module cloud_fraction 5,4 ! Cloud fraction parameterization. use shr_kind_mod, only: r8 => shr_kind_r8 use spmd_utils, only: masterproc use cam_logfile, only: iulog use abortutils, only: endrun implicit none private save ! Public interfaces public & cldfrc_readnl, &! read cldfrc_nl namelist cldfrc_init, &! Inititialization of cloud_fraction run-time parameters cldfrc_getparams, &! public access of tuning parameters cldfrc ! Computation of cloud fraction ! Private data real(r8), parameter :: unset_r8 = huge(1.0_r8) ! Namelist variables logical :: cldfrc_freeze_dry ! switch for Vavrus correction logical :: cldfrc_ice ! switch to compute ice cloud fraction real(r8) :: cldfrc_rhminl = unset_r8 ! minimum rh for low stable clouds real(r8) :: cldfrc_rhminh = unset_r8 ! minimum rh for high stable clouds real(r8) :: rhminl ! set from namelist input cldfrc_rhminl real(r8) :: rhminh ! set from namelist input cldfrc_rhminh real(r8) :: sh1, sh2 ! parameters for shallow convection cloud fraction real(r8) :: dp1,dp2 ! parameters for deep convection cloud fraction real(r8) :: premit ! top pressure bound for mid level cloud real(r8), parameter :: pnot = 1.e5_r8 ! reference pressure real(r8), parameter :: lapse = 6.5e-3_r8 ! U.S. Standard Atmsophere lapse rate real(r8), parameter :: premib_uw = 750.e2_r8 ! bottom pressure bound of middle cloud for UW real(r8), parameter :: premib_cam = 750.e2_r8 ! bottom pressure bound of middle cloud for CAM real(r8) :: premib ! bottom pressure bound of middle cloud real(r8), parameter :: pretop = 1.0e2_r8 ! pressure bounding high cloud integer :: iceopt = 4 ! option for ice cloud closure ! 1=wang & sassen 2=schiller (iciwc) ! 3=wood & field, 4=Wilson (based on smith) real(r8), parameter :: icecrit = 0.95_r8 ! Critical RH for ice clouds in Wilson & Ballard closure (smaller = more ice clouds) integer count character(len=16) :: microp_scheme logical :: inversion_cld_off ! Turns off stratification-based cld frc !================================================================================================ contains !================================================================================================ subroutine cldfrc_readnl(nlfile) 1,11 use namelist_utils, only: find_group_name use units, only: getunit, freeunit use mpishorthand character(len=*), intent(in) :: nlfile ! filepath for file containing namelist input ! Local variables integer :: unitn, ierr character(len=*), parameter :: subname = 'cldfrc_readnl' namelist /cldfrc_nl/ cldfrc_freeze_dry, cldfrc_ice, cldfrc_rhminl, cldfrc_rhminh !----------------------------------------------------------------------------- if (masterproc) then unitn = getunit() open( unitn, file=trim(nlfile), status='old' ) call find_group_name(unitn, 'cldfrc_nl', status=ierr) if (ierr == 0) then read(unitn, cldfrc_nl, iostat=ierr) if (ierr /= 0) then call endrun(subname // ':: ERROR reading namelist') end if end if close(unitn) call freeunit(unitn) ! set local variables rhminl = cldfrc_rhminl rhminh = cldfrc_rhminh end if #ifdef SPMD ! Broadcast namelist variables call mpibcast(cldfrc_freeze_dry, 1, mpilog, 0, mpicom) call mpibcast(cldfrc_ice, 1, mpilog, 0, mpicom) call mpibcast(rhminl, 1, mpir8, 0, mpicom) call mpibcast(rhminh, 1, mpir8, 0, mpicom) #endif end subroutine cldfrc_readnl !================================================================================================ subroutine cldfrc_getparams(rhminl_out, rhminh_out ) 1 !