2, w3 ! work variables real (kind=dbl_kind), dimension (nx_block, ny_block) :: & msum, mxsum, mysum ,&! sum of mass, mass*x, and mass*y mxxsum, mxysum, myysum ! sum of mass*x*x, mass*x*y, mass*y*y real (kind=dbl_kind), dimension (nx_block, ny_block, max_ntrace) :: & mtsum ,&! sum of mass*tracer mtxsum ,&! sum of mass*tracer*x mtysum ! sum of mass*tracer*y !------------------------------------------------------------------- ! Initialize !------------------------------------------------------------------- mflx(:,:) = c0 if (present(mtflx)) then do nt = 1, ntrace mtflx(:,:,nt) = c0 enddo endif !------------------------------------------------------------------- ! Main loop !------------------------------------------------------------------- do ng = 1, ngroups if (integral_order == 1) then ! linear (1-point formula) !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) i2 = iflux(i,j,ng) j2 = jflux(i,j,ng) ! mass transports m0 = mc(i2,j2) + xp(i,j,0,ng)*mx(i2,j2) & + yp(i,j,0,ng)*my(i2,j2) msum(i,j) = m0 mflx(i,j) = mflx(i,j) + triarea(i,j,ng)*msum(i,j) ! quantities needed for tracer transports mxsum(i,j) = m0*xp(i,j,0,ng) mxxsum(i,j) = mxsum(i,j)*xp(i,j,0,ng) mxysum(i,j) = mxsum(i,j)*yp(i,j,0,ng) mysum(i,j) = m0*yp(i,j,0,ng) myysum(i,j) = mysum(i,j)*yp(i,j,0,ng) enddo ! ij elseif (integral_order == 2) then ! quadratic (3-point formula) !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) i2 = iflux(i,j,ng) j2 = jflux(i,j,ng) ! mass transports ! Weighting factor of 1/3 is incorporated into the ice ! area terms m1, m2, and m3. m1 = p333 * (mc(i2,j2) + xp(i,j,1,ng)*mx(i2,j2) & + yp(i,j,1,ng)*my(i2,j2)) m2 = p333 * (mc(i2,j2) + xp(i,j,2,ng)*mx(i2,j2) & + yp(i,j,2,ng)*my(i2,j2)) m3 = p333 * (mc(i2,j2) + xp(i,j,3,ng)*mx(i2,j2) & + yp(i,j,3,ng)*my(i2,j2)) msum(i,j) = m1 + m2 + m3 mflx(i,j) = mflx(i,j) + triarea(i,j,ng)*msum(i,j) ! quantities needed for mass_tracer transports w1 = m1 * xp(i,j,1,ng) w2 = m2 * xp(i,j,2,ng) w3 = m3 * xp(i,j,3,ng) mxsum(i,j) = w1 + w2 + w3 mxxsum(i,j) = w1*xp(i,j,1,ng) + w2*xp(i,j,2,ng) & + w3*xp(i,j,3,ng) mxysum(i,j) = w1*yp(i,j,1,ng) + w2*yp(i,j,2,ng) & + w3*yp(i,j,3,ng) w1 = m1 * yp(i,j,1,ng) w2 = m2 * yp(i,j,2,ng) w3 = m3 * yp(i,j,3,ng) mysum(i,j) = w1 + w2 + w3 myysum(i,j) = w1*yp(i,j,1,ng) + w2*yp(i,j,2,ng) & + w3*yp(i,j,3,ng) enddo ! ij else ! cubic (4-point formula) !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) i2 = iflux(i,j,ng) j2 = jflux(i,j,ng) ! mass transports ! Weighting factors are incorporated into the ! terms m0, m1, m2, and m3. m0 = p5625m * (mc(i2,j2) + xp(i,j,0,ng)*mx(i2,j2) & + yp(i,j,0,ng)*my(i2,j2)) m1 = p52083 * (mc(i2,j2) + xp(i,j,1,ng)*mx(i2,j2) & + yp(i,j,1,ng)*my(i2,j2)) m2 = p52083 * (mc(i2,j2) + xp(i,j,2,ng)*mx(i2,j2) & + yp(i,j,2,ng)*my(i2,j2)) m3 = p52083 * (mc(i2,j2) + xp(i,j,3,ng)*mx(i2,j2) & + yp(i,j,3,ng)*my(i2,j2)) msum(i,j) = m0 + m1 + m2 + m3 mflx(i,j) = mflx(i,j) + triarea(i,j,ng)*msum(i,j) ! quantities needed for tracer transports w0 = m0 * xp(i,j,0,ng) w1 = m1 * xp(i,j,1,ng) w2 = m2 * xp(i,j,2,ng) w3 = m3 * xp(i,j,3,ng) mxsum(i,j) = w0 + w1 + w2 + w3 mxxsum(i,j) = w0*xp(i,j,0,ng) + w1*xp(i,j,1,ng) & + w2*xp(i,j,2,ng) + w3*xp(i,j,3,ng) mxysum(i,j) = w0*yp(i,j,0,ng) + w1*yp(i,j,1,ng) & + w2*yp(i,j,2,ng) + w3*yp(i,j,3,ng) w0 = m0 * yp(i,j,0,ng) w1 = m1 * yp(i,j,1,ng) w2 = m2 * yp(i,j,2,ng) w3 = m3 * yp(i,j,3,ng) mysum(i,j) = w0 + w1 + w2 + w3 myysum(i,j) = w0*yp(i,j,0,ng) + w1*yp(i,j,1,ng) & + w2*yp(i,j,2,ng) + w3*yp(i,j,3,ng) enddo ! ij endif ! integral_order ! mass * tracer transports if (present(mtflx)) then do nt = 1, ntrace if (tracer_type(nt)==1) then ! does not depend on another tracer !