----------------------------------------------------------------------- ! Purpose: Return cldfrc tuning parameters !----------------------------------------------------------------------- real(r8), intent(out), optional :: rhminl_out real(r8), intent(out), optional :: rhminh_out if ( present(rhminl_out) ) rhminl_out = rhminl if ( present(rhminh_out) ) rhminh_out = rhminh end subroutine cldfrc_getparams !=============================================================================== subroutine cldfrc_init 1,7 ! ! Purpose: ! Initialize cloud fraction run-time parameters ! ! Author: J. McCaa ! use dycore, only: dycore_is, get_resolution use ppgrid, only: pver use chemistry, only: chem_is use phys_control, only: phys_getopts ! horizontal grid specifier character(len=32) :: hgrid ! query interfaces for scheme settings character(len=16) :: shallow_scheme, eddy_scheme call phys_getopts(shallow_scheme_out = shallow_scheme ,& eddy_scheme_out = eddy_scheme, & microp_scheme_out = microp_scheme) hgrid = get_resolution() if ( shallow_scheme .eq. 'UW' ) then premib = premib_uw else premib = premib_cam endif sh2 = 500.0_r8 dp2 = 500.0_r8 premit = 750.e2_r8 iceopt = 1 if ( dycore_is ('LR') ) then sh1 = 0.04_r8 dp1 = 0.10_r8 if ( trim(hgrid) == '0.23x0.31' ) then premit = 250.e2_r8 elseif ( trim(hgrid) == '0.47x0.63' .or. trim(hgrid) == '0.5x0.625' ) then premit = 250.e2_r8 elseif ( trim(hgrid) == '1.9x2.5' .or. trim(hgrid) == '2x2.5' ) then if ( microp_scheme .eq. 'MG' .and. shallow_scheme .eq. 'UW') then dp1 = 0.04_r8 dp2 = 675.0_r8 endif endif else sh1 = 0.07_r8 dp1 = 0.14_r8 if ( trim(hgrid) == 'T341' ) then premit = 250.e2_r8 ! top of area defined to be mid-level cloud elseif ( trim(hgrid) == 'T170' ) then premit = 250.e2_r8 elseif ( trim(hgrid) == 'T85' ) then premit = 250.e2_r8 endif endif ! Turn off inversion_cld if any UW PBL scheme is being used if ( (eddy_scheme .eq. 'diag_TKE' ) .or. (shallow_scheme .eq. 'UW' )) then inversion_cld_off = .true. else inversion_cld_off = .false. endif if ( masterproc ) then write(iulog,*)'tuning parameters cldfrc_init: inversion_cld_off',inversion_cld_off write(iulog,*)'tuning parameters cldfrc_init: dp1',dp1,'dp2',dp2,'sh1',sh1,'sh2',sh2 if (shallow_scheme .ne. 'UW' ) then write(iulog,*)'tuning parameters cldfrc_init: rhminl',rhminl,'rhminh',rhminh,'premit',premit,'premib',premib endif endif end subroutine cldfrc_init subroutine cldfrc(lchnk ,ncol , pbuf, & 4,15 pmid ,temp ,q ,omga , phis, & shfrc ,use_shfrc, & cloud ,rhcloud, clc ,pdel , & cmfmc ,cmfmc2 ,landfrac,snowh ,concld ,cldst , & ts ,sst ,ps ,zdu ,ocnfrac ,& rhu00 ,cldice ,icecldf ,liqcldf ,relhum ,dindex ) !----------------------------------------------------------------------- ! ! Purpose: ! Compute cloud fraction ! ! ! Method: ! This calculate cloud fraction using a relative humidity threshold ! The threshold depends upon pressure, and upon the presence or absence ! of convection as defined by a reasonably large vertical mass flux ! entering that layer from below. ! ! Author: Many. Last modified by Jim McCaa ! !----------------------------------------------------------------------- use ppgrid use physconst, only: cappa, gravit, rair, tmelt use cldconst use wv_saturation, only: aqsat, aqsat_water, polysvp use phys_grid, only: get_rlat_all_p, get_rlon_all_p use dycore, only: dycore_is, get_resolution !RBN - Need this to write shallow,deep fraction to phys buffer. !PJR - we should probably make seperate modules for determining convective ! clouds and make this one just responsible for relative humidity clouds use phys_buffer, only: pbuf_size_max, pbuf_fld, pbuf_old_tim_idx, pbuf_get_fld_idx ! Arguments integer, intent(in) :: lchnk ! chunk identifier integer, intent(in) :: ncol ! number of atmospheric columns integer, intent(in) :: dindex ! 0 or 1 to perturb rh type(pbuf_fld), intent(inout) :: pbuf(pbuf_size_max) real(r8), intent(in) :: pmid(pcols,pver) ! midpoint pressures real(r8), intent(in) :: temp(pcols,pver) ! temperature real(r8), intent(in) :: q(pcols,pver) ! specific humidity real(r8), intent(in) :: omga(pcols,pver) ! vertical pressure velocity real(r8), intent(in) :: cmfmc(pcols,pverp) ! convective mass flux--m sub c real(r8), intent(in) :: cmfmc2(pcols,pverp) ! shallow convective mass flux--m sub c real(r8), intent(in) :: snowh(pcols) ! snow depth (liquid water equivalent) real(r8), intent(in) :: pdel(pcols,pver) ! pressure depth of layer real(r8), intent(in) :: landfrac(pcols) ! Land fraction real(r8), intent(in) :: ocnfrac(pcols) ! Ocean fraction real(r8), intent(in) :: ts(pcols) ! surface temperature real(r8), intent(in) :: sst(pcols) ! sea surface temperature real(r8), intent(in) :: ps(pcols) ! surface pressure real(r8), intent(in) :: zdu(pcols,pver) ! detrainment rate from deep convection real(r8), intent(in) :: phis(pcols) ! surface geopotential real(r8), intent(in) :: shfrc(pcols,pver) ! cloud fraction from convect_shallow real(r8), intent(in) :: cldice(pcols,pver) ! cloud ice mixing ratio logical, intent(in) :: use_shfrc ! Output arguments real(r8), intent(out) :: cloud(pcols,pver) ! cloud fraction real(r8), intent(out) :: rhcloud(pcols,pver) ! cloud fraction real(r8), intent(out) :: clc(pcols) ! column convective cloud amount real(r8), intent(out) :: cldst(pcols,pver) ! cloud fraction real(r8), intent(out) :: rhu00(pcols,pver) ! RH threshold for cloud real(r8), intent(out) :: relhum(pcols,pver) ! RH real(r8), intent(out) :: icecldf(pcols,pver) ! ice cloud fraction real(r8), intent(out) :: liqcldf(pcols,pver) ! liquid cloud fraction (combined into cloud) !---------------------------Local workspace----------------------------- ! real(r8) concld(pcols,pver) ! convective cloud cover real(r8) cld ! intermediate scratch variable (low cld) real(r8) dthdpmn(pcols) ! most stable lapse rate below 750 mb real(r8) dthdp ! lapse rate (intermediate variable) real(r8) es(pcols,pver) ! saturation vapor pressure real(r8) qs(pcols,pver) ! saturation specific humidity real(r8) rhwght ! weighting function for rhlim transition real(r8) rh(pcols,pver) ! relative humidity real(r8) rhdif ! intermediate scratch variable real(r8) strat ! intermediate scratch variable real(r8) theta(pcols,pver) ! potential temperature real(r8) rhlim ! local rel. humidity threshold estimate real(r8) coef1 ! coefficient to convert mass flux to mb/d real(r8) clrsky(pcols) ! temporary used in random overlap calc real(r8) rpdeli(pcols,pver-1) ! 