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) i2 = iflux(i,j,ng) j2 = jflux(i,j,ng) mtsum(i,j,nt) = msum(i,j) * tc(i2,j2,nt) & + mxsum(i,j) * tx(i2,j2,nt) & + mysum(i,j) * ty(i2,j2,nt) mtflx(i,j,nt) = mtflx(i,j,nt) & + triarea(i,j,ng) * mtsum(i,j,nt) ! quantities needed for dependent tracers mtxsum(i,j,nt) = mxsum(i,j) * tc(i2,j2,nt) & + mxxsum(i,j) * tx(i2,j2,nt) & + mxysum(i,j) * ty(i2,j2,nt) mtysum(i,j,nt) = mysum(i,j) * tc(i2,j2,nt) & + mxysum(i,j) * tx(i2,j2,nt) & + myysum(i,j) * ty(i2,j2,nt) enddo ! ij elseif (tracer_type(nt)==2) then ! depends on another tracer nt1 = depend(nt) !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) i2 = iflux(i,j,ng) j2 = jflux(i,j,ng) mtsum(i,j,nt) = mtsum(i,j,nt1) * tc(i2,j2,nt) & + mtxsum(i,j,nt1) * tx(i2,j2,nt) & + mtysum(i,j,nt1) * ty(i2,j2,nt) mtflx(i,j,nt) = mtflx(i,j,nt) & + triarea(i,j,ng) * mtsum(i,j,nt) enddo ! ij elseif (tracer_type(nt)==3) then ! depends on two tracers nt1 = depend(nt) !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ij = 1, icells(ng) i = indxi(ij,ng) j = indxj(ij,ng) i2 = iflux(i,j,ng) j2 = jflux(i,j,ng) ! upwind approx (tx=ty=0) for type 3 tracers mtsum(i,j,nt) = mtsum(i,j,nt1) * tc(i2,j2,nt) mtflx(i,j,nt) = mtflx(i,j,nt) & + triarea(i,j,ng) * mtsum(i,j,nt) enddo ! ij endif ! tracer type enddo ! ntrace endif ! present(mtflx) enddo ! ng end subroutine transport_integrals !======================================================================= ! !BOP ! ! !IROUTINE: update_fields - compute new area and tracers ! ! !INTERFACE: ! subroutine update_fields (nx_block, ny_block, & 2 ilo, ihi, jlo, jhi, & ntrace, & tracer_type, depend, & tarear, l_stop, & istop, jstop, & mflxe, mflxn, & mm, & mtflxe, mtflxn, & tm) ! ! !DESCRIPTION: ! ! Given transports through cell edges, compute new area and tracers. ! ! !REVISION HISTORY: ! ! author William H. Lipscomb, LANL ! ! !USES: ! ! !INPUT/OUTPUT PARAMETERS: ! integer (kind=int_kind), intent(in) :: & nx_block, ny_block,&! block dimensions ilo,ihi,jlo,jhi ,&! beginning and end of physical domain ntrace ! number of tracers in use integer (kind=int_kind), dimension (ntrace), intent(in) :: & tracer_type ,&! = 1, 2, or 3 (see comments above) depend ! tracer dependencies (see above) real (kind=dbl_kind), dimension (nx_block, ny_block), & intent(in) :: & mflxe, mflxn ,&! mass transport across east and north cell edges tarear ! 1/tarea real (kind=dbl_kind), dimension (nx_block, ny_block), & intent(inout) :: & mm ! mass field (mean) real (kind=dbl_kind), dimension (nx_block, ny_block, max_ntrace), & intent(in), optional :: & mtflxe, mtflxn ! mass*tracer transport across E and N cell edges real (kind=dbl_kind), dimension (nx_block, ny_block, max_ntrace), & intent(inout), optional :: & tm ! tracer fields logical (kind=log_kind), intent(inout) :: & l_stop ! if true, abort on return integer (kind=int_kind), intent(inout) :: & istop, jstop ! indices of grid cell where model aborts ! !EOP ! integer (kind=int_kind) :: & i, j ,&! horizontal indices nt, nt1, nt2 ! tracer indices real (kind=dbl_kind), dimension(nx_block,ny_block,max_ntrace) :: & mtold ! old mass*tracer real (kind=dbl_kind) :: & w1, w2 ! work variables integer (kind=int_kind), dimension(nx_block*ny_block) :: & indxi ,&! compressed indices in i and j directions indxj integer (kind=int_kind) :: & icells ,&! number of cells with mm > 0. ij ! combined i/j horizontal index !------------------------------------------------------------------- ! Save starting values of mass*tracer !------------------------------------------------------------------- if (present(tm)) then do nt = 1, ntrace if (tracer_type(nt)==1) then ! does not depend on other tracers do j = jlo, jhi do i = ilo, ihi mtold(i,j,nt) = mm(i,j) * tm(i,j,nt) enddo ! i enddo ! j elseif (tracer_type(nt)==2) then ! depends on another tracer nt1 = depend(nt) do j = jlo, jhi do i = ilo, ihi mtold(i,j,nt) = mm(i,j) * tm(i,j,nt1) * tm(i,j,nt) enddo ! i enddo ! j elseif (tracer_type(nt)==3) then ! depends on two tracers nt1 = depend(nt) nt2 = depend(nt1) do j = jlo, jhi do i = ilo, ihi mtold(i,j,nt) = mm(i,j) & * tm(i,j,nt2) * tm(i,j,nt1) * tm(i,j,nt) enddo ! i enddo ! j endif ! depend(nt) = 0 enddo ! nt endif ! present(tm) !------------------------------------------------------------------- ! Update mass field !------------------------------------------------------------------- do j = jlo, jhi do i = ilo, ihi w1 = mflxe(i,j) - mflxe(i-1,j) & + mflxn(i,j) - mflxn(i,j-1) mm(i,j) = mm(i,j) - w1*tarear(i,j) if (mm(i,j) < -puny) then ! abort with negative value l_stop = .true. istop = i jstop = j elseif (mm(i,j) < c0) then ! set to zero mm(i,j) = c0 endif enddo enddo if (l_stop) then i = istop j = jstop w1 = mflxe(i,j) - mflxe(i-1,j) & + mflxn(i,j) - mflxn(i,j-1) write (nu_diag,*) ' ' write (nu_diag,*) 'New mass < 0, i, j =', i, j write (nu_diag,*) 'Old mass =', mm(i,j) + w1*tarear(i,j) write (nu_diag,*) 'New mass =', mm(i,j) write (nu_diag,*) 'Net transport =', -w1*tarear(i,j) return endif !------------------------------------------------------------------- ! Update tracers !------------------------------------------------------------------- if (present(tm)) then icells = 0 do j = jlo, jhi do i = ilo, ihi if (mm(i,j) > c0) then ! grid cells with positive areas icells = icells + 1 indxi(icells) = i indxj(icells) = j endif enddo ! i enddo ! j do nt = 1, ntrace do j = jlo, jhi do i = ilo, ihi tm(i,j,nt) = c0 enddo enddo if (tracer_type(nt)==1) then ! does not depend on other tracers do ij = 1, icells i = indxi(ij) j = indxj(ij) w1 = mtflxe(i,j,nt) - mtflxe(i-1,j,nt) & + mtflxn(i,j,nt) - mtflxn(i,j-1,nt) tm(i,j,nt) = (mtold(i,j,nt) - w1*tarear(i,j)) & / mm(i,j) enddo ! ij elseif (tracer_type(nt)==2) then ! depends on another tracer nt1 = depend(nt) !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ij = 1, icells i = indxi(ij) j = indxj(ij) if (abs(tm(i,j,nt1)) > c0) then w1 = mtflxe(i,j,nt) - mtflxe(i-1,j,nt) & + mtflxn(i,j,nt) - mtflxn(i,j-1,nt) tm(i,j,nt) = (mtold(i,j,nt) - w1*tarear(i,j)) & / (mm(i,j) * tm(i,j,nt1)) endif enddo ! ij elseif (tracer_type(nt)==3) then ! depends on two tracers nt1 = depend(nt) nt2 = depend(nt1) !DIR$ CONCURRENT !Cray !cdir nodep !NEC !ocl novrec !Fujitsu do ij = 1, icells i = indxi(ij) j = indxj(ij) if (abs(tm(i,j,nt1)) > c0 .and. & abs(tm(i,j,nt2)) > c0) then w1 = mtflxe(i,j,nt) - mtflxe(i-1,j,nt) & + mtflxn(i,j,nt) - mtflxn(i,j-1,nt) tm(i,j,nt) = (mtold(i,j,nt) - w1*tarear(i,j)) & / (mm(i,j) * tm(i,j,nt2) * tm(i,j,nt1)) endif enddo ! ij endif ! tracer_type enddo ! nt endif ! present(tm) end subroutine update_fields !======================================================================= end module ice_transport_remap !=======================================================================