1./(pmid(k+1)-pmid(k)) real(r8) rhpert !the specified perturbation to rh real(r8), pointer, dimension(:,:) :: deepcu ! deep convection cloud fraction real(r8), pointer, dimension(:,:) :: shallowcu ! shallow convection cloud fraction logical cldbnd(pcols) ! region below high cloud boundary integer i, ierror, k ! column, level indices integer kp1, ifld integer kdthdp(pcols) integer numkcld ! number of levels in which to allow clouds ! In Cloud Ice Content variables real(r8) :: a,b,c,as,bs,cs !fit parameters real(r8) :: Kc !constant for ice cloud calc (wood & field) real(r8) :: ttmp !limited temperature real(r8) :: icicval !empirical iwc value real(r8) :: rho !local air density real(r8) :: esl(pcols,pver) !liq sat vapor pressure real(r8) :: esi(pcols,pver) !ice sat vapor pressure real(r8) :: ncf,phi !Wilson and Ballard parameters real(r8) thetas(pcols) ! ocean surface potential temperature real(r8) :: clat(pcols) ! current latitudes(radians) real(r8) :: clon(pcols) ! current longitudes(radians) ! Statement functions logical land land(i) = nint(landfrac(i)) == 1 call get_rlat_all_p(lchnk, ncol, clat) call get_rlon_all_p(lchnk, ncol, clon) ifld = pbuf_get_fld_idx('SH_FRAC') shallowcu => pbuf(ifld)%fld_ptr(1,1:pcols,1:pver,lchnk,1) ifld = pbuf_get_fld_idx('DP_FRAC') deepcu => pbuf(ifld)%fld_ptr(1,1:pcols,1:pver,lchnk,1) ! Initialise cloud fraction shallowcu = 0._r8 deepcu = 0._r8 !================================================================================== ! PHILOSOPHY OF PRESENT IMPLEMENTATION !++ag ice3 ! Modification to philosophy for ice supersaturation ! philosophy below is based on RH water only. This is 'liquid condensation' ! or liquid cloud (even though it will freeze immediately to ice) ! The idea is that the RH limits for condensation are strict only for ! water saturation ! ! Ice clouds are formed by explicit parameterization of ice nucleation. ! Closure for ice cloud fraction is done on available cloud ice, such that ! the in-cloud ice content matches an empirical fit ! thus, icecldf = min(cldice/icicval,1) where icicval = f(temp,cldice,numice) ! for a first cut, icicval=f(temp) only. ! Combined cloud fraction is maximum overlap cloud=max(1,max(icecldf,liqcldf)) ! No dA/dt term for ice? !--ag ! ! There are three co-existing cloud types: convective, inversion related low-level ! stratocumulus, and layered cloud (based on relative humidity). Layered and ! stratocumulus clouds do not compete with convective cloud for which one creates ! the most cloud. They contribute collectively to the total grid-box average cloud ! amount. This is reflected in the way in which the total cloud amount is evaluated ! (a sum as opposed to a logical "or" operation) ! !================================================================================== ! set defaults for rhu00 rhu00(:,:) = 2.0_r8 ! define rh perturbation in order to estimate rhdfda rhpert = 0.01_r8 !set Wang and Sassen IWC paramters a=26.87_r8 b=0.569_r8 c=0.002892_r8 !set schiller parameters as=-68.4202_r8 bs=0.983917_r8 cs=2.81795_r8 !set wood and field paramters... Kc=75._r8 ! Evaluate potential temperature and relative humidity ! If not computing ice cloud fraction then hybrid RH, if MG then water RH if ( .not. cldfrc_ice ) then call aqsat(temp, pmid, es, qs, pcols, & ncol, pver, 1, pver) else call aqsat_water(temp, pmid, es, qs, pcols, & ncol, pver, 1, pver) endif do k=1,pver do i=1,ncol if (cldfrc_ice) then !++ag calculate qsat ice from qsatw esl(i,k)=polysvp(temp(i,k),0) esi(i,k)=polysvp(temp(i,k),1) end if theta(i,k) = temp(i,k)*(pnot/pmid(i,k))**cappa rh(i,k) = q(i,k)/qs(i,k)*(1.0_r8+real(dindex,r8)*rhpert) ! record relhum, rh itself will later be modified related with concld relhum(i,k) = rh(i,k) cloud(i,k) = 0._r8 icecldf(i,k) = 0._r8 liqcldf(i,k) = 0._r8 rhcloud(i,k) = 0._r8 cldst(i,k) = 0._r8 concld(i,k) = 0._r8 end do end do ! Initialize other temporary variables ierror = 0 do i=1,ncol ! Adjust thetas(i) in the presence of non-zero ocean heights. ! This reduces the temperature for positive heights according to a standard lapse rate. if(ocnfrac(i).gt.0.01_r8) thetas(i) = & ( sst(i) - lapse * phis(i) / gravit) * (pnot/ps(i))**cappa if(ocnfrac(i).gt.0.01_r8.and.sst(i).lt.260._r8) ierror = i clc(i) = 0.0_r8 end do coef1 = gravit*864.0_r8 ! conversion to millibars/day if (ierror > 0) then write(iulog,*) 'COLDSST: encountered in cldfrc:', lchnk,ierror,ocnfrac(ierror),sst(ierror) endif do k=1,pver-1 do i=1,ncol rpdeli(i,k) = 1._r8/(pmid(i,k+1) - pmid(i,k)) end do end do ! ! Estimate of local convective cloud cover based on convective mass flux ! Modify local large-scale relative humidity to account for presence of ! convective cloud when evaluating relative humidity based layered cloud amount ! do k=1,pver do i=1,ncol concld(i,k) = 0.0_r8 end do end do ! ! cloud mass flux in SI units of kg/m2/s; should produce typical numbers of 20% ! shallow and deep convective cloudiness are evaluated separately (since processes ! are evaluated separately) and summed ! #ifndef PERGRO do k=1,pver-1 do i=1,ncol if ( .not. use_shfrc ) then shallowcu(i,k) = max(0.0_r8,min(sh1*log(1.0_r8+sh2*cmfmc2(i,k+1)),0.30_r8)) else shallowcu(i,k) = shfrc(i,k) endif deepcu(i,k) = max(0.0_r8,min(dp1*log(1.0_r8+dp2*(cmfmc(i,k+1)-cmfmc2(i,k+1))),0.60_r8)) concld(i,k) = min(shallowcu(i,k) + deepcu(i,k),0.80_r8) rh(i,k) = (rh(i,k) - concld(i,k))/(1.0_r8 - concld(i,k)) end do end do #endif !================================================================================== ! ! ****** Compute layer cloudiness ****** ! !==================================================================== ! Begin the evaluation of layered cloud amount based on (modified) RH !==================================================================== ! numkcld = pver do k=2,numkcld kp1 = min(k + 1,pver) do i=1,ncol !++ag This is now designed to apply FOR LIQUID CLOUDS (condensation > RH water) cldbnd(i) = pmid(i,k).ge.pretop if ( pmid(i,k).ge.premib ) then !============================================================== ! This is the low cloud (below premib) block !============================================================== ! enhance low cloud activation over land with no snow cover if (land(i) .and. (snowh(i) <= 0.000001_r8)) then rhlim = rhminl - 0.10_r8 ! rhlim = rhminl else rhlim = rhminl endif rhdif = (rh(i,k) - rhlim)/(1.0_r8-rhlim) rhcloud(i,k) = min(0.999_r8,(max(rhdif,0.0_r8))**2) ! SJV: decrease cloud amount if very low water vapor content ! (thus very cold): "freeze dry" if (cldfrc_freeze_dry) then rhcloud(i,k) = rhcloud(i,k)*max(0.15_r8,min(1.0_r8,q(i,k)/0.0030_r8)) endif else if ( pmid(i,k).lt.premit ) then !============================================================== ! This is the high cloud (above premit) block !============================================================== ! rhlim = rhminh ! rhdif = (rh(i,k) - rhlim)/(1.0_r8-rhlim) rhcloud(i,k) = min(0.999_r8,(max(rhdif,0.0_r8))**2) else !============================================================== ! This is the middle cloud block !============================================================== ! ! linear rh threshold transition between thresholds for low & high cloud ! rhwght = (premib-(max(pmid(i,k),premit)))/(premib-premit) if (land(i) .and. (snowh(i) <= 0.000001_r8)) then rhlim = rhminh*rhwght + (rhminl - 0.10_r8)*(1.0_r8-rhwght) else rhlim = rhminh*rhwght + rhminl*(1.0_r8-rhwght) endif rhdif = (rh(i,k) - rhlim)/(1.0_r8-rhlim) rhcloud(i,k) = min(0.999_r8,(max(rhdif,0.0_r8))**2) end if !================================================================================== ! WE NEED TO DOCUMENT THE PURPOSE OF THIS TYPE OF CODE (ASSOCIATED WITH 2ND CALL) !================================================================================== ! ! ! ! save rhlim to rhu00, it handles well by itself for low/high cloud ! ! rhu00(i,k)=rhlim !================================================================================== if (cldfrc_ice) then ! Evaluate ice cloud fraction based on in-cloud ice content !--------ICE CLOUD OPTION 1--------Wang & Sassen 2002 ! Evaluate desired in-cloud water content ! icicval = f(temp,cldice,numice) ! Start with a function of temperature. ! Wang & Sassen 2002 (JAS), based on ARM site MMCR (midlat cirrus) ! parameterization valid for 203-253K ! icival > 0 for t>195K if (iceopt.lt.3) then if (iceopt.eq.1) then ttmp=max(195._r8,min(temp(i,k),253._r8)) - 273.16_r8 icicval=a + b * ttmp + c * ttmp**2._r8 !convert units rho=pmid(i,k)/(rair*temp(i,k)) icicval= icicval * 1.e-6_r8 / rho else !--------ICE CLOUD OPTION 2--------Schiller 2008 (JGR) ! Use a curve based on FISH measurements in ! tropics, mid-lats and arctic. Curve is for 180-250K (raise to 273K?) ! use median all flights ttmp=max(190._r8,min(temp(i,k),273.16_r8)) icicval = 10._r8 **(as * bs**ttmp + cs) !convert units from ppmv to kg/kg icicval= icicval * 1.e-6_r8 * 18._r8 / 28.97_r8 endif !set icecldfraction for OPTION 1 or OPTION2 icecldf(i,k) = max(0._r8,min(cldice(i,k)/icicval,1._r8)) else if (iceopt.eq.3) then !--------ICE CLOUD OPTION 3--------Wood & Field 2000 (JAS) ! eq 6: cloud fraction = 1 - exp (-K * qc/qsati) icecldf(i,k)=1._r8 - exp(-Kc*cldice(i,k)/(qs(i,k)*(esi(i,k)/esl(i,k)))) icecldf(i,k)=max(0._r8,min(icecldf(i,k),1._r8)) else !--------ICE CLOUD OPTION 4--------Wilson and ballard 1999 ! inversion of smith.... ! ncf = cldice / ((1-RHcrit)*qs) ! then a function of ncf.... ncf =cldice(i,k)/((1._r8 - icecrit)*qs(i,k)) if (ncf.le.0._r8) then icecldf(i,k)=0._r8 else if (ncf.gt.0._r8 .and. ncf.le.1._r8/6._r8) then icecldf(i,k)=0.5_r8*(6._r8 * ncf)**(2._r8/3._r8) else if (ncf.gt.1._r8/6._r8 .and. ncf.lt.1._r8) then phi=(acos(3._r8*(1._r8-ncf)/2._r8**(3._r8/2._r8))+4._r8*3.1415927_r8)/3._r8 icecldf(i,k)=(1._r8 - 4._r8 * cos(phi) * cos(phi)) else icecldf(i,k)=1._r8 endif icecldf(i,k)=max(0._r8,min(icecldf(i,k),1._r8)) endif !TEST: if ice present, icecldf=1. ! if (cldice(i,k).ge.1.e-8_r8) then ! icecldf(i,k) = 0.99_r8 ! endif !! if ((cldice(i,k) .gt. icicval) .or. ((cldice(i,k) .gt. 0._r8) .and. (icecldf(i,k) .eq. 0._r8))) then ! if (cldice(i,k) .gt. 1.e-8_r8) then ! write(iulog,*) 'i,k,pmid,rho,t,cldice,icicval,icecldf,rhcloud: ', & ! i,k,pmid(i,k),rho,temp(i,k),cldice(i,k),icicval,icecldf(i,k),rhcloud(i,k) ! endif ! Combine ice and liquid cloud fraction assuming maximum overlap. ! Combined cloud fraction is maximum overlap ! cloud(i,k)=min(1._r8,max(icecldf(i,k),rhcloud(i,k))) liqcldf(i,k)=(1._r8 - icecldf(i,k))* rhcloud(i,k) cloud(i,k)=liqcldf(i,k) + icecldf(i,k) else ! For RK microphysics cloud(i,k) = rhcloud(i,k) end if end do end do ! ! Add in the marine strat ! MARINE STRATUS SHOULD BE A SPECIAL CASE OF LAYERED CLOUD ! CLOUD CURRENTLY CONTAINS LAYERED CLOUD DETERMINED BY RH CRITERIA ! TAKE THE MAXIMUM OF THE DIAGNOSED LAYERED CLOUD OR STRATOCUMULUS ! !=================================================================================== ! ! SOME OBSERVATIONS ABOUT THE FOLLOWING SECTION OF CODE (missed in earlier look) ! K700 IS SET AS A CONSTANT BASED ON HYBRID COORDINATE: IT DOES NOT DEPEND ON ! LOCAL PRESSURE; THERE IS NO PRESSURE RAMP => LOOKS LEVEL DEPENDENT AND ! DISCONTINUOUS IN SPACE (I.E., STRATUS WILL END SUDDENLY WITH NO TRANSITION) ! ! IT APPEARS THAT STRAT IS EVALUATED ACCORDING TO KLEIN AND HARTMANN; HOWEVER, ! THE ACTUAL STRATUS AMOUNT (CLDST) APPEARS TO DEPEND DIRECTLY ON THE RH BELOW ! THE STRONGEST PART OF THE LOW LEVEL INVERSION. !PJR answers: 1) the rh limitation is a physical/mathematical limitation ! cant have more cloud than there is RH ! allowed the cloud to exist two layers below the inversion ! because the numerics frequently make 50% relative humidity ! in level below the inversion which would allow no cloud ! 2) since the cloud is only allowed over ocean, it should ! be very insensitive to surface pressure (except due to ! spectral ringing, which also causes so many other problems ! I didnt worry about it. ! !================================================================================== if (.not.inversion_cld_off) then ! ! Find most stable level below 750 mb for evaluating stratus regimes ! do i=1,ncol ! Nothing triggers unless a stability greater than this minimum threshold is found dthdpmn(i) = -0.125_r8 kdthdp(i) = 0 end do ! do k=2,pver do i=1,ncol if (pmid(i,k) >= premib .and. ocnfrac(i).gt. 0.01_r8) then ! I think this is done so that dtheta/dp is in units of dg/mb (JJH) dthdp = 100.0_r8*(theta(i,k) - theta(i,k-1))*rpdeli(i,k-1) if (dthdp < dthdpmn(i)) then dthdpmn(i) = dthdp kdthdp(i) = k ! index of interface of max inversion end if end if end do end do ! Also check between the bottom layer and the surface ! Only perform this check if the criteria were not met above do i = 1,ncol if ( kdthdp(i) .eq. 0 .and. ocnfrac(i).gt.0.01_r8) then dthdp = 100.0_r8 * (thetas(i) - theta(i,pver)) / (ps(i)-pmid(i,pver)) if (dthdp < dthdpmn(i)) then dthdpmn(i) = dthdp kdthdp(i) = pver ! index of interface of max inversion endif endif enddo do i=1,ncol if (kdthdp(i) /= 0) then k = kdthdp(i) kp1 = min(k+1,pver) ! Note: strat will be zero unless ocnfrac > 0.01 strat = min(1._r8,max(0._r8, ocnfrac(i) * ((theta(i,k700)-thetas(i))*.057_r8-.5573_r8) ) ) ! ! assign the stratus to the layer just below max inversion ! the relative humidity changes so rapidly across the inversion ! that it is not safe to just look immediately below the inversion ! so limit the stratus cloud by rh in both layers below the inversion ! cldst(i,k) = min(strat,max(rh(i,k),rh(i,kp1))) end if end do end if ! .not.inversion_cld_off do k=1,pver do i=1,ncol ! ! which is greater; standard layered cloud amount or stratocumulus diagnosis ! cloud(i,k) = max(rhcloud(i,k),cldst(i,k)) ! ! add in the contributions of convective cloud (determined separately and accounted ! for by modifications to the large-scale relative humidity. ! cloud(i,k) = min(cloud(i,k)+concld(i,k), 1.0_r8) end do end do ! return end subroutine cldfrc end module cloud_